สารบาญ

หน้า

ค

٩

ฉ

ĩ

ฑ

ମ

กิตติกรรมประกาศ บทคัดย่อภาษาไทย บทคัดย่อภาษาอังกฤษ สารบาญตาราง

สารบาญภาพ

อักษรย่อและสัญลักษณ์

บทที่ 1 บทนำ

	1.1	ที่มาและความสำคัญของปัญหาที่นำไปสู่งานวิจัย	1
	1.2	สรุปสาระสำคัญจากเอกสารที่เกี่ยวข้อง	2
	1.3	วัตถุประสงค์ของการวิจัย	5
	1.4	ประโยชน์ที่ได้รับจากการวิจัย	5
	1.5	ขอบเขตของการศึกษาวิจัย	5
ทที่ 2	ทฤบ	ษฏิพื้นฐาน UNI	

บทที่ 2 ทฤษฎีพื้นฐาน

2.1 กายวิภาคของต่อมไทรอยค์ (anatomy of	thyroid gland)
2.1.1 ลักษณะรูปร่างทั่วไป	~~~?~~?~~?
2.1.2 ตำแหน่งของต่อมไทรอยค์	10108018b
2.1.3 โครงสร้างของต่อมไทรอยค์	ç
2.2 การทำงานของต่อมไทรอยด์	, Mai Universit _i
2.2.1 การสังเคราะห์ไทรอยค์ฮอร์โม	^{nu} eserve ¹¹
2.2.2 การหลั่งไทรอยค์ฮอร์โมนจาก	ต่อมไทรอยค์ 12
2.2.3 การควบคุมการหลั่งไทรอยค์ผ	เอร์โมน 14

สารบาญ (ต่อ)

			หน้า
2.3	โรคมะเร็ง	เต่อมไทรอยค์ (thyroid carcinoma)	15
	2.3.1	พยาธิวิทยาของโรคมะเร็งต่อมไทรอยค์	15
	2.3.2	แนวทางในการรักษาโรคมะเร็งต่อมไทรอยค์	17
2.4	การรักษาเ	ผู้ป่วยโรคมะเร็งต่อมไทรอยค์ด้วยสารรังสีไอโอคีน-131	19
	2.4.1	คุณลักษณะของสารรังสีไอโอคีน-131	19
	2.4.2	การกำหนดปริมาณสารรังสีไอโอคีน-131 ในการรักษา	20
		โรคมะเร็งต่อม ไทรอยค์	
2.5	การคำนว	ณปริมาณรังสีภายในร่างกาย (internal radiation dosimetry)	22
	2.5.1	การคำนวณปริมาณรังสีภายในด้วยวิธี MIRD	23
2.6	โปรแกรม	เร้งสึกฌิต OLINDA /EXM	34
บทที่ 3 วิธีต	ຈຳເนີนการวิ	ີ່ຈັຍ	
3.1	เครื่องมือเ	และอุปกรณ์	36
3.2	วิชีการศึก	ษา	47
	3.2.1	การรวบรวมข้อมูลผู้ป่วย	47
	3.2.2	หลักการคำนวณหาก่าปริมาณรังสีดูดกลืนที่ปอด	47
	3.2.3	การคำนวณหาค่า cumulated activity ในปอด ($\widetilde{A}_{(L)}$)	47
		และในต่อมไทรอยค์ ($\widetilde{A}_{_{(Thy)}}$)	
	3.2.4	วิธีคำนวณหาค่า S-value	57
	3.2.5	วิธีคำนวณหาค่าปริมาณรังสีดูคกลื่นที่ปอค ($\overline{D}_{\!(L)})$	60
	3.2.6	การคำนวณปริมาณรังสีดูดกลื่นด้วยโปรแกรมรังสีคณิต	61
		OLINDA A A A A A A A A A A A A A A A A A A	
	3.2.7	เปรียบเทียบค่าปริมาณรังสีดูดกลื่นที่ปอดจากการ	64
		คำนวณจากภาพสแกนสองมิติและ โปรแกรมรังสีคณิต	
		OLINDA	
	3.2.8	หาความสัมพันธ์ระหว่างวิธีการคำนวณจากภาพสแกน	
		สองมิติและ โปรแกรมรังสีคณิต OLINDA	64
	3.2.9	ค่าสถิติที่ใช้ในการวิเคราะห์ข้อมูล	64

