บทที่ 2

ทฤษฎี

2.1 ทฤษฎีเกี่ยวกับสารตั้งต้น

2.1.1 แบเรียมเซอร์โคเนตไทเทเนต (BZT)

แบเรียมไทเทเนต (BaTiO₃) เป็นหนึ่งในสารเซรามิกเฟร์โรอิเล็กทริกที่ได้มีการนำไป ประยุกต์ใช้งานทางด้านอุปกรณ์อิเล็กทรอนิกส์อย่างหลากหลาย ได้แก่ ตัวเก็บประจุแบบหลายชั้น (Multilayer ceramics capacitors) เทอร์มิสเตอร์แบบ PTC (Positive temperature coefficeint of Resistance) ทรานดิวเซอร์ (Transducer) อุปกรณ์ไฟฟ้าเชิงแสง (Electro - optic) เป็นต้น [3-4] เนื่องจากแสดงสมบัติได้หลากหลาย ไม่ว่าจะเป็นสมบัติไพโรอิเล็กทริกสมบัติเพียโซอิเล็ก-ทริกและสมบัติเฟร์โรอิเล็กทริกได้ดี

โดยปกติแล้วโครงสร้างเซรามิก BaTiO₃ มี 4 โครงสร้างหลักตามอุณหภูมิที่เปลี่ยนไป ได้แก่ คิวบิค (Cubic) เตตระโกนอล (Tetragonal) ออร์โธรอมบิค (Orthorhombic) และรอมโบฮีครอล (Rhombohedral) โดยเปลี่ยนเฟสที่อุณหภูมิ 130, 5 และ -90 องศาเซลเซียส [5] ตามลำคับแสคงคัง รูป 2.1

รูป 2.1 การเปลี่ยนแปลงหน่วยเซลล์ของแบเรียมไทเทเนตตามอุณหภูมิ [6]

ช่วงอุณหภูมิ (องศาเซลเซียส)	โครงสร้างผลึก		
< -90	รอมโบฮิดรอล (Rhombohrdral)		
ตั้งแต่ -90 ถึง 0	ออร์โธรอมบิค (Orthorhombic)		
สูงกว่า 0 ถึง 130	เตตระ โกนอล (Tetragonal)		
>130	ลูกบาศก์ (Cubic)		

ตาราง 2.1 แสดงโครงสร้างผลึกของแบเรียมไทเทเนตในช่วงอุณหภูมิต่างๆ [7]

เมื่อทำการพิจารณาที่อุณหภูมิ 130 องศาเซลเซียสซึ่งเป็นอุณหภูมิที่เกิดการเปลี่ยนเฟสจากเฟส ของเฟร์โรอิเล็กทริกเป็นเฟสของพาราอิเล็กทริก เรียกอุณหภูมิการเปลี่ยนเฟสนี้ว่า อุณหภูมิกูรี (Curie temperature) พบว่า ที่อุณหภูมิมากกว่า 130 องศาเซลเซียส BaTiO₃ จะมีโครงสร้างผลึก เป็นแบบคิวบิคเพอร์รอฟสไคท์ (Perovskite) ที่สมมาตรซึ่งมีการจัดเรียงตัวแลตทิซแบบ FCCโดยมี ไอออนของ Ba²⁺ ไปยึดตรงตำแหน่งที่อยู่ตรงมุมของโครงสร้างเอาไว้ทั้งหมดในขณะที่ไอออนของ Ti⁴⁺ จะเข้าไปอยู่ตรงช่องว่างระหว่างไอออนของ O²⁻ ที่จัดเรียงตัวแบบทรงแปดหน้าคังรูป 2.2 เพื่อ ทำให้ระบบมีความเป็นกลางทางไฟฟ้า

ร**ูป 2.2** โครงสร้างผลึกแบบเพอร์รอฟสไกท์ของแบเรียมไทเทเนตเมื่อตำแหน่ง A คือ Ba²⁺, ตำแหน่ง B คือ Ti⁴⁺ และ X คือ O²⁻ [8] สำหรับที่อุณหภูมิต่ำกว่า 130 องศาเซลเซียส BaTiO₃ จะมีโครงสร้างแบบเตตระโกนอลที่มีค่า เตตระโกนอลลิตี้ (Tetragonality; c/a) ประมาณ 1.01 ซึ่งภายในโครงสร้างจะมีขั้วที่เกิดขึ้นเองตาม ธรรมชาติ (Spontaneous polarization; P_s) ชี้ไปในทิศทาง [001] [9] โดยกระบวนที่เกิดขึ้นนี้เป็น การเปลี่ยนรูปร่างของหน่วยเซลล์จากโครงสร้างคิวบิคเปลี่ยนเป็นเตตระโกนอลที่มีแกน c เพิ่มขึ้น

เมื่อพิจารณาการเปลี่ยนเฟสในช่วงระหว่าง 0 ถึง -90 องศาเซลเซียส พบว่าเฟสเฟร์ โรอิเล็ก-ทริกของโครงสร้างแบบออร์โธรอมบิค (Orthorhombic ferroelectric phase) มีความเสถียร โคยขั้ว ที่เกิดขึ้นเองตามธรรมชาติจะชื้ไปในทิศทาง [110] ในโครงสร้างคิวบิคเริ่มค้นขณะที่อุณหภูมิที่ค่ำ กว่า -90 องศาเซลเซียส จะพบว่าเฟสออร์โธรอมบิคจะเกิดการเปลี่ยนไปเป็นเฟสรอม โบฮีครอล (Rhombohedral phase) โดยขั้วที่เกิดขึ้นเองตามธรรมชาติจะชื้ไปในทิศทาง [111] ของแลตทิซคิว-บิค โดยทิศทางของโพลาไรเซชันที่เกิดในเฟสออร์โธรอมบิคและรอม โบฮีครอลแสดงดังรูป 2.3

ร**ูป 2.3** ทิศทางของการเกิดโพลาไรเซชันในหน่วยเซลล์แบบออร์โธรอมบิค และรอมโบฮีครอล [10]

การเปลี่ยนเฟสของสาร BaTiO₃ ตามอุณหภูมิที่เพิ่มขึ้นเกิดขึ้นเนื่องจากการบิดเบี้ยวของทรง แปดหน้าของ TiO₂ โดยการบิดเบี้ยวที่เกิดขึ้นนี้จะทำให้เกิดการมีขั้วเองตามธรรมชาติที่สูงมากจึง เป็นผลทำให้ก่าสภาพยอมสัมพัทธ์มีก่าเพิ่มสูงขึ้น [8] แสดงดังรูป 2.4

6

ร**ูป 2.4** ค่าสภาพยอมสัมพัทธ์ของ BaTiO₃ ตามอุณหภูมิที่เปลี่ยนไป [8]

ถึงแม้ว่าสารแบเรียมไทเทเนตจะแสดงสมบัติที่หลากหลายและเป็นที่นิยมนำไปประยุกต์ใช้ งานแต่ยังมีข้อจำกัดคือสามารถใช้งานได้ที่อุณหภูมิต่ำและช่วงอุณหภูมิการใช้งานที่แคบคือที่ อุณหภูมิครี 130 องศาเซลเซียส โครงสร้างผลึกของแบเรียมไทเทเนตจะเปลี่ยนจากโครงสร้างแบบ เตตระ โกนอลเป็นคิวบิคเป็นผลทำให้ค่าสภาพยอมสัมพัทธ์มีค่าสูงและครอบคลุมอุณหภูมิในช่วง แคบ เพราะฉะนั้นจึงได้มีการเติมไอออนบางตัวลงไปแทนที่ในตำแหน่ง A หรือ B ในโครงสร้าง เพอร์รอฟสไกท์เพื่อปรับปรงพฤติกรรมทางไฟฟ้าของวัสคให้ดีขึ้น เช่น การเติม สทรอนเทียม (Sr) แทนที่แบเรียม (Ba) ในตำแหน่ง A หรือ การเติมฮาฟเนียม (Hf) หรือทิน (Sn) แทนที่ไทเทเนียม (Ti)ในตำแหน่ง B พบว่าการแทนที่ในตำแหน่ง A ไม่พบการเปลี่ยนแปลงใดๆ [11] แต่ในกรณีของ นั้นพบว่าสามารถลดอุณหภูมิคูรีให้ต่ำลงพร้อมทั้งสามารถใช้งานได้ การแทนที่ในตำแหน่ง B ในช่วงอุณหภูมิที่กว้างขึ้นนอกจากนี้ยังเพิ่มค่าสภาพยอมสัมพัทธ์ให้สูงขึ้นอีกด้วย [12] จึงมีการ นำเอาสารแบเรียมเซอร์โคเนตไทเทเนต (Ba(Zr_xTi_{1-x})O₃,BZT) มาประดิษฐ์เป็นสารเซรามิกสำหรับ ตัวเก็บประจูเนื่องจากการเติม ${
m Zr}^{4+}$ แทนที่ Ti $^{4+}$ ในตำแหน่ง B และ ${
m Zr}^{4+}$ มีความเสถียรมากกว่า Ti $^{4+}$ ทำให้สามารถลดอุณหภูมิคูรีให้ต่ำลงและค่าสภาพยอมสัมพัทธ์มีค่าสูงและมีขอบเขตการใช้งาน ในช่วงอุณหภูมิที่กว้างขึ้น [13-15] สำหรับการประยุกต์ใช้งานของพวกอุปกรณ์อิเล็กทรอนิกส์ต่างๆ นอกจากจะต้องมีสมบัติทางไฟฟ้าที่สูงแล้วเช่นค่าสภาพยอมสัมพัทธ์และยังต้องมีสมบัติทางกลที่ดี ้ด้วยดังนั้นการปรับปรุงสมบัติทางกลและไฟฟ้าของสารเซรามิกแบเรียมเซอร์โคเนตไทเทเนตจึง เป็นสิ่งสำคัญในการประยกต์ใช้งานอปกรณ์อิเล็กทรอนิกส์เหล่านี้

2.1.2 การประดิษฐ์เซรามิก BZT

การประดิษฐ์เซรามิกแบเรียมเซอร์ โคเนตไทเทเนตให้มีสมบัติทางไฟฟ้าและกลที่เหมาะสมต่อ การประยุกต์ใช้งานมีดังรายละเอียดต่อไปนี้

ในปีค.ศ. 2003 J. Zhao และคณะ [18] ได้ทำการศึกษาสมบัติที่เหมาะสมต่อการนำไป ประยุกต์ใช้กับพวก DC Bias ของสารเซรามิกแบเรียมเซอร์โคเนตไทเทเนตโดยการใช้ผงแบเรียม-เซอร์โคเนตไทเทเนตที่เตรียมด้วยเทคนิคการบดย่อยแบบ ball-milling และเผาแคลไซน์ที่อุณหภูมิ 1150 องศาเซลเซียส เป็นเวลานาน 2 ชั่วโมง และเผาซินเตอร์ที่อุณหภูมิ 1250 องศาเซลเซียส เป็น เวลานาน 2 ชั่วโมง พบว่า ที่อุณหภูมิ 1250 องศาเซลเซียส ขึ้นไป สามารถเกิดเฟสเดี่ยว โดย ปราศจากการหลงเหลือของสารตั้งต้น ดังรูป 2.5 และการเติมเซอร์โคเนียมลงในแบเรียมไทเทเนต พบว่าสามารถลดอุณหภูมิกูรีลงได้พร้อมทั้งให้ก่าสภาพยอมสัมพัทธ์ที่อุณหภูมิห้องที่สูงอีกด้วย

ร**ูป 2.6** กราฟความสัมพันธ์ระหว่างสภาพยอมสัมพัทธ์และอุณหภูมิของเซรามิกBZTที่ความถี่ต่างๆ [18]

ต่อมาในปีค.ศ. 2008 N. Nanakorn และคณะ [17] ทำการศึกษาสมบัติทางไดอิเล็กทริก และเฟร์โรอิเล็กทริกของสารเซรามิกแบเรียมเซอร์โคเนตไทเทเนตโดยการใช้ผงแบเรียมเซอร์โค-เนตไทเทเนตที่เตรียมด้วยเทคนิกการบดย่อยแบบ ball-milling พบว่าปริมาณของ Zr มีผลต่อการ เปลี่ยนแปลงของอุณหภูมิกูรีกล่าวคือเมื่อปริมาณของ Zr เพิ่มขึ้นอุณหภูมิกูรีจะลดลงและที่ปริมาณ Zr 0.08% mol ให้ก่าสภาพยอมสัมพัทธ์สูงสุดคือ 12,780 ดังรูป 2.7

รูป 2.7 ความสัมพันธ์ระหว่างสภาพะยอมสัมพัทธ์และอุณหภูมิของเซรามิก BZT ที่เงื่อนไขต่างๆ (a) x = 0 sintered at 1300 °C, (b) x = 0.02 sintered at 1350 °C, (c) x = 0.05 sintered at 1450°C และ(d) x = 0.08 sintered at 1400 °C ที่ความลี่1 kHz, 10 kHz และ100 kHz. [17]

ร**ูป 2.8** ค่าความหนาแน่นของเซรามิก BZT ที่ปริมาณ x ต่างๆ [16]

ในปีเดียวกันนี้ F. Moura และคณะ [16] ได้ทำการศึกษาในลักษณะเดียวกันกับ N. Nanakorn พบว่าที่ปริมาณ Zr 0.05 mol% ให้ค่าสภาพะยอมสัมพัทธ์สูงสุดคือ 14400 นอกจากนี้จากรายงาน การวิจัยของ Netima [19] ได้รายงานไว้ว่าที่ปริมาณ Zr 0.05% mol ให้ค่าสภาพยอมสัมพัทธ์สูงสุด คือ 12700 ดังตาราง 2.2

Samples	Surface area	$P_{\rm r}$	Ec	Dielectric
	(nm)	$(\mu C/cm^2)$	(kV/cm)	permittivity
				(100 kHz)
Ba(Ti _{0.95} Zr _{0.05})O ₃	0.83	5.4	186	14,400
Ba(Ti _{0.90} Zr _{0.10})O ₃	0.27	5.3	134	11,600
Ba(Ti _{0.85} Zr _{0.15})O ₃	0.16	3.6	157	5,300

ตาราง 2.2 ลักษณะเฉพาะของผงและเม็ดเซรามิก BZT ที่อัตราส่วน Ti/Zr ต่างๆ [14]

จากการศึกษาและทบทวนเอกสารทางวิชาการข้างต้นที่เกี่ยวข้องกับการเตรียมผง BZT มี ด้วยกันหลากหลายวิธีทั้งวิธีทางกลและทางเคมีซึ่งแต่ละวิธีมีข้อดีและข้อเสียที่แตกต่างกันไป นอกจากนี้วิธีการเตรียมผง BZT ด้วยวิธีทางกลนั้นส่วนใหญ่จะใช้เทคนิค ball-milling เพราะฉะนั้น จึงได้ทำการเตรียมผงแบเรียมไทเทเนตเซอร์โคเนตด้วยเทคนิคการบดย่อยแบบ ball-milling จากนั้น เผาแคลไซน์ที่อุณหภูมิ 1150 องศาเซลเซียสเป็นเวลานาน 2 ชั่วโมงโดยใช้อัตราการขึ้น/ลงอุณหภูมิ 3 องศาเซลเซียสต่อนาที และเผาซินเตอร์ที่อุณหภูมิ 1450 องศาเซลเซียสเป็นเวลานาน 2 ชั่วโมงโดย ใช้อัตราการขึ้น/ลงอุณหภูมิ 3 องศาเซลเซียสต่อนาที เป็นเงื่อนไขที่เหมาะสมต่อการเผาซินเตอร์ เซรามิกแบเรียมเซอร์โคเนตไทเทเนตดังนั้นทางผู้วิจัยจึงมีความสนใจที่จะทำการศึกษาเนื่องจาก เงื่อนไขดังกล่าวให้ก่าสภาพยอมสัมพัทธ์ที่มีค่าสูง

2.2 ทฤษฎีเกี่ยวกับเส้นลวดนาโนซิลิคอนคาร์ไบด์

ซิลิคอนการ์ไบด์ (SiC) เป็นสารประกอบของซิลิคอน (Si) และการ์บอน (C) มีสูตรทางเคมี คือ SiC ต่อมาได้มีการศึกษาและสังเคราะห์ซิลิคอนการ์ไบด์ที่มีขนาดเล็กลงในระดับนาโนเนื่องจากมี สมบัติกวามยึดหยุ่นและก่ากวามแข็งดีกว่ากลุ่มซิลิกอนการ์ไบด์ขนาดใหญ่จึงได้มีการการนำ ซิลิคอนการ์ไบด์มาประยุกต์ใช้งานในอุตสาหกรรมอิเล็กทรอนิกส์โดยมากที่นิยมใช้กันได้แก่ p-n diodes, Schottky diodes, Metal Oxide Semiconductor Field Effect Transistor (MOSFETs), Metal Semiconductor Field Effect Transistor (MESFETs), bipolar junction transistors, thyristors และ solar blind photodetectors เป็นต้น [20]

2.2.1 โครงสร้างผลึกของซิลิคอนคาร์ไบด์

โครงสร้างของซิถิคอนการ์ไบด์มีการสร้างพันธะระหว่างซิถิคอนและการ์บอนด้วยพันธะโกเว-เลนต์ซึ่งมีโครงสร้างคล้ายเพชรโดยมีการจัควางตัวแบบ sp³ ไฮบริคออร์บิทัลซึ่งจะเกิดพันธะ 4 กล่าวคือ อะตอมของ Si 4 อะตอมจะล้อมรอบอะตอมของ C 1 อะตอมเป็นรูปทรงสี่หน้า ้โดยการรวมกันของออร์บิทัลที่เล็กมากๆของอะตอมที่เหลือซึ่งเป็นอะตอมของ (Tetrahedral) คาร์บอนและซิลิกอนที่สถานะพื้น (Ground state) แสดงดังรูป 2.9 และที่สถานะกระตุ้น (Excited state) แสดงคังรูป 2.10 นอกจากนี้ซิลิคอนกับการ์บอนมีสมบัติเป็นของแข็งเหมือนกันแต่ต่างกันที่ อะตอมของซิลิกอนใหญ่กว่าดังนั้นการยึดกันของอะตอมจึงมีคุณภาพไม่เหมือนกันโดยที่อะตอม ของซิลิคอนและคาร์บอนจะไม่สามารถยึดพันธะกันแน่นเหมือนโครงสร้างของเพชรที่ประกอบ ้ด้วยอะตอมของการ์บอนด้วยเหตุนี้ซิลิกอนจึงมีจุดหลอมเหลวต่ำกว่าของการ์บอน โดยซิลิกอนมีจุด หลอมเหลวที่1420องศาเซลเซียสและการ์บอนมีจุดหลอมเหลวที่ 3500 องศาเซลเซียส ซึ่งธาตุทั้ง 2 ้มีลักษณะคล้ายกันหลายอย่างนั้นทำให้อะตอมของซิลิคอนสามารถเข้าไปแทนที่อะตอมของ ้คาร์บอนใค้ดังรูปที่ 2.11 ตัวอย่างของการเกิคซิลิกอนการ์ไบด์เช่นถ้าเผาถ่านโค้กซึ่งเป็นอะตอมของ การ์บอนบริสุทธิ์กับทรายที่ประกอบด้วยอะตอมของซิลิกอน โดยให้กระแสไฟฟ้าภายใต้สภาวะที่ ้เหมาะสมทำให้อะตอมของซิลิคอนเข้าไปแทนที่อะตอมของการ์บอนกรึ่งหนึ่งสุดท้ายจะได้ สารประกอบที่มีอะตอมของการ์บอนและซิลิกอนอย่างละเท่าๆ กัน [21] ตามแผนภาพวัฏภากแสดง ดังรูป 2.12

11

รูป 2.12 แผนภาพวัฏภาคของคาร์บอนและซิลิคอน [23]

นอกจากนี้ในความเป็นจริงแล้วรูปแบบโครงสร้างผลึก (Crystalline form) ของซิลิคอนคาร์-ใบค์มีประมาณ 250 รูปแบบซึ่งรูปแบบโครงสร้างผลึกที่แตกต่างกันนี้เรียกว่า polytypes โดยแต่ละ รูปแบบหรือซิลิคอนการ์ใบค์แต่ละชนิดจะมีองค์ประกอบทางเคมีเหมือนกันแต่สูตรโครงสร้างหรือ รูปแบบการจัดเรียงตัวที่ต่างกันดังจะเห็นได้จากการจัดเรียงอะตอมที่แตกต่างกันในแต่ละรูปแบบ โครงสร้างผลึกของซิลิคอนการ์ใบค์ซึ่งระยะหว่างอะตอม Si และ C มีค่า 1.89 Å และระยะห่าง ระหว่างชั้นของอะตอม Si มีค่า 2.52 Å แต่ที่สำคัญความแตกต่างในซิลิคอนการ์ใบค์แต่ละชนิดคือ ความสูงของแกน c ดังนั้นอัตราส่วน c/a ของซิลิคอนการ์ใบค์แต่ละชนิดจึงมีก่าต่างกันตามไปด้วย แต่ก็ยังมีการบรรจุอะตอมแบบชิคที่สุด (Hard-sphere model) อยู่โครงสร้างหลักของซิลิคอนการ์-ใบค์แบ่งออกเป็น 2 ชนิดได้แก่ *a* -SiC มีโครงสร้างผลึกเป็นแบบเฮกซะโกนอล (คล้ายWurtzite structure) สามารถเกิดโครงสร้างนี้ได้เมื่อให้อุณหภูมิมากกว่า 1700 องศาเซลเซียส ขึ้นไปรูปแบบ โครงสร้างผลึกของซิลิกอนชนิดนี้ ได้แก่ 6H, 4H, 2H-SiC โดยมีก่าอัตราส่วน c/a เป็น1.641, 3.271 และ 4.908 ตามลำคับ และมีการจัดเรียงอะตอมแบบ /ABCACB/(=6H₁), /ABCBAB/(=6H₂), /ABCB/(=4H) และ / AB/ AB/(=2H^{*}) สำหรับอีกโครงสร้างหนึ่งคือ β - SiC มีโครงสร้างผลึก เป็นคิวบิคหรือมีโครงสร้างแบบ zinc blende (คล้ายโครงสร้างของเพชร) โครงสร้างนี้เกิดได้เมื่อ อุณหภูมิต่ำกว่า 1700 องศาเซลเซียส และมีรูปแบบโครงสร้างผลึกของ β - SiC คือ 3C^{*}(ABCABC...) β - SiC อยู่ในรูปกึ่งเสถียร (Metastable form) ในขณะที่ α - SiC จะเสถียรได้ ที่อุณหภูมิต่ำๆในเวลานั้นPandeyและKrishna [24]ได้ทำการทดลองแล้วอธิบายเกี่ยวกับการเปลี่ยน สถานะหรือรูปแบบโครงสร้างของซิลิคอนคาร์ใบด์ไว้ว่ารูปแบบโครงสร้างของซิลิกอนการ์ใบด์จะ เปลี่ยนแปลงตามอุณหภูมิเมื่อให้อุณหภูมิสูงถึง 1400 - 1700องศาเซลเซียส 2H จะเปลี่ยนโครงสร้าง ผลึกเป็น 3C และ 2H จะเปลี่ยนโครงสร้างผลึกเป็น 6H เมื่ออุณหภูมิสูงกว่า 1700 องศาเซลเซียส นอกจากนี้แล้วในโครงสร้างของ α - SiC ยังมีอีกหนึ่งรูปแบบโครงสร้างที่ก่อนข้างนิยมคือ 15R^{*} ซึ่งจะมีการจัดเรียงตัวของอะตอมแบบ /ABCBACABACBCACB/ * (C = Cubic, H = Hexagonal, R = Rhombohedral)