สารบาญ (ต่อ)

			หน้า
3.3 ĉ	rรุปวิ <mark>ธ</mark> ีการ	เส _็ กษาวิจัย	65
บทที่ 4 ผลก	າรวิจัย		
4.1	ข้อมูลผู้ป่	วยโรคมะเร็งต่อมไทรอยค์	67
4.2	ค่า S-val	ue ของสารรังสีไอโอคีน-131	68
	4.2.1	ค่า S-value ของ หุ่นจำลองกริสตี้-แอกเกอร์แมน-สตาบิน	68
	4.2.2	ค่า S-value ของคนไทย	71
	4.2.3	ความแตกต่างของค่า S-value ระหว่างหุ่นจำลองคริสตี้ –	72
		แอกเคอร์แมน-สตาบิน กับคนไทย	
4.3	ค่าปริเ	มาณรังสีดูดกลืนที่ปอด	74
	4.3.1	ปริมาณกัมมันตภาพรังสีที่ผู้ป่วยได้รับ ก่า $\widetilde{A}_{(s)}$ และ ก่า	74
		อัพเทกที่ปอด และต่อมไทรอยค์	
	4.3.2	ค่าปริมาณรังสีดูดกลืนที่ปอด ($\overline{D}_{(L)}$) คำนวณด้วยค่า	75
		S-value ของหุ่นจำลองคริสตี้ - แอกเกอร์แมน - สตาบิน	
		โดยวิธีกำนวณด้วยมือและ โปรแกรมรังสีกณิต OLINDA	
	4.3.3	ค่าปริมาณรังสีดูดกลืนที่ปอด ($\overline{D}_{(L)}$) คำนวณด้วยค่า	76
		S-value ของคนไทยโดยวิธีกำนวณด้วยมือและโปรแกรม	
		รังสึกฌิต OLINDA	
	4.3.4	ค่าปริมาณรังสีดูดกลืนที่ปอด ($\overline{D}_{(L)}$) คำนวณด้วยค่า	78
		S-value ของหุ่นจำลองคริสตี้ - แอกเคอร์แมน – สตาบิน	
		เปรียบเทียบกับค่าที่คำนวณจาก S-value ของคนไทย	
บทที่ 5 อภิเ	ไรายและล	รรุปผ ลการศึกษา	81
เอกสารอ้างอิง	1		85
ภาคผนวก			89
ภาคผนวก ก	เอกสาร	รรับรองโครงการวิจัยในมนุษย์	90

สารบาญ (ต่อ)

		หนา
ภาคผนวก ข	ข้อมูลผู้ป่วยโรคมะเร็งต่อมไทรอยค์ชนิด well differentiated cell ที่	91
	เข้าเกณฑ์สำหรับการศึกษานี้	
ภาคผนวก ค	การหาค่า C ที่ตำแหน่งปอด	94
ภาคผนวก ง	ค่า SAF และ y _i E _i SAF จากต่อมไทรอยค์ไปปอด และจากปอดไป	95
	ปอดสำหรับสารรังสีไอโอคีน-131	
ประวัติผู้เขียน		99