2.2.2 สมบัติทางใฟฟ้าของซิลิคอนคาร์ไบด์

ความแตกต่างของรูปแบบโครงสร้างของซิลิกอนการ์ไบด์แต่ละชนิดนั้นขึ้นอยู่กับการจัดเรียง ด้วของอะตอมในแนวแกน C ซึ่งความแตกต่างในการจัดเรียงตัวของอะตอมนี้จะส่งผลโดยตรงต่อ สมบัติทางไฟฟ้าและสมบัติทางแสงของซิลิกอนการ์ไบด์แต่ละชนิดดังจะเห็นได้จากพลังงานแถบ ต้องห้าม (Energy band gap) ของ 3C-SiC, 2H, 4H, 6H-SiC มีก่าพลังงานแถบต้องห้ามดังนี้ 2.39, 3.33, 3.27 และ 3.02 eV ตามลำดับ และจากก่าพลังงานแถบต้องห้ามที่ก่อนข้างนี้ บ่งบอกว่า ซิลิกอนการ์ไบด์มีสมบัติเป็นฉนวนหรือวัสดุกึ่งตัวนำซึ่งจะสามารถแสดงสมบัติของวัสดุกึ่งได้กี ต่อเมื่อมีการเติม Donor หรือ Acceptor ลงไปเพื่อทำให้เป็นวัสดุกึ่งตัวนำแบบ n- หรือ p-type นอกจากนี้ซิลิกอนการ์ไบด์ยังเฉื่อยต่อปฏิกิริยาที่สามารถเกิดขึ้นได้เมื่ออยู่ในสภาพแวดล้อมต่างๆ และยังมีความสามารถในการนำความร้อนที่สูงนอกจากนี้ยังมีก่าสัมประสิทธิ์การขยายตัวที่ต่ำซึ่ง สามารถทนการเบรก (break down) เนื่องจากกระแสไฟฟ้าได้สูง เช่น 6H-SiC มีการทนการเบรก-ดาวน์ได้ดีกว่า GaAs เนื่องจากอิเล็กตรอนในซิลิกอนมีความสามารถในการเคลื่อนที่ได้เร็วกว่า อิเล็กตรอนใน GaAs ทำให้สามารถนำความร้อนและกระจายความร้อนได้เร็วกว่าด้วยนั่นเองเนื่อง ด้วยสมบัติต่างๆ นี้ ซิลิกอนการ์ไบด์จึงเหมาะต่อการนำมาประยุกต์ใช้เป็นแผ่นซับสเตรทในงาน อิเล็กทรอนิกส์ต่างๆเพราะฉะนั้นซิลิกอนการ์ไบด์จึงถือได้ว่าเป็นวัตถุดิบที่สำคัญในการประยุกต์ใช้ งานในอุตสาหกรรมวัสดุกึ่งตัวนำและอุตสาหกรรมอิเล็กทรอนิกส์ [26]

2.3 ทฤษฎีเกี่ยวกับนาโนคอมโพสิตเซรามิก

นาโนคอมโพสิตเซรามิกคือวัสดุที่ประกอบไปด้วยวัสดุตั้งแต่2ชนิดขึ้นไปได้แก่เฟสหลัก (Matrix phase) ในที่นี้คือเซรามิกออกไซด์ชนิดต่างๆ เช่น BT, PT, PZT และ Al₂O₃ เป็นต้น และ เฟสรอง หรือ ด้วเสริมแรง (Disperse or Reinforce phase) เช่น SiC, WO₃ และ MgO เป็นต้นโดย ในกรณีของวัสดุผสมนาโนเซรามิกนี้เฟสรองจะต้องมีขนาดอยู่ในเรือนนาโนเมตร (1-100 nm)โดย การเดิมเฟสรองที่มีขนาดในเรือนนาโนลงไปจะส่งผลต่อสมบัติต่างๆของเซรามิกและจากรายงาน การวิจัยที่ผ่านมาพบว่าสามารถช่วยในการปรับปรุงสมบัติทางกลของเซรามิกให้ดีขึ้นและเพื่อ ประโยชน์ในการใช้งานที่กว้างขวางขึ้น ยกตัวอย่างเช่นในระบบ BT/SiC [14-15], PT/SiC [30] และ Al₂O₃/WO₃ [27] เป็นต้นแต่ในทางตรงกันข้ามสมบัติทางไฟฟ้าของเซรามิกจะลดลงเนื่องจาก เฟสรองที่เดิมลงไปส่งผลโดยตรงต่อโครงสร้างจุลภาคและขนาดของเกรนซึ่งสมบัติทางไฟฟ้าของ เซรามิกนั้นส่วนมากจะขึ้นอยู่กับขนาดเกรนเช่นสมบัติไดอิเลีกทริกคือหากขนาดของเกรนน้อยกว่า ขนาดเกรนวิกฤต (1 μm) จะทำให้ก่าสภาพยอมสัมพัทธ์ลดลง

ในปี ค.ศ. 1995 Sekino และ Niihara [27] ได้ศึกษาโครงสร้างจุลภาคและสมบัติทางกลของ นาโนคอมโพสิตเซรามิกระหว่างอะลูมินาและทั้งสเตนออกไซด์พบว่าก่าความหนาแน่นของวัสดุ ผสมมีก่าสูงสุคถึง 98% จากการศึกษาโครงสร้างจุลภาคแสดงให้เห็นว่าอนุภาคขนาคนาโนเมตร ของทั้งสเตนออกไซด์จะปรากฏให้เห็นภายในเนื้อของอะลูมินาและอนุภาคขนาดไมครอน (1 μm) จะอยู่ ณ บริเวณขอบเกรนและจากการศึกษาสมบัติทางกลพบว่าสมบัติทางกลดีขึ้นและมีก่ามากกว่า เซรามิกอะลูมินา เนื่องจากผลของการเติมอนุภาคขนาดนาโนของทั้งสเตนออกไซด์ลงไปโดยจะทำ ให้เกิดความเก้นกงก้างภายในเนื้อวัสดุสาเหตุเกิดมาจากการขยายตัวทางกวามร้อนที่แตกต่างกันของ สารแต่ละชนิดที่แตกต่างกันดังรูป 2.13

รูป 2.13 แสดงค่าความแข็งและค่ามอดุลัสความยืดหยุ่นที่เปลี่ยนแปลงตามสัดส่วนของ ทังสเตนในวัสดุผสมนาโนอะลูมินาและทังสเตนออกไซด์ [27]

ปริมาณทั้งสเตน(vol%)	Toughness (MPa.m ^{1/2})	Strength (MPa)
0	3.20	528.1
2.5	3.44	692.5
5.0	3.77	645.3
7.5	3.80	683.5
5.0	3.67	1105.1

ตาราง 2.3 ค่า Toughness และ Strength ของวัสดุผสมนาโนอะลูมินาและทังสเตนออกไซด์ [27]

ปี ค.ศ. 1996 Niihara และคณะ [14] ได้ทำการศึกษาการเปลี่ยนแปลงโครงสร้างและเฟสของ เซรามิกแบเรียมเซอร์โคเนตไทเทเนตเมื่อเติมอนุภาคนาโนซิลิคอนการ์ไบค์ในปริมาณต่างๆ โดยใช้ วิธีการผสมสารตั้งต้นด้วยเทคนิค ball-milling พบว่า การเติมอนุภาคนาโนซิลิคอนการ์ไบค์ส่งผล ต่อโครงสร้างผลึก อุณหภูมิการเปลี่ยนเฟส ความหนาแน่นและขนาดเกรนของเซรามิกแบเรียมเซอร์ โคเนตไทเทเนตโดยเมื่อปริมาณอนุภาคนาโนซิลิคอนการ์ไบค์เพิ่มขึ้นจะส่งผลทำให้โครงสร้างผลึก เปลี่ยนจากคิวบิคเป็นเตตระโกนอลที่อุณหภูมิห้องและทำให้อุณหภูมิกูรีลคลง ซึ่งอุณหภูมิการ เปลี่ยนเฟสที่ลคลงและค่อยๆหายไปซึ่งจะปรากฏให้เห็นได้ชัดเจนเมื่อเติมอนุภาคนาโนซิลิคอนการ์ ไบค์มากกว่า 1 ร้อยละโดยปริมาตร นอกจากนี้ยังส่งผลทำให้ความหนาแน่นและขนาดเกรนของ เซรามิกแบเรียมเซอร์โคเนตไทเทเนตลคลงอีกด้วย

ต่อมาในปี ค.ศ. 1998 Niihara และคณะ [13] ได้รายงานผลการศึกษาโครงสร้างจุลภาคและ

สมบัติทางกลของเซรามิกแบเรียมเซอร์โลเนตไทเทเนตเมื่อเติมอนุภาคนาโนซิลิคอนคาร์ไบค์ใน สัดส่วนต่างๆ และเลือกใช้อุณหภูมิการเผาซินเตอร์ในช่วง 1300 - 1450 องศาเซลเซียส พบว่า อุณหภูมิการเผาซินเตอร์มีผลต่อความหนาแน่นสัมพัทธ์ของเซรามิกและวัสดุผสมโดยตรง อุณหภูมิ ซินเตอร์ที่ 1300 องศาเซลเซียสให้ค่าความหนาแน่นสัมพัทธ์สูงสุด (99.9 - 95.8 %) ดังรูป 2.14 และการเติมอนุภาคนาโนซิลิคอนคาร์ไบค์ลงไปยังมีผลต่อการเปลี่ยนแปลงโครงสร้างผลึกและเฟส ดังตาราง 2.4 นอกจากนี้ยังช่วยเพิ่มสมบัติทางกลของเซรามิก ได้แก่ ค่าความแข็ง ความเหนียว มอดุลัสความยืดหยุ่น และ Fracture strength ให้ดีขึ้น เป็นผลมาจากขนาดเกรนที่ลดลงเมื่อเติม อนุภาคนาโนซิลิคอนคาร์ไบค์ลงไปซึ่งอนุภาคนาโนเหล่านี้จะอยู่ตรงบริเวณขอบเกรนจึงทำหน้าที่ เป็นตัวยับยั้งการเติบโตของเกรน จึงทำให้ขนาดเกรนมีขนาดลดลงเมื่อปริมาณอนุภาคนาโนซิลิกอน การ์ไบค์เพิ่มขึ้น อีกทั้งยังเป็นผลมาจากความเค้นคงค้างภายในที่เกิดขึ้นเมื่อมีการเปลี่ยนเฟสจาก พาราอิเล็กทริกเป็นเฟร์โรอิเล็กทริก

และอนุภาคนาโนซิลิคอนคาร์ไบด์ (ปริมาณซิลิคอนคาร์ไบด์ (Vol%):●; 0, ○; 1, □; 3, △; 5) [15]

		9		L			
SiC	T _{sinter}	Relative	Grain	$H_{\rm V}$	Е	K _{IC}	Fracture
content		density	size				strength
(Vol%)	(°C)	(%)	(µm)	(GPa)	(GPa)	$(MPa .m^{1/2})$	(MPa)
				16			
0	1300	99.9	1.35	6.96	94	0.86	174
	1320	99.9	$2.5/45.2^{b}$	6.70	-		101
	1400	99.0	13.5/107 ^b	0	-	5	99
	1450	98.4	123		-	300	46
1	1300	98.0	0.84	7.67	129	0.99	282
	1350	98.6	1.18	7.30	-		301
	1400	98.9	2.8/304*		-		69
3	1300	96.2	0.48	9.15	141.2	1.22	350
	1350	96.9	0.66	8.98	-	-	291
	1400	97.0	1.3/189*	2 -	-	-	107
			3				
5	1300	95.8	0.35	9.23	141.4	1.19	305
	1350	96.1 🥿	0.32	9.18	-		315
	1400	96.3	0.40	SY-	-	- 70	302
	1450	96.5	- 1	- K) -	-	249
	ann i	· 1 D	1 . 1	1 1 1	1 1 1		

ตาราง 2.4 แสดงสมบัติของเซรามิกแบเรียมเซอร์ โคเนตและวัสดุผสมระหว่างแบเรียมเซอร์ โคเนต

ใทเทเนตและอนุภาคนาโนซิลิคอนการ์ไบค์ [15]

^aTetra, tetragonal; P-cubic, pseudo-cubic, hexagonal; hexa, tetra, major phase is hexagonal. ^bBimodal distribution.