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ฎ

สารบาญตาราง

ตาราง		หน้
2.1	สถิติจำนวนผู้ป่วยโรคมะเร็งต่อมไทรอยค์ของหน่วยงานเวชศาสตร์นิวเคลียร์	17
	ภาควิชารังสีวิทยา คณะแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่ พ.ศ. 2550	
	แยกตามชนิดของเซลล์และตำแหน่งที่เซลล์มะเร็งแพร่กระจายไป	
3.1	แสดงค่า specific absorbed fraction (g ⁻¹) ของต่อมไทรอยค์และปอดที่ได้จาก	4
	การศึกษาในหุ่นจำลองคริสตี้และแอกเคอร์แมน และหุ่นจำลองหญิงตั้งครรภ์ 3	
	เคือน 6 เคือนและ 9 เคือนของสตาบิน	
3.2	ข้อมูลน้ำหนักอวัยวะภายใน ของหุ่นจำลอง คริสตี้และแอกเคอร์แมน	42
3.3	ข้อมูลน้ำหนักอวัยวะภายในของหุ่นจำลองหญิงโตเต็มวัย หญิงตั้งครรภ์ 3 เดือน	43
	6 เดือน และ 9 เดือน ของสตาบิน	
3.4	ชนิดของรังสี พลังงานรังสีขนาดต่าง ๆ ที่เกิดจากการสลายตัวของสารรังสี	44
	ไอโอคีน- 131	
3.5	แสดงน้ำหนักต่อมไทรอยค์และปอดของคนไทย	44
4.1	แสดงข้อมูลผู้ป่วยโรคมะเร็งต่อมไทรอยค์ที่เข้าเกณฑ์ในการศึกษาจำนวน 10 ราย	6
4.2	แสดงความแตกต่างระหว่างค่า S - value จากต่อมไทรอยค์ไปปอคที่คำนวณค้วย	6
	มือโดยใช้ข้อมูลของหุ่นจำลองคริสตี้ – แอกเคอร์แมน- สตาบิน($S_{(L\leftarrow Thy)}$ Cristy)	
	และค่าที่คำนวณจากโปรแกรมรังสีคณิต OLINDA	
4.3	แสดงความแตกต่างระหว่างค่า S - value จากปอดไปปอดที่คำนวณด้วยมือโดย	69
	ใช้ข้อมูลของหุ่นจำลองคริสตี้ – แอกเคอร์แมน-สตาบิน(S _{(L←L) Cristy}) และค่าที่	
	คำนวณจากโปรแกรมรังสีคณิต OLINDA	
4.4	แสดงความแตกต่างระหว่างค่า S - value จากต่อมไทรอยด์ไปปอดที่คำนวณด้วย	7
	มือโดยใช้ข้อมูลของคนไทย (S _(L←Thv) _{Thai}) และค่าที่คำนวณด้วยโปรแกรมรังสี	
	คณิต OLINDA	
4.5	แสดงความแตกต่างระหว่างค่า S - value จากปอดไปปอดที่คำนวณด้วยมือ โดย	72
	ใช้ข้อมูลของคนไทย (S _{(L+L) Thai}) และค่าที่คำนวณด้วยโปรแกรมรังสีคณิต	

IJ

สารบาญตาราง (ต่อ)

ตาราง		หน้า
4.6	แสดงค่ามวลปอดของหุ่นจำลองคริสตี้ - แอกเคอร์แมน - สตาบิน มวลปอดของ	73
	คนไทย ค่าร้อยละความแตกต่างของมวลปอดและค่า S-value ที่ได้จากการ	
	คำนวณด้วยมือ โดยใช้ข้อมูลมวลปอดทั้งสอง	
4.7	ปริมาณสารรังสีไอโอคีน-131 ที่ให้กับผู้ป่วย 10 ราย ค่า $\widetilde{A}_{(s)}$ ค่าร้อยละของ	74
	การอัพเทกที่ต่อมไทรอยด์และปอด	
4.8	แสดงความแตกต่างระหว่างปริมาณรังสีดูดกลื่นที่ปอด ($\overline{D}_{(L)}$) ของผู้ป่วย 10	75
	ราย ที่คำนวณด้วยมือและโปรแกรมรังสีคณิต OLINDA โดยใช้ค่า S - value	
	ของหุ่นจำลองคริสตี้-แอกเคอร์แมน-สตาบิน	
4.9	แสดงความแตกต่างระหว่างปริมาณรังสีดูดกลื่นที่ปอด ($\overline{D}_{(L)}$) ของผู้ป่วย 10	77
	ราย ที่คำนวณด้วยมือและด้วยโปรแกรมรังสีคณิต OLINDA โดยใช้ก่า	
	S - value ของคนใทย	
4.10	แสดงความแตกต่างระหว่างปริมาณรังสีดูดกลื่นที่ปอด($\overline{D}_{(L)}$) ในผู้ป่วย 10 ราย	78
	ที่กำนวณจากค้วยมือเมื่อใช้ค่า S - value ของหุ่นจำลองคริสตี้ - แอกเคอร์แมน -	
	สตาบินและ S - value ของคนไทย	
4.11	แสดงความแตกต่างระหว่างปริมาณรังสีดูดกลื่นที่ปอดในผู้ป่วย 10 ราย ที่	80
	คำนวณด้วยโปรแกรมรังสึคณิต OLINDA เมื่อใช้ก่า S - value ของหุ่นจำลอง	
	คริสตี้ - แอกเคอร์แมน - สตาบินและของคนไทย	

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

สารบาญภาพ

51		หน้า
្តូ <u>ព</u> 2 1	กายวิกาจของต่อบไทรอยอ์อ้าบหบ้า แสดงตำแหบ่งที่ตั้ง รุปร่างเส้นเลือดที่	7
2.1	เข้าบาเลี้ยงต่องประระค์ พิราบิดออโอป และอวัยวะใกล้เลียง	/
22	รงาม แถงทอง การออก พรามกอยรแบ และอย่าง ระกายกอง อายุวิกาลของต่องปไทรอยอ์อ้างเหอัง และอย่างหน่าของต่องเพาราไทรอยอ์	Q
2.2	กาย มากายองทอม เกายองทุศานกาณ แก่งทุกแก่น ของทอมทาง เกายองท ล้างเวน 4 ต่อง ซื้อยู่อ่องปังได้วานหลังของอื่นต่องปังเรอยู่อังชั้วเข้าแน่อะตุเวา	0
	อาหาริอาออเอ แล้งเเลืออแอง เส้งเเลืออด้ว แอะเเส้งเปละหลวท แองก่อง	0
2.3	ากระบทรู้ มากว่าแน่มองเขตเของแผ่ง เขตเของผ่า แขรเขตการขาพ ภองผอท	9
502	เทรอยด	10
2.4	เครงสรางของเซลลตอม เทรอยด ซงบระกอบควย แคบซูลของเนอเยอ	10
	เกยวพน โทรอยคพอลลเคล ซเซลล สารคอลลอยค และเสนเลอคแคง	
	Nou	
2.5	สูตร โครงสร้าง โมเลกุลของผลผลิตที่ได้จากปฏิกิริยาจับคู่ของ โมเลกุลไท โร	12
	ซีน เป็น ไทรอกซีน (T4) ไตรไอโอโคไทโรนิน(T3) และรีเวอร์สไตรไอ	
	โอโคไทโรนิน (rT3)	
2.6	การหลั่งไทรอยค์ฮอร์โมนของต่อมไทรอยค์ ผ่านขบวนการเอนโคไซโตซีส	13
	ฟาโกไซโตซีส และ โปรติโอไลซีส ของไทรอยค์เซลล์	
2.7	แกนควบคุมการหลั่งไทรอยค์ฮอร์โมน ประกอบด้วย ฮอร์โมนทีอาร์เอช	14
	จากไฮโปทาถามัส ฮอร์โมนทีเอสเอช จากต่อมใต้สมองส่วนหน้า และ	
	ระดับฮอร์โมน ที่ 3 ที่ 4 ในเลือด ที่ส่งสัญญาณกลับไปกระตุ้นหรือยับยั้ง	
	การหลั่งฮอร์ โมน	
2.8	สถิติผู้ป่วยโรคมะเร็งต่อมไทรอยค์ของโรงพยาบาลมหาราชนครเชียงใหม่ 4	15
	ปีย้อนหลัง (พ.ศ. 2547 – 2550)	
2.9	การสถายตัวของสารรังสีไอโอคีน- 131 ให้รังสีบีตาและรังสีแกมมา	20
	หลากหลายพลังงาน เพื่อกลายเป็นธาตุเสถียร ซีนอน-131	
2.10	แสดงอวัยวะต้นกำเนิดรังสี (source organ) และอวัยวะเป้าหมาย (target	23
•	organ) จากการใช้ สารเภสัชรังสี I-131 ใดโอดายน์ ^{99m} Tc คอลลอยด์	
	และ V. 122 ตาลายข้	

สารบาญภาพ (ต่อ)