และในปีเดียวกันนี้เอง Neumann [28] ได้ศึกษาเฟสซิลิกอนการ์ไบด์ในระดับนาโนที่เติมลงใน เซรามิกแบเรียมไทเทเนตพบว่าเมื่อเติมซิลิกอนการ์ไบด์ลงไปในเซรามิกแบเรียมเซอร์โกเนตไทเท-เนต จะเกิดการสลายตัวของซิลิกอนการ์ไบด์และเกิดเป็นเฟสเฟรสโตไนท์ (Frestonite: Ba₂TiSi₂O₈) ตั้งแต่อุณหภูมิ 700 องศาเซลเซียส ซึ่งตรวจสอบได้ด้วยเทกนิก Electron Energy Loss Spectroscopy (EELS) ดังรูป 2.15 และปริมาณเฟรสโตไนท์จะเพิ่มขึ้นเมื่ออุณหภูมิเพิ่มขึ้นโดยการ เกิดเฟสเฟรสโตไนท์อยู่ในช่วงอุณหภูมิ 700 – 1350 องศาเซลเซียส

ลิปสิทธิมหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

รูป 2.16 แสดงการสูญเสียพลังงานของอิเล็กตรอนด้วยเทกนิก EELS ที่อุณหภูมิต่างๆ [26]

ถัดมาในปี ค.ศ. 2003 Xiang และคณะ [29] ได้ศึกษาสมบัติทางกลและสมบัติทางไฟฟ้าของ เลดเซอร์โคเนตไทเทเนตที่เสริมแรงด้วยสารประกอบออกไซด์ต่างๆ ได้แก่ ยิทเทรียมออกไซด์ (Y₂O₃) โมลิบคินัมออกไซด์ (MoO₃) และ ทังสเตนออกไซด์ (WO₃) ในปริมาณ 0.1 - 1.0 ร้อยละ โดยน้ำหนัก พบว่า สารประกอบออกไซด์เหล่านี้ช่วยเพิ่ม fracture strength ให้ดีขึ้นและเพิ่มขึ้นถึง 1.5 เท่าเมื่อเติมยิทเทรียมออกไซด์ในปริมาณ 0.1 ร้อยละโดยน้ำหนัก เนื่องจากสารประกอบ ออกไซด์ที่เติมลงไปนั้น ได้ไปยับยั้งการเติบโตของเกรนจึงทำให้เกรนมีขนาดเล็กลงซึ่งช่วยให้ สามารถด้านการแตกร้าวที่มักจะเกิดในเซรามิกได้ นอกจากนี้ทำให้สมบัติเพียโซอิเล็กทริกและ สมบัติไดอิเล็กทริกที่ดีขึ้น เนื่องจากสารประกอบที่เติมลงไปเป็น Donor ได้แก่ Y³⁺, Mo⁶⁻ และ W⁶⁺ ที่จะเข้าไปแทนที่ในตำแหน่ง A หรือ B ในโครงสร้างผลึกแบบเพอร์รอฟสไกท์ของเซรามิกเลด-เซอร์โคเนตไทเทเนตจึงสามารถปรับปรุงสมบัติทางไฟฟ้าของเซรามิกเลดเซอร์โคเนตไทเทเนตให้ดี ขึ้นได้อีกอีกด้วย

ลอสทรมหาวทยาลยเชยงเหม Copyright[©] by Chiang Mai University All rights reserved

ต่อมาในปี ค.ศ. 2009 Wongmaneerung และคณะ [30] ได้ศึกษาผลของการเติมเส้นใยนาโน-ซิลิคอนการ์ไบด์ที่มีต่อโครงสร้างจุลภาคและสมบัติไดอิเล็กทริกของเซรามิกเลคไทเทเนต พบว่า เส้นใยนาโนซิลิคอนการ์ไบด์มีผลต่อโครงสร้างจุลภาคสมบัติทางไฟฟ้าและสมบัติทางกลของเซรา- มิกเลดไทเทเนตโดยตรง ซึ่งเส้นใยนาโนซิลิคอนคาร์ไบด์จะกระจายตัวอย่างสม่ำเสมออยู่ภายในเนื้อ เกรนและขอบเกรนจึงทำให้ขนาดเกรนของเซรามิกเลดไทเทเนตลดลง และส่งผลทำให้สมบัติทาง กลดีขึ้น แต่สมบัติไดอิเล็กทริกของเซรามิกลดลง เนื่องจากเส้นใยนาโนซิลิคอนการ์ไบด์ไม่ใช่สาร เฟร์โรอิเล็กทริกและเพียโซอิเล็ก จึงประพฤติตัวเหมือนรูพรุนและเป็นผลมาจากการเคลื่อนที่ของ ผนังเมนถูกยึดเหนี่ยวเนื่องจากขนาดเกรนของเซรามิกลดลงจึงทำให้ก่าสภาพยอมสัมพัทธ์ลดลง

2.4 การซินเตอร์ (Sintering)

การซินเตอร์ คือ กระบวนการทางความร้อนที่เปลี่ยนให้อนุภาคที่จับตัวกันแน่นกลายเป็น โครงสร้างที่หนาแน่นขึ้น ซึ่งเป็นกระบวนการที่มีการใช้อุณหภูมิสูง (ที่อุณหภูมิต่ำกว่าจุด หลอมเหลวของสารประกอบนั้น) เพื่อให้อะตอมของสารที่เกิดการแพร่เข้าไปยึดเกาะกันแน่นมาก ขึ้นโดยการแพร่ของอนุภาคในสภาวะที่เป็นของแข็งจนเกิดกอกอด (Neck) ระหว่างอนุภาคทั้งสอง ทำให้ผลิตภัณฑ์มีเนื้อแน่นความพรุนตัวลดลงและมีการหดตัวภายหลังการซินเตอร์ [31]

พฤติกรรมการซินเตอร์นั้นมีอยู่หลายรูปแบบตัวอย่างกลไกของการซินเตอร์ทั่วๆ ไป ได้แก่ การซินเตอร์แบบสถานะของแข็ง (Solid State Sintering หรือ SSS) ซึ่งจะเกี่ยวข้องกับเฟสที่เป็น ของแข็งและรูพรุนเท่านั้นซึ่งประกอบไปด้วย 3 ขั้นตอนหลักที่มีความต่อเนื่องกันอยู่ คือ

- การซินเตอร์ช่วงเริ่มต้น (Initial sintering) จะเกี่ยวข้องกับการจัดเรียงตัวกันใหม่อีก ครั้งหนึ่งของอนุภาคผงภายในชิ้นงานและการเกิดพันธะที่แข็งแรงขึ้นมาที่บริเวณจุด สัมผัสระหว่างอนุภาคผงความหนาแน่นสัมพัทธ์ของชิ้นงานในช่วงนี้อาจจะเพิ่มขึ้นจาก 0.5 - 0.6 ได้ส่วนใหญ่เนื่องมาจากการที่อนุภาคผงมีการแพกตัวกันอย่างมากยิ่งขึ้น นั่นเอง
- 2. การซินเตอร์ช่วงกลาง (Intermediate sintering) เป็นช่วงที่ขนาดของกอเริ่มโตขึ้นและ ปริมาณขอกวามพรุนในชิ้นงานจะเริ่มลดลงอย่างรวดเร็วเนื่องจากอนุภากเริ่มเข้ามา ใกล้ชิดติดกันมากยิ่งขึ้นทำให้ชิ้นงานเกิดมีการหดตัวลงอย่างชัดเจนเริ่มมีเกรนและขอบ เกรนเกิดขึ้นพร้อมกับมีการเคลื่อนที่ของสิ่งเหล่านี้ทำให้เกิดมีการเติบโตของเกรนบาง เกรนขึ้นขั้นตอนนี้จะดำเนินไปเรื่อยๆอย่างต่อเนื่องในขณะที่ช่องว่างของรูพรุนจะเริ่ม เกิดการเชื่อต่อกัน (พวกรูพรุนเปิด) และจะสิ้นสุดพฤติกรรมนี้ทันทีเมื่อรูพรุนเกิดมีการ แยกตัวหลุดออกไปอยู่ต่างหาก (พวกรูพรุนปิด) การหดตัวของชิ้นงานจะเกิดขึ้นมาก ที่สุดในการซินเตอร์ช่วงกลางนี้และทำให้เกิดกวามหนาแน่นสัมพัทธ์ของชิ้นงานมีก่า สูงถึงประมาณ 0.9 ได้

ີລິ<mark>ປສີກ</mark> Copyrig A I I

3. การซินเตอร์ช่วงสุดท้าย (Final stage sintering) เป็นช่วงที่รูพรุนในชิ้นงานเริ่มปิด ตัวเองลงและค่อยๆถูกกำจัดให้หมดไปจากชิ้นงานอย่างช้าๆ โดยอาศัยกล ไกการแพร่ ของอากาศจากรูพรุนออกมาตามแนวของขอบเกรนแล้วหลุดออกไปจาผิวชิ้นงานซึ่งจะ ทำให้ชิ้นงานเกิดการแน่นตัวเพิ่มขึ้นจากเดิมอีกเพียงเล็กน้อยขนาดของเกรนจะเพิ่มขึ้น ในการซินเตอร์ช่วงสุดท้ายนี้

รียงใหม่ University e r v e d

รูป 2.20 โครงสร้างทางจุลภาคของการซินเตอร์แบบสถานะของแข็ง
 (ก) อนุภาคยึดกันอยู่แบบหลวมๆ (ข) การซินเตอร์ช่วงเริ่มต้น
 (ค) การซินเตอร์ช่วงกลาง
 (ง) การซินเตอร์ช่วงสุดท้าย

การซินเตอร์แบบมีเฟสของเหลว (Liquid Phase Sintering หรือ LPS) ซึ่งจะเกี่ยวข้องกับเฟสที่ เป็นของแข็งของเหลวและรูพรุนแต่จะเน้นเฉพาะบริเวณที่เป็นของแข็งเนื่องจากวัสคุส่วนใหญ่นั้น เป็นของแข็งและมีของเหลวอยู่ไม่เกินร้อยละ 20 การซินเตอร์แบบ LPS มีอยู่ 2 ระบบ คือ

<u>กระบวนการซินเตอร์แบบมีเฟสของเหลวมีอยู่สองระบบคือ</u>

- ระบบที่ไม่เป็นเนื้อเดียวกัน เมื่อชิ้นงานได้รับความร้อนจนกระทั่งถึงอุณหภูมิของการ ซินเตอร์จะมีเฟสที่เป็นของเหลวเกิดขึ้นและคงสภาพอยู่ตลอดช่วงของการซินเตอร์และ เมื่อชิ้นงานเริ่มเย็นตัวลงเฟสที่เป็นของเหลวนี้จะเกิดการแข็งตัวแยกเฟสอยู่ในชิ้นงาน
- ระบบที่มีความเป็นเนื้อเดียวกัน เมื่อชิ้นงานได้รับความร้อนจนกระทั่งถึงอุณหภูมิของ การซินเตอร์จะมีเฟสที่เป็นของเหลวเกิดขึ้นแล้วก่อยๆหายไปช้าๆด้วยการละลายลงไป อยู่ในเนื้อเมทริกซ์ของชิ้นงาน

การซินเตอร์แบบแก้วหนืด (Viscous Composite Sintering หรือ VGS) ซึ่งเป็นกลไกที่อนุภาค ผงแก้วเกิดการแน่นตัวหรือที่เรียกว่าการไหลหนืด (Viscous Flow) เช่น ในการเคลือบผิว(Glazing หรือ Enamelling) โดยจะเกี่ยวข้องกับของเหลว (แก้วที่หลอมและรูพรุน)

การซินเตอร์แบบวัสดุผสมหนืด (Viscous Composite Sintering หรือ VCS) หรือ Vistrification ซึ่งจะเกี่ยวกับระบบที่มีปริมาณของเหลวอยู่มากกว่าในกรณีของ LPS และเป็น บริเวณของการซินเตอร์ที่เกิดขึ้นในผลิตภัณฑ์พวกถ้วยชามหลายๆชนิดเช่นพอร์ซเลน

การซินเตอร์เป็นกระบวนการสำคัญซึ่งใช้อุณหภูมิสูงคุณภาพของการซินเตอร์ขึ้นอยู่กับเวลาใน การเผา (Sintering time) อุณหภูมิในการเผา (Sintering temperature) ความบริสุทธิ์ของผงการ ควบคุมบรรยากาศระหว่างการเผาซินเตอร์เพื่อกำจัดการเกิดปฏิกิริยาเคมีที่ไม่ต้องการและอัตราการ ขึ้น/ลงของอุณหภูมิ

2.5 สมบัติทางใฟฟ้า

2.5.1 สมบัติไดอิเล็กทริก

สมบัติใดอิเล็กทริก (Dielectric properties) คือ สมบัติการเป็นฉนวนไฟฟ้าของวัสดุและเป็น พวกที่มีความด้านทานไฟฟ้าสูง [2] เมื่อวัสดุอยู่ภายใต้สภาวะปกติจะประกอบไปด้วยโมเลกุลที่มีจุด ศูนย์กลางมวลร่วมกันระหว่างโปรตอนและอิเล็กตรอน โดยจะอยู่ภายใต้แรงยึดเหนี่ยวของโมเลกุล และแรงยึดเหนี่ยวของอะตอม ภายในเนื้อสารจึงไม่มีประจุไฟฟ้าอิสระ แต่เมื่อสารได้รับ กระแสไฟฟ้าจะทำให้โมเลกุลเกิดแรงทางไฟฟ้าทำให้กลุ่มประจุบวกถูกผลักไปในทิศของสนาม ส่วนกลุ่มประจุลบถูกผลักไปในทิศทางตรงกันข้ามทำให้โมเลกุลของสารเกิดขั้วคู่ไฟฟ้า (Dipole moment) ขึ้นมา

สารใดอิเล็กทริกบางชนิดที่โมเลกุลก่อตัวเป็นขั้วคู่อยู่แล้ว แต่การชี้ทิศทางของขั้วคู่ไฟฟ้าจะไม่ เป็นระเบียบ (Random) เมื่ออยู่ภายใต้สภาวะปกติ แต่เมื่อให้แรงจากสนามไฟฟ้าภายนอกมากระทำ จะทำให้ขั้วคู่ไฟฟ้าเล็กๆเหล่านี้เรียงตัวในทิศทางเดียวกันอย่างเป็นระเบียบ ซึ่งเรียกโมเลกุลประเภท นี้ว่า โมเลกุลมีขั้ว (Polar molecule) และเรียกโมเลกุลประเภทนี้ว่า ขั้วคู่ถาวร (Permanent dipole) มี สารบางอย่างที่โมเลกุลเรียงตัวกันเองได้โดยไม่ต้องใช้สนามไฟฟ้าจากภายนอกเรียกสารชนิดนี้ว่า สารเฟร์โรอิเล็กทริก (Ferroelectric materials) เช่น แบเรียมไทเทเนต (BaTiO₃) เลคไทเทเนต (PbTiO₃) และเลดเซอร์โคเนตไทเทเนต (Pb(Zr_xTi_{1-x})O₃, PZT) เป็นต้น ลักษณะของการที่โมเลกุล ขั้วคู่ของสารไดอิเล็กทริกก่อตัวเป็นคู่เล็กๆ แล้วจัดเรียงตัวกันในสนามไฟฟ้า เรียกว่า โพลาไรเซชัน (Polarization)

วัสดุไดอิเล็กทริกเป็นชนิดหนึ่งที่มีความเป็นฉนวนที่ไม่นำไฟฟ้าและยังสามารถเก็บประจุ ไฟฟ้าได้อีกด้วย โดยค่าความสามารถในการกักเก็บประจุไฟฟ้าของสารไดอิเล็กทริกเรียกว่าค่าความ จุไฟฟ้า (Capacitance) เมื่อใส่สนามไฟฟ้าแก่สารไดอิเล็กทริก สารไดอิเล็กทริกจะเกิดโพลาไรเซชัน ขึ้นซึ่งเท่ากับผลรวมของโพลาไรเซชันต่อหนึ่งหน่วยปริมาตร (Net polarization/ Unit volume) ซึ่ง ถ้าค่าโพลาไรเซชันสูงก็จะส่งผลให้สารไดอิเล็กทริกมีก่าความจุไฟฟ้าสูงตามไปด้วย

2.5.1.1 ค่าสภาพยอมสัมพัทธ์

พิจารณาตัวเก็บประจุอย่างง่าย คือ เป็นแผ่นขนานที่ทำด้วยโลหะและวางห่างกันด้วยระยะ d พื้นที่หน้าตัดของแผ่นขนานเท่ากับAดังแสดงในรูป 2.20 ระหว่างแผ่นขนานเป็นสุญญากาศเมื่อมี ศักย์ไฟฟ้า V คร่อมแผ่นขนาน โดยที่แผ่นโลหะแผ่นหนึ่งจะเป็นแผ่นประจุ +q และอีกแผ่นหนึ่งจะ เป็นประจุ –q ค่าประจุนี้จะเป็นสัดส่วนกับ V ดังสมการ 2.1

เมื่อ C คือ ค่าความจุไฟฟ้า มีหน่วย คูลอมบ์ต่อโวลต์ (C/V) หรือ ฟารัค (F)

ค่าความจุไฟฟ้าบ่งบอกถึงความสามารถในการกักเก็บประจุ ยิ่งมีความจุไฟฟ้ามากเท่าใดก็ยิ่ง เก็บประจุได้มากเท่านั้น และถ้าหากตัวเก็บประจุมีขนาดพื้นที่ขนานมากกว่าระยะห่างระหว่างแผ่น ขนานมากๆ จะได้ว่าความจุไฟฟ้ามีก่าดังสมการ 2.2

เมื่อ \mathcal{E}_0 คือ ค่าสภาพขอมสัมพัทธ์ในสุญญากาศมีค่า 8.854 x10⁻¹² ฟารัดต่อเมตร (F/m) A คือ พื้นที่ผิวของขั้วไฟฟ้าบนผิวสารไคอิเล็กทริก หน่วย ตารางเมตร (m²) D คือ ระยะห่างระหว่างขั้วไฟฟ้า หน่วย เมตร (m)

 $C = \frac{\varepsilon_r \varepsilon_o A}{d} \qquad (2.3)$

ในกรณีที่มีสารไดอิเล็กทริกวางอยู่ระหว่างแผ่นขนานดังรูป2.20ก่าความจุไฟฟ้าจะมีก่าเพิ่มขึ้น เป็นจำนวนเท่ากับก่าสภาพยอมสัมพัทธ์หรือเรียกว่าก่ากงที่ไดอิเล็กทริกดังสมการ2.3

เมื่อ & คือ ค่าสภาพขอมสัมพัทธ์หรือค่าคงที่ใดอิเล็กทริกของสารใดอิเล็กทริกนั้น โดยค่า & เป็นตัวบ่งบอกถึงประสิทธิภาพและความสามารถในการเก็บประจุไฟฟ้าของสาร ใดอิเล็กทริกนั้นๆ ว่ามีค่าเป็นกี่เท่าของสุญญากาศ ซึ่งตัวอย่างของค่า & ของสารบางตัวแสดงดัง ตาราง 2.5 จะเห็นว่าความสามารถในการเก็บประจุจะแปรผันตรงกับค่าสภาพขอมสัมพัทธ์และ รูปทรงของตัวเก็บประจุ การเก็บประจุไฟฟ้าที่สมบูรณ์ที่สุดจะต้องไม่นำไฟฟ้าเลยถ้าหากได้รับ ไฟฟ้ากระแสตรง นั่นคือจะต้องไม่มีสภาพนำไฟฟ้าอยู่เลยหรือมีความต้านทานสูงเป็นอนันต์ แต่ ในทางปฏิบัติแล้วสาร ใดอิเล็กทริกที่ใช้งานจะมีความด้านทานไม่เป็นอนันต์ ทำให้มีกระแสไฟฟ้า ใหลผ่านในปริมาณเล็กน้อยที่เรียกว่ากระแสรั่ว (Leakage current) เกิดขึ้น

	ชนิดของเซรามิก	\mathcal{E}_r	$ an \delta$
	BaTiO ₃	1700	0.5
	Pb(Zr _{0.52} Ti _{0.48})O ₃	1060	0.08
9	PLZT 7/60/40	2590	1.9
	PMN-PT (90/10)	24000	5.5
	PbNb ₂ O ₆	225	1.0

ตาราง 2.5 ค่าสภาพขอมสัมพัทธ์และค่าการสูญเสียใดอิเล็กทริกของสารบางชนิด [4]

2.5.1.2 ค่าการสูญเสียใดอิเล็กทริก

ในกรณีที่มีการใช้ไฟฟ้ากระแสสลับกับสารไดอิเล็กทริกนั้น ขั้วคู่ทางไฟฟ้าหรือไดโพลในเนื้อ สารจะมีการเปลี่ยนแปลงกลับไปมา ซึ่งการจะเปลี่ยนได้ช้าหรือเร็วเพียงใดนั้นขึ้นอยู่กับความถี่ของ สนามไฟฟ้าที่ให้ โดยถ้าความถี่สูงเกินไปจะทำให้ไดโพลไม่สามารถปรับตัวให้ทันตามความถี่ทำ ให้เกิดการหยุดนิ่งของไดโพลเนื่องจากความเลื่อย เมื่อหยุดนิ่งนานๆจะทำให้เกิดความร้อนขึ้น (Loss)ซึ่งความร้อนที่เกิดขึ้นนี้เป็นที่มาของก่าการสูญเสียไดอิเล็กทริก (Dielectric loss; tan 8) และ ตัวอย่างของก่าการสูญเสียไดอิเล็กทริกของสารบางตัวแสดงดังตาราง 2.6