รูป		หน้า
2.11	กราฟแสดงความสัมพันธ์ระหว่างกัมมันตภาพรังสีและเวลา	25
2.12	ภาพสแกนสองมิติค้านหน้าและค้านหลังแบบทั้งตัวของผู้ป่วยโรคมะเร็งต่อม	27
	ไทรอยค์ที่มีการแพร่กระจายของเซลล์มะเร็งไปที่ปอค	
2.13	ภาพสเปก (SPECT) ของปอด	27
2.14	ภาพสเปก (SPECT) และภาพซีที่ (CT) ปอดของผู้ป่วยโรคมะเร็งต่อม	28
	ไทรอยค์ที่มีการแพร่กระจายของเซลล์มะเร็งไปที่ปอค	
2.15	ภาพเพ็ต (PET) ของก้อนมะเร็งในช่วงเวลาต่าง ๆ กัน	28
2.16	แสดงความสัมพันธ์ระหว่างพลังงานและอัตราค่านับวัคที่ใช้แก้ค่ารังสี	30
	กระเจิง	
2.17	การดูดกลื่นพลังงานรังสีชนิดต่าง ๆ ในเนื้อเยื่อต้นกำเนิดของสาร	33
	กัมมันตรังสี่ I-123 C-11 และ C-14	
3.1	ผลการ ตรวจสแกนสองมิติแบบทั้งตัว ของหน่วยเวชศาสตร์นิวเกลียร์	37
	ภาควิชารังสีวิทยา คณะแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่	
3.2	ภาพสแกนสองมิติค้านหน้าและค้านหลังแบบทั้งตัวของผู้ป่วยโรคมะเร็งต่อม	37
	ไทรอยค์ที่มีการแพร่กระจายของเซลล์มะเร็งไปที่ปอคที่เวลา 7 วัน หลังจาก	
	ได้รับสารรังสีไอโอดี-131	
3.3	เครื่องตรวจสเปกแบบสองหัวตรวจ ยี่ห้อ Philips รุ่น SKYLIGHT	38
3.4	โปรแกรมประมวลผลภาพสแกนสองมิติ รุ่น Philips JETstream workspace	38
	เวอร์ชัน 3.0	
3.5	สารรังสีไอโอคีน-131 แบบ point source ปริมาณกัมมันตภาพรังสี 18.5	39
	เมกกะเบคเคอเรล	
3.6	Cylinder phantom	39
3.7	เครื่องคอมพิวเตอร์ส่วนบุคคล ยี่ห้อ Acer รุ่น aspire 4520 ผลิตโดยบริษัท	40
	Acer 8 n t s n e s e n v e	
3.8	โปรแกรมคอมพิวเตอร์ Microsoft office Excel เวอร์ชั่น 2003	45
3.9	หน้าหลักของโปรแกรมรังสึกณิต OLINDA / EXM ของ Vanderbilt	46
	Universityประเทศสหรัฐอเมริกา	

สารบาญภาพ (ต่อ)

รูป		หน้า
3.10	ภาพแสดง ROI ของปอด ต่อมไทรอยด์ และ background และการวัด	49
	ความยาวของ ROI ปอดและต่อมไทรอยด์	
3.11	ตำแหน่ง point source ใน cylinder phantom ปอด	52
3.12	ตำแหน่งหัววัครั้งสีที่วางบนขอบของ cylinder phantom ปอด	52
3.13	หน้าจอเครื่อง SPECT แสดงตำแหน่งของหัววัดรังสีในการวัด point	53
	source ใน cylinder phantom ปอด	
3.14	ภาพแสดง ROI ของ point source และ background ในการทดลองหาค่า C	53
	เพื่อปรับเทียบระบบ	
3.15	แสดงการป้อนข้อมูล ค่าร้อยละของการอัพเทคและค่า $T_{e\!f\!f}$ ของปอดลงใน	62
	โปรแกรมรังสึคณิต OLINDA	
3.16	แสดงค่าปริมาณรังสีดูดกลื่นที่ได้จากการคำนวณด้วยโปรแกรมรังสีคณิต	63
	OLINDA	
3.17	แสดงค่ามวลของอวัยวะภายในโปรแกรมรังสีคณิต OLINDA ที่สามารถ	63
	เปลี่ยนแปลงค่ามวลของอวัยวะต่าง ๆ ได้ตามความต้องการของผู้ใช้งาน	
4.1	กราฟแสดงความสัมพันธ์ระหว่างก่า S-value จากต่อมไทรอยค์ไปปอด จาก	70
	การกำนวณด้วยมือและโปรแกรมรังสึกณิต OLINDA โดยใช้ฐานข้อมูลรังสึ	
	ของหุ่นจำถองคริสตี้-แอกเคอร์แมน-สตาบิน($S_{(L\leftarrow Thy) ext{Cristy}}$)	
4.2	กราฟแสดงความสัมพันธ์ระหว่างค่า S-value จากปอดไปปอด จากการ	70
	คำนวณด้วยมือและโปรแกรมรังสีคณิต OLINDA โดยใช้ฐานข้อมูลรังสีของ	
	หุ่นจำลองคริสตี้-แอกเคอร์แมน-สตาบิน($S_{(L\leftarrow L) ext{Cristy}}$)	
4.3	กราฟแสดงความสัมพันธ์ระหว่างค่าปริมาณรังสีดูคกลื่นที่ปอด ($\overline{D}_{\!(L)}$) ที่	76
	คำนวณค้วยมือและโปรแกรมรังสีคณิต OLINDA โดยใช้ค่า S - value ของ	
	หุ่นจำลองคริสตี้ - แอกเคอร์แมน - สตาบิน	
4.4	กราฟแสดงความสัมพันธ์ระหว่างค่าปริมาณรังสีดูดกลืนที่ปอด ($\overline{D}_{\!(L)}$)	77
	คำนวณด้วยมือและโปรแกรมรังสีคณิต OLINDA โดยใช้ค่า S - value ของ	
	คนไทย	