การใช้งานของวัสคุเฟร์โรอิเล็กทริกแทบจะทุกชนิคมีความสัมพันธ์กับสนามไฟฟ้าดังนั้น การศึกษาสมบัติทางไฟฟ้าของวัสคุจึงมีความจำเป็นอย่างมากซึ่งค่าสภาพยอมสัมพัทธ์เป็นสมบัติที่ สำคัญอย่างหนึ่งของวัสคุเพียโซอิเล็กทริกซึ่งต้องมีคุณสมบัติดังนี้

- ค่าสภาพยอมสัมพัทธ์สูง (High dielectric constant) อยู่ในช่วง 200 10,000 เทียบกับวัสดุ ที่เป็นฉนวนมีค่าสภาพยอมสัมพัทธ์สูง 5-100 เหมาะกับการประยุกต์ใช้งานทางด้านตัวเก็บ ประจุ
- 2. มีค่าการสูญเสียใดอิเล็กทริกต่ำ (Low dielectric constant) อยู่ในช่วง 0.1% 7%
- มีสภาพความต้านทานทางไฟฟ้าสูง (High specific electric resistivity) มากกว่า 10¹³ Ω.cm
- สามารถทนการเบรกดาวน์ได้พอสมควร (Moderate dielectric breakdown) ประมาณ
 100 120 kV/cm สำหรับเม็ดเซรามิกและประมาณ 500 800 kV/cm สำหรับแผ่นเซรา-มิกบางๆ

2.5.1.3 ผลของขนาดเกรนที่มีต่อสมบัติใดอิเล็กทริก

ภายในเนื้อของวัสดุพวกเซรามิกออกไซด์จะประกอบด้วยผลึกที่มีโครงสร้างที่แน่นอนหลาย ผลึก เรียกว่า ผลึกเชิงซ้อน (Polycrytalline) เมื่อให้ความร้อนที่เหมาะสมแก่วัสดุแล้วปล่อยให้เย็น ตัวลงช้าๆ ผลึกที่อยู่ภายในเนื้อสารเมื่อได้รับความร้อนก็จะเกิดการเติบโต (Growth) ทำให้รูปทรง และขนาดของผลึกเชิงซ้อนมีการเปลี่ยนแปลงไป เนื่องจากเกิดการเกลื่อนที่ชนกันหรือหลอม รวมกันของผลึกเชิงซ้อนจนเกิดเป็นโครงสร้างจุลภาคที่มีลักษณะเฉพาะที่เรียกว่า เกรน (Grain) ซึ่ง เรียงตัวเกาะติดกันทั่วทั้งวัสดุโดยขนาดเกรน (Grain size) ของสารเฟร์โรอิเล็กทริกเซรามิกจะมีผล อย่างมากกับค่าสภาพยอมสัมพัทธ์ (Er) ของสารนั้น จากการศึกษาที่ผ่านมาพบว่าค่า Er. ขึ้นอยู่กับ งนาดของเกรนและอุณหภูมิซินเตอร์สำหรับสารเฟร์โรอิเล็กทริกแบบธรรมดา เช่น BaTiO3 จะมี ขนาดเกรนประมาณ 1-50 μm และจากรายงานผลการวิจัยเป็นจำนวนมากแสดงให้เห็นว่าเซรามิกที่ ประกอบด้วยเกรนที่มีขนาดเล็กกว่าจะมีค่า *ɛ_r ที่สูง*กว่าในเซรามิกที่มีเกรนขนาดใหญ่ แต่ถ้าหาก เกรนมีขนาดต่ำกว่าขนาดเกรนวิกฤต (Critical grain size) หรือประมาณ 1 µm แล้วค่า *E*, ของเซรา-้มิกจะมีค่าลดลง [2] จากที่กล่าวมานี้จะเห็นได้ว่าขนาดเกรนของเซรามิกนั้นมีอิทธิพลต่อค่า *E*, ซึ่งจะ ้ส่งผลโดยตรงต่อสมบัติและการนำเซรามิกไปใช้งานดังนั้นจึงได้มีการพยายามที่จะควบคมขนาด ้ของเกรนเพื่อใช้ในการกำหนดลักษณะทางโครงสร้างจลภาคของเซรามิกให้มีความเหมาะสมต่อ การแสดงสมบัติทางใดอิเล็กทริกตามที่ต้องการขึ้นมา ซึ่งปัจจบันนิยมวิธีที่นิยมใช้ คือ การควบคม ้งนาดของเกรนด้วยการเลือกเงื่อนไขในการเตรียมที่เหมาะสมและการเจือสารอื่นเข้าไปในสารหลัก เพื่อปรับปรุงโครงสร้างจุลภาคสมบัติทางกายภาพและสมบัติทางไฟฟ้าให้เหมาะสม

6000 5000 че 4000 че 4000 3000 1000 0.01 0.1 1 10 100 читанази (µm)

ร**ูป2.22**ค่าสภาพยอมสัมพัทธ์ของเซรามิกและฟิล์มบางBaTiO₃เมื่อขนาคเกรนแตกต่างกัน[34]

2.5.2 สมบัติเฟร์โรอิเล็กทริก

การวัดสมบัติฮิสเทอรีซีสในวัสดุเฟร์โรอิเล็กทริก

ลักษณะสำคัญที่สุดของวัสดุเฟร์ โรอิเล็กทริก คือ การกลับทิศของขั้วทางไฟฟ้า (Dipole moment switching) หรือสภาพการมีขั้ว (Polarization switching) โดยสนามไฟฟ้าโดยผลของการ กลับทิศของขั้วทางไฟฟ้าและโดเมนในวัสดุเฟร์ โรอิเล็กทริกเมื่อได้รับสนามไฟฟ้าภายนอก คือการ เกิดวงวนฮิสเทอรีซีส (Hysteresis loop) การวัดสมบัติฮิสเทอรีซีสนั้นมีได้หลายวิธีซึ่งล้วนแล้วแต่มี พื้นฐานมาจากวงจรSawyer-Tower (Sawyer-Tower Circuit) ที่ได้รับการพัฒนาโดย C.B. Sawyer และ C.H. Tower ในปี ค.ศ. 1930 [34] โดยเมื่อทำการวัดสมบัติฮิสเทอรีซีสด้วยเครื่องมือดังกล่าว แล้ว จะได้ลักษณะของวงวนฮิสเทอรีซีสดังรูป 2.22

ร**ูป2.23** ลักษณะของวงวนฮิสเทอรีซีสในสารเฟร์โรอิเล็กทริกบางชนิค[9] โดย P คือ ค่าโพลาไรเซชัน E คือ ก่าสนามไฟฟ้า *P*_r คือ ก่าสภาพการมีขั้วกงค้าง *P*_s คือ ก่าโพลาไรเซชันอิ่มตัว *E*_c คือ ก่าสนามลบล้างไฟฟ้า

จากรูป 2.23 เมื่อมีสนามไฟฟ้ากระแสต่ำๆ สภาพการมีขั้ว (Polarizations) จะเพิ่มแบบเชิงเส้น กับขนาดของสนามไฟฟ้าซึ่งสอดกล้องกับช่วง oa หรือเส้นโค้งบริสุทธิ์ (Virgin curve) ในช่วงนี้ สนามไฟฟ้าจะไม่สูงมากพอที่จะกลับทิศของโคเมนที่มีสภาพการมีขั้วที่หันทิศทางตรงกันข้ามกับ สนามไฟฟ้าภายนอกให้สามารถหันไปในทิศทางเดียวกับสนามไฟฟ้าได้ แต่เมื่อสนามไฟฟ้าเพิ่มขึ้น สภาพการมีขั้วดังกล่าวก็จะเริ่มกลับทิศไปตามสนามไฟฟ้า และที่จุด a โคเมนทั้งหมดจะมีทิศทาง เดียวกับสนามไฟฟ้า เรียกจุดนี้ว่า โพลาไรเซชั่นอิ่มตัว (Saturated polarization: *P*_{sat} หรือ *P*_s) ต่อมา เมื่อลดสนามไฟฟ้าโดเมนบางส่วนจะกลับไปสู่ทิศทางเดิม (Back-switching) แต่ที่ตำแหน่ง สนามไฟฟ้าเป็นศูนย์ (จุดb) สภาพการมีขั้วจะไม่เป็นศูนย์ ดังนั้นถ้าจะทำให้สภาพการมีขั้วหมดไป สนามไฟฟ้าจะต้องถูกกลับทิศ (จุดc) และเมื่อเพิ่มสนามไฟฟ้าในทิศตรงกันข้ามก็จะทำให้มีการ จัดเรียงทิศของไดโพลใหม่ก่อนที่จะถึงจุดอิ่ม (จุดd) อีกครั้ง จากนั้นลดสนามไฟฟ้าเป็นศูนย์และ ต่อมาก็เริ่มกลับทิศทางของสนามไฟฟ้าอีกครั้งก็จะครบรอบ ดังนั้นจึงเกิดเป็น วงวนฮิสเทอรีซีส (Hysteresis loop) ถึงแม้ว่าจะมีการลดสนามไฟฟ้าภายนอกลงจนกระทั่งมีค่าเป็นศูนย์ แต่สภาพการ เป็นไฟฟ้าของวัสดุก็จะไม่ลดลงจนเป็นศูนย์ เนื่องจากยังมีสภาพการมีขั้วคงค้าง (*P*_r) อยู่ในตัววัสดุ ดังนั้นการที่จะลดการเหนี่ยวนำทั้งหมดให้กลับมาเป็นศูนย์เหมือนเดิม จึงจำเป็นต้องมีการให้ สนามไฟฟ้าเข้าไปในทิศทางตรงข้ามขนาด *E*c หรือที่เรียกว่าสนามลบล้างไฟฟ้า (Coercive field)

2.6 สมบัติเชิงกล

2.6.1 ความแข็ง

ความแข็ง (Hardness) เป็นสมบัติเชิงกลที่บอกถึงความสามารถในการด้านทานต่อการขีดข่วน (Scraching) ที่บริเวณผิวของเซรามิก โดยเซรามิกที่มีค่าความแข็งสูงจะสามารถทนทานต่อการเกิด ร่องรอยจากการขีดข่วนในการใช้งานได้ดี การวัดความแข็งเป็นสมบัติทางกลที่สำคัญอีกอย่างหนึ่ง ของวัสดุที่จะแสดงถึงความด้านทานต่อการกคให้เกิดรอยบนผิววัสดุ และยังสามารถนำไปหาค่า สมบัติเชิงกลอื่นๆ ได้เช่นค่ามอดุลัสของยัง (Young's modulus; *E*) ค่าความด้านทานต่อรอยแตก (Fracture toughness; *K_{IC}*) เป็นต้น ดังนั้นเพื่อให้การใช้งานของวัสดุแต่ละชนิดเหมาะสมกับสภาพ การใช้งานได้ดีที่สุด จึงจำเป็นต้องมีการวัดความแข็งของผิววัสดุ โดยการทดสอบความแข็งของวัสดุ แบ่งออกเป็น 2 ชนิด คือ การทดสอบความแข็งมหภาค (Macrohardness) และการทดสอบความแข็ง จุถภาค (Microhardness)

1. การทดสอบความแข็งมหภาค (Macrohardness)

เป็นการทดสอบความแข็งบนผิววัสดุซึ่งสามารถเห็นรอยกดได้ด้วยตาเปล่า ค่าความแข็งที่วัด ได้จะเป็นค่าความแข็งโดยรวมของวัสดุนั้นมีวิธีการทดสอบที่นิยมใช้ 3 วิธี คือ การทดสอบความ แข็งแบบบริเนลล์ (Brinell hardness test) การทดสอบความแข็งแบบร็อกเวลล์ (Rockwell hardness test) และการทดสอบความแข็งแบบวิกเกอร์ส (Vickers hardness test)

2. การทคสอบความแข็งแบบจุลภาค (Microhardness)

เป็นการวัดค่าความแข็งในบริเวณเล็กๆระดับจุลภาคหรือระดับวัฎภาค (Phase) และใช้น้ำหนัก กดในระดับกรัมซึ่งเหมาะสมสำหรับการทดสอบความแข็งของผิวเคลือบแบบบาง (Thin layer) การ วัดความแข็งระดับจุลภาคนี้จะมีด้วยกัน 2 วิธี คือ แบบวิกเกอร์ส (Vickers hardness test) และ แบบนูป (Knoop hardness test)

2.6.1.1 การทดสอบแบบวิกเกอร์ส

เมื่อ

 H_V

Р

d

การทดสอบแบบวิกเกอร์ส (Vickers indentation) จะใช้หัวกดที่ทำมาจากเพชรที่มีฐานเป็นรูป สี่เหลี่ยมจัตุรัสมีมุมระหว่างกัน 136 องศา ความลึกของรอยกดมีค่าประมาณ 1/7 เท่าของความยาว ของเส้นทแยงมุม ดังรูป 2.24 และต้องทำการวัดเส้นทแยงมุมทั้ง 2 ด้าน แล้วนำมาหาค่าเฉลี่ยค่าที่ได้ จะอยู่ในรูป Vickers hardness number ซึ่งก็คืออัตราส่วนของน้ำหนักที่ใช้ในการกดกับพื้นผิวที่เกิด รอยดังสมการ2.5

$$H_V = \frac{(1.854)P}{d^2}$$
(2.5)

- คือค่าความแข็งในหน่วยของวิกเกอร์ส หน่วย จิกะปาสคาล (GPa) คือน้ำหนักที่ให้แก่หัวกค หน่วย นิวตัน (N)
- คือความยาวเฉลี่ยของเส้นทแยงมุมของรอยกด หน่วย ไมโครเมตร (μm)

ร**ูป 2.24** ลักษณะ (a)รอยกดที่เกิดจากหัวกดและ (b)หัวกดแบบวิกเกอร์ส [1]

2.6.1.2 การทดสอบแบบนูป

การทดสอบแบบนูป (Knoop indentation) จะใช้หัวกดที่ทำมาจากเพชรที่มีฐานเป็นรูปปีรามิด ฐานสี่เหลี่ยมขนมเปียกปูน ที่มีความยาวของด้านหนึ่งยาวกว่าอีกด้านหนึ่ง 7 เท่า มีมุมทางยาว 170 องสา และมุมตรงข้าม 130 องสา ดังรูป 2.25 รูปของรอยกดเป็นรูปสี่เหลี่ยมขนมเปียกปูนขนานกัน 2 ด้าน แต่จะทำการวัดเฉพาะด้านแกนยาวเท่านั้นสำหรับความลึกของรอยกดจะมีค่าประมาณ 1:30 ของเส้นทแยงมุมด้านที่ยาวผลการทดสอบจะอยู่ในรูปของ Knoop hardness number ซึ่งก็คือ อัตราส่วนของน้ำหนักกดกับพื้นผิวที่ถูกกดลงไป ดังสมการ 2.6

$$H_{K} = \frac{(14.23)P}{d^{2}}$$
(2.6)

เมื่อ H_K คือค่าความแข็งในหน่วยของนูป หน่วย จิกะปาสคาล (GPa)
 P คือน้ำหนักที่ให้แก่หัวกด หน่วย นิวตัน (N)
 d คือความยาวเฉลี่ยของเส้นทแยงมุมของรอยกด หน่วย ไมโครเมตร (μm)

ร**ูป 2.25** ลักษณะ (a)รอยกดที่เกิดจากหัวกดและ (b)หัวกดแบบนูป [1]

ความแข็งของเซรามิกนั้นเป็นสมบัติเชิงกลอีกอย่างหนึ่งที่ขึ้นอยู่กับโครงสร้างจุลภาค เช่นเดียวกับสมบัติทางไฟฟ้า และจากการที่เซรามิกนั้นเป็นวัสดุที่ค่อนข้างเลื่อยต่อการทำปฏิกิริยา ทางเคมี ถ้าหากลักษณะโครงสร้างจุลภาคของเซรามิกที่บริเวณผิวมีลักษณะเช่นเดียวกับที่อยู่ภายใน เนื้อของเซรามิก ดังนั้นการทดสอบสมบัติเชิงกลที่บริเวณผิวหน้าของชิ้นงานก็น่าจะนำมาหาก่า สมบัติเชิงกลอื่นๆ ของเซรามิกได้ โดยเฉพาะก่าความแข็งในหน่วยวิกเกอร์สและนูปนั้นสามารถจะ นำค่าที่วัดได้มาใช้ในการคำนวณเพื่อหาก่า (ก) มอคุลัสของยัง

เมื่อ

E

 σ

ε

มอดุลัสของยัง (Young's modulus) เป็นความสัมพันธ์ระหว่างความเค้นกับความเครียด โดย ในเซรามิกจะเป็นตัวที่บ่งบอกถึงความแข็งแรงโดยจะอยู่ในรูปของมอดุลัสของความยืดหยุ่นโดย หมายถึงค่าอัตราส่วนระหว่างความเค้น (Stress) และความเครียด (Strain) หรือสามารถหาได้จาก ความชันของกราฟเชิงเส้นของความสัมพันธ์ทั้งสองที่เป็นไปตามกฎของฮุก (Hook's law) ที่มี สมการดัง2.7

$$E = \frac{\sigma}{\varepsilon}$$

(2.7)

คือมอคุลัสของยัง หน่วย ปาสคาล (Pa)

คือความเค้น หน่วย ปาสคาล (Pa)

คือความเครียด

จากสมการ 2.7 นั้นเป็นการคำนวณค่ามอคุลัสของยังจากอัตราส่วนระหว่างความเก้นกับ ความเกรียด นอกจากนั้นเรายังสามารถคำนวณหาก่ามอคุลัสของยังได้อีกวิธี คือ เมื่อได้ก่าความแข็ง แบบนูปแล้ว นำค่าความแข็งในหน่วยของนูปไปกำนวณหาก่ามอคุลัสของยัง (Young's modulus) ตามสมการ 2.8 ซึ่งในงานวิจัยนี้ได้ใช้วิธีนี้ในการหา

$$E = \frac{\alpha H K}{\left[(b/a) - (b'/a') \right]}$$
(2.8)

เมื่อ E คือ มอดุลัสของยัง หน่วย จิกะปาสกาล (GPa)
α คือ ก่ากงที่ที่ได้จากผลการทดลองของMarshall และกณะ [37]
สำหรับเซรามิก โดยทั่วไป มีก่าประมาณ 0.45 *H_K* คือ ความแข็งในหน่วยของนูป หน่วย จิกะปาสกาล (GPa)
b/a คือ อัตราส่วนระหว่างเส้นทแยงมุมของหัวกดด้านสั้นต่อเส้นทแยงมุมของหัว กดด้านยาวสำหรับหัวกดแบบนูป มีก่าเท่ากับ 0.14
b'/a' คือ อัตราส่วนระหว่างเส้นทแยงมุมของรอยกดด้านสั้นต่อเส้นทแยงมุมของรอย

a' คือ อัตราส่วนระหว่างเส้นทแยงมุมของรอยกคด้านสันต่อเส้นทแยงมุมของรอ กคด้านยาว (ข) ความต้านทานต่อรอยแตก

ความต้านทานต่อรอยแตก (Fracture toughness) เป็นค่าที่บอกถึงความสามารถในการดูดซับ พลังงานของเซรามิกก่อนที่จะเกิดรอยแตก โดยรอยแตกจะเกิดขึ้นที่บริเวณที่มีความเค้นสูงสุด เช่น มุมของรอยกด ปริมาณความเค้นที่ปลายรอยแตกขึ้นอยู่กับความเค้นที่ให้แก่เซรามิกและความกว้าง ของรอยแตก ปริมาณความเค้นวิกฤตที่เป็นสาเหตุของการแตกในแนวระนาบ เรียกอีกอย่างหนึ่งว่า ความต้านทานต่อรอยแตก (Fracture toughness; *K_{IC}*) สามารถหาได้จากสมการ 2.9

 $K_{IC} = E\sigma_f \sqrt{\pi a}$

(2.9)

เมื่อ K_{IC} E o_f a

คือ ความต้านทานต่อรอยแตก (MPa.m^{1/2}) คือ มอคุลัสของยัง หน่วยปาสคาล (Pa) คือ ความเค้นที่ทำให้เกิดรอยแตก หน่วย ปาสคาล (Pa)

้ คือ ความยาวของรอยแตกโดยวัดจากกึ่งกลางของรอยกด หน่วย เมตร (m)

ในที่นี้การหาก่าความด้านทานต่อรอยแตกนั้น จะใช้การกคลงบนผิวของวัสดุด้วยหัวกดแบบ วิกเกอร์ส เมื่อให้แรงกระทำมากพอจะทำให้วัสดุนั้นเกิดรอยแตกขึ้น ทั้งในลักษณะของรอยแตกจาก มุมของหัวกด (Radial crack) รอยแตกที่ขนานกับพื้นผิวและอยู่ใต้ผิว (Lateral crack) และรอยแตก ที่ลึกลงไปจนถึงกึ่งกลางของหัวกด (Median crack) โดยการเติบโตของรอยแตกที่เกิดขึ้นนั้นจะ เกิดขึ้นทั้งสองแนว โดยเกิดจากกวามแตกต่างของกวามเก้นภายใน ส่วนบริเวณที่ยืดหยุ่น (Plastic zone) กับบริเวณรอบข้างเป็นผลที่ทำให้เกิดแรงเก้นเนื่องมาจากแรงดึง (Tensile stress) ระหว่าง สองบริเวณดังกล่าว และสามารถหาค่าความต้านทานต่อรอยแตกได้จากสมการ 2.10 [38]

$K_{IC} = 0.016 \left[\frac{E}{HV} \right]^{\frac{1}{2}} \left[\frac{P}{c^{\frac{3}{2}}} \right]$ (2.1)

เมื่อ

K_{IC} คือ ความต้านทานต่อรอยแตก(MPa.m^{1/2})

- E คือ มอคุลัสของยัง หน่วย ปาสคาล (Pa)
- *H_V* คือ ความแข็งแบบวิกเกอร์ หน่วย ปาสคาล (Pa)
- P คือ น้ำหนักที่ใช้กดลงบนเซรามิก หน่วย นิวตัน (N)
- c คือ ความยาวของรอยแตกเริ่มวัดจากจุดกึ่งกลางของรอยกด หน่วย เมตร (m)

การทดสอบความแข็งทั้งสองวิธี รอยกดจะมีขนาดเล็กมากซึ่งไม่สามารถมองเห็นด้วยตาเปล่า ดังนั้นการวัดรอยกดจำเป็นต้องใช้กล้องจุลทรรศน์ที่มีสเกลบอกขนาดติดที่เลนส์ช่วยในการวัด นอกจากนั้นการวัดชิ้นงานต้องระวังให้ผิวตั้งฉากกับหัวกดขณะทำการวัด หากไม่ตั้งฉากจะทำให้ การวัดเส้นทแยงมุมผิดพลาดและค่าความแข็งที่ได้จะไม่เที่ยงตรง

เปรียบเทียบการกดแบบนูปและแบบวิกเกอร์สสำหรับการให้น้ำหนักและการทดสอบวัสดุ [39]