สารบาญภาพ (ต่อ)

รูป		หน้า
4.5	กราฟแสดงกวามสัมพันธ์ระหว่าง ก่าปริมาณรังสีดูดกลืนที่ปอด ($\overline{D}_{\scriptscriptstyle (L)}$) ที่	79
	คำนวณด้วยมือเมื่อใช้ก่า S-value ของหุ่นจำลอง คริสตี้ – แอกเคอร์แมน–	
	สตาบินและของคนไทย	
4.6	กราฟแสดงความสัมพันธ์ระหว่าง ค่าปริมาณรังสีดูดกลื่นที่ปอด ($\overline{D}_{\!(L)}$) ที่	80
	คำนวณด้วยโปรแกรมรังสีคณิต OLINDA เมื่อใช้ค่า S-value ของหุ่น	

จำลองกริสตี้ - แอกเกอร์แมน - สตาบินและของคนไทย

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

อักษรย่อและสัญลักษณ์

A	activity (กัมมันตภาพรังสี)
A_0	administered activity
à (s)	cumulated activity ในอวัยวะต้นกำเนิดรังสี
Bq	Becquerel (เบคเคอเรล)
Bg	Background activity (กัมมันตภาพรังสีพื้นหลัง)
C Ci	Source calibration factor (ก่าปรับเทียบอัตรานับวัดกัมมันตรังสีต่อหน่วย ความแรงรังสี) Curie (ดูรี)
C_{LS}	Counts within the lower scatter window
cpm	count per minute
cps	count per second
cGy	Centigray (เซนติเกรย์)
cm	Centimeter (เซนติเมตร)
C_{pp}	Total counts within the photo peak window
СТ	computed tomography (เอกซเรย์คอมพิวเตอร์)
C_T	Counts true
C _{US}	Counts within the upper scatter window
C _A	count in anterior
C _P	count in posterior free serve of
D	absorbed dose (ปริมาณรังสีดูดกลืน)
d	day
DFs	dose conversion factor

2D	2 dimension
3D	3 dimension
DIT	diiodotyrosine
F _s	scaling factor
GBq	Gigabecquerel (กิกกะเบคเคอเรล)
Gy	Gray (เกรย์)
H ₂ O ₂	hydrogen peroxide
hr	hour (ชั่วโมง)
I-131	Iodine-131
IA	count rate in anterior
I _p	count rate in posterior
ICRP	International Commission on Radiological Protection
J/kg	Joule per kilogram
keV	Kiloelectron Volt (กิโลอิเล็กตรอนโวลต์)
KClO ₄	Potassium perchlorate
λ _{eff}	effective decay constant (ค่าคงที่การสลายตัวยังผล)
μ_{e}	effective linear attenuation coefficient (สัมประสิทธิ์การทอนเชิงเส้น)
m	mass (มวล)
MIT	monoiodotyrosine
MBq C	megabecquerel (เมกกะเบคเคอเรล)
mCi	millicurie (มิลลิกูรี)
MeV	Megaelectron Volt (เมกกะอิเล็กตรอนโวลต์)
mGy	milligray (ນິດລີເຄรຍ໌)
MIRD	Medical Internal Radiation Dosimetry

ຄ

MCNP4b	Monte Carlo Neutral Particle version 4b
PET	Positron emission tomography
ROI	region of interest
rT3	reversed triiodothyronine
S	source organ (อวัยวะต้นกำเนิดรังสี)
$S_{(T \leftarrow S)}$	the mean dose per unit cumulated activity ($S-value$)
SCN	Sulfer thiocyanate