- หัวกดแบบวิกเกอร์สสามารถกดได้ถึกเป็น 2 เท่าของการกดแบบนูป
- เส้นทแยงมุมของการกดแบบวิกเกอร์สยาวประมาณ 1/3 ของเส้นทแยงมุมหลักของการ กดแบบนูป

- การทคสอบแบบวิกเกอร์สตอบสนองต่อความผิดพลาคมากกว่าการทคสอบแบบนูป

- การทดสอบแบบวิกเกอร์สเหมาะสำหรับพื้นที่กลมเล็กๆ
- การทดสอบแบบนูปเหมาะสำหรับพื้นที่ยาวเรียวเล็กๆ

2.6.2 การสึกหรอ

การสึกหรอ (Wear) เป็นการสูญเสียเนื้อวัสดุที่เกิดจากการถูกกระทำโดยแรงทางกลจาก ของแข็งหรือของเหลว โดยการเคลื่อนที่หรือสัมผัสของวัสดุด้วยกลไกต่างๆ ซึ่งการสูญเสียเนื้อวัสดุ จะอยู่ในรูปของน้ำหนักหรือขนาดของวัสดุที่เปลี่ยนไป โดยมีกลไกการสึกหรอต่างกัน โดยทั่วไป แล้วพบว่ามักมีหลายกลไกการสึกหรอหลายชนิดเกิดขึ้นพร้อมๆ กัน กลไกการสึกหรอชนิดที่มีผล ต่อการสึกหรอมากที่สุด เรียกว่า กลไกการสึกหรอหลัก และกลไกการสึกหรอที่มีผลต่อการสึกหรอ เพียงเล็กน้อยหรือช่วยให้เกิดการสึกหรอหลักดีขึ้น เรียกว่า กลไกการสึกหรอรอง [39]

2.6.2.1 ประเภทของการสึกหรอ

การสึกหรอสามารถแบ่งตามลักษณะการเกิดการสึกหรอได้ 6 ประเภท คือ การสึกหรอแบบขัด ถู (Abrasive wear) การสึกหรอแบบติดกัน (Adhesive wear) การสึกหรอแบบการกัดกร่อน (Corrosion wear) การสึกหรอแบบความล้ำ (Fatigue wear) การสึกหรอแบบการกัดเซาะ (Erosive wear) และการสึกหรอแบบการสั่น (Fretting wear) [39]

1. การสึกหรอแบบติดกัน

การสึกหรอแบบติดกัน จะมีโอกาสเกิดขึ้นเมื่อมีการเลื่อนไถลของวัสดุสองชนิดทั้งในขณะที่มี การหล่อลื่นหรือไม่มีการหล่อลื่นโดยที่จุดสัมผัสจะเกิดการฉีกขาดหรือหลุดออกไปติดกับพื้นผิว อื่นๆ จนกระทั่งมีปริมาณการติดกันมากขึ้นจึงหลุดเป็นเศษ (debris) ออกไปดังรูป 2.26 ปัจจัยที่มีผล ต่อกลไกการสึกหรอแบบติดกัน ได้แก่ โครงสร้างผลึกพันธะของวัสดุ ขนาดของเกรนและลักษณะ ขอบเกรน

รูป 2.26 กลไกการสึกหรอแบบติดกันของวัสคุ (A) และ (B) [40]

2. การสึกหรอแบบขัดถู

การสึกหรอแบบขัดถูเกิดจากพื้นผิวที่แข็งและขรุขระ หรืออนุภากที่แข็งเคลื่อนที่ไปบนพื้นผิว ที่มีความแข็งน้อยกว่า จึงทำให้เกิดความเสียหายระหว่างจุดที่สัมผัสทำให้เกิดการเปลี่ยนรูปแบบ ถาวรหรือแตกหัก โดยทั่วไปการเปลี่ยนรูปแบบถาวรที่เกิดขึ้นระหว่างพื้นผิวที่เกิดการขัดถูแบ่งได้ 3 แบบคือ

(1) Ploughing เป็นการสึกหรอที่ไม่สูญเสียเนื้อวัสดุแต่เกิดการผิดรูปบริเวณผิวของวัสดุ

(2) Wedge เป็นการสึกหรอที่มีการสูญเสียเนื้อวัสดุเพียงเล็กน้อยและยังเกิดการผิดรูปบนผิว วัสดุ

(3) Cutting เป็นการสึกหรอที่มีการสูญเสียเนื้อวัสคุมากที่สุคโดยเศษที่หลุดออกมาจะมี ลักษณะคล้ายริบบิ้น (Ribboned-shaped)

ร**ูป 2.27** ภาพถ่าย SEM ลักษณะการสึกหรอของทองเหลืองกับลูกบอลเหล็กกล้าแบบ (a) Ploughing, (b) Wedge และ (c) Cutting [41]

สำหรับการแตกหักมักจะเกิดกับวัสดุประเภทเซรามิก ซึ่งมีความแข็งสูงแต่เปราะและมีช่วงการ เปลี่ยนรูปแบบถาวรน้อยมาก เมื่อถูกแรงกระทำที่มากพอจะเกิดการแตกหัก กลไกการแตกหักคือ เมื่อให้แรงกระทำบนผิววัสดุแล้วเคลื่อนที่ผ่านไปบนวัสดุ จะทำให้เกิดรอยร้าวภายใน ต่อมาจะเกิด รอยร้าวขนานกับผิวของวัสดุ ซึ่งจะเคลื่อนที่ออกสู่บริเวณผิวของวัสดุทำให้วัสดุนั้นหลุดออกมาดัง รูป 2.28

รูป 2.28 ลักษณะการสึกหรอแบบแตกหัก [41]

การสึกหรอแบบกัดเซาะ

การสึกหรอแบบกัดเซาะเกิดจากการตกกระทบของวัสคุในลักษณะของการกระแทก ซึ่งมีทั้ง แบบที่เป็นอนุภาคของแข็ง หยดของเหลว และการระเบิดของฟองอากาศในของเหลว โดยอัตราการ สึกหรอในลักษณะนี้จะมีเรื่องของมุมตกกระทบและชนิดของวัสคุเข้ามาเกี่ยวข้อง

4. การสึกหรอแบบกัดกร่อน

การสึกหรอแบบกัดกร่อน (Corrosive wear) เป็นการสึกหรอที่เกิดขึ้นร่วมกันระหว่างการสึก หรอทางเคมี (Chemical wear) กับการสึกหรอเชิงกล (Mechanical wear) โดยมีปัจจัยหลักในการ เกิดคือ ออกซิเจนและน้ำ ซึ่งนับได้ว่าการสึกหรอในลักษณะนี้เป็นการเกิดแบบเสริมกัน โดยมักจะ เกิดการสึกหรอทางเกมีขึ้นก่อน และมีการเคลื่อนผ่านหรือขูดผิววัสดุออกจนเกิดกับความเสียหาย ของผิววัสดุตัวอย่างการสึกหรอประเภทนี้ เช่น การทำงานในกระบวนการที่เกี่ยวกับแร่กระบวนการ ทางเกมีหรือวัสดุอุปกรณ์ที่สัมผัสกับน้ำทะเล เป็นต้น

5. การสึกหรอแบบความล้า

การสึกหรอแบบความถ้ำ (Fatigue wear) เป็นการสึกหรอในลักษณะที่มีการให้แรงกระทำบน ผิววัสดุซ้ำๆ จนเกิดความเค้นสะสมบนผิววัสดุ เมื่อความเค้นมีก่าสูงมากพอจนเกิดจำนวนรอบวิกฤต ทำให้เนื้อวัสดุแตกหรือหลุดออกจากผิววัสดุ แต่ถ้าไม่คำเนินถึงรอบวิกฤตก็จะไม่เกิดการสึกหรอขึ้น สามารถแบ่งการสึกหรอประเภทนี้ได้เป็น 2 แบบ คือ ความล้าที่เกิดจากการเคลื่อนที่แบบหมุนเกิด โดยไม่มีการสัมผัสกันของวัสดุ เนื่องจากมีสารหล่อลื่นคั่นกลาง แต่ความเค้นจะสามารถส่งแรง กระทำผ่านฟิล์มบางของสารหล่อลื่น ทำให้บริเวณผิวสัมผัสเกิดการแตกหัก ส่วนความล้าแบบมี ความเก้นสะสมเป็นการสึกหรอที่พบในเซรามิก ซึ่งเป็นความล้าชนิดที่ความเก้นขึ้นอยู่กับปฏิกิริยา เคมีระหว่างไอน้ำกับความเก้นที่ผิว โดยเฉพาะในส่วนของปลายรอยแตก ซึ่งจะเป็นจุดที่มีความเก้น สูงสุดและอาจทำให้เกิดการเติบโตของรอยแตกและทำให้เกิดการแตกหัก

6. การสึกหรอแบบการสั่น

การสึกหรอแบบการสั่น (Fretting wear) เป็นการสึกหรอเนื่องจากการสั่นของวัสดุที่สัมผัสกัน ทำให้เกิดกล ไกการสึกหรอแบบติดกันเกิดขึ้นก่อน ต่อมาเกิดการสั่นขึ้นทำให้เกิดการแยกออกจาก กันและทำให้แตกออกเป็นชิ้นเล็กๆ โดยชิ้นส่วนเล็กๆ นั้นจะกลายเป็นอนุภาคสำหรับขัดถู ซึ่งการ สึกหรอลักษณะนี้เป็นแบบไม่รุนแรงเมื่อเทียบกับกล ไกอื่นๆ แต่อาจเกิดร่วมกับการสึกหรออื่นๆ จน ทำให้เกิดการสึกหรอมากขึ้นได้

All rights reserved

2.6.2.2 อัตราการสึกหรอ

การหาค่าอัตราการสึกหรอ (Wear rate) สามารถหาได้ตามสมการของ Archard ซึ่งได้กล่าวถึง ความสัมพันธ์ระหว่างอัตราการสึกหรอที่แปรผันกับน้ำหนักกดทับที่ให้กับวัสดุ [42] ดังสมการ 2.8

$$Q = kW \tag{2.8}$$

เมื่อ Q คือ อัตราการสึกหรอ

k คือ ค่าสัมประสิทธิ์การสึกหรอ

W คือ น้ำหนักที่ให้แก่วัสคุ

เมื่อพิจารณาจากค่าความแข็งและปริมาตรหรือน้ำหนักของวัสดุที่หายไปจะได้สมการ2.9

เมื่อ Q คือ อัตราการสึกหรอ

- k คือ ค่าสัมประสิทธิ์การสึกหรอ
- H คือ ความแข็งของวัสดุ
- V คือ ปริมาตรสูญเสียหรือมวลสูญเสีย
- L คือ ระยะทคสอบ

2.6.2.3 วิธีทดสอบการสึกหรอแบบใถล

การสึกหรอแบบไถลเป็นการทดสอบที่จัดให้ผิวสัมผัสเคลื่อนที่สัมพันธ์กัน วัสดุชิ้นหนึ่งไถล ไปบนวัสดุอีกชิ้นหนึ่งวิธีการทดสอบในกลุ่มนี้คือ pin-on - disk (Face loading) เครื่องมือทดสอบ แบบ pin -on – disk แสดงดังรูป 2.29 การทดสอบทำโดยยึด pin ให้อยู่กับที่ ส่วนจานหมุนขัดสีกับ pin ในแนวราบ pin ที่ใช้อาจเป็นชิ้นงานที่มีลักษณะเป็นลูกบอลที่ไม่มีการหมุน หรือเป็นวัสดุรูป ครึ่งวงกลมหรือเป็นด้านเรียบของวัสดุทรงกระบอก เครื่องทดสอบแบบนี้ใช้ในการสึกหรอแบบ ไถลและสัมประสิทธิ์ความเสียดทาน

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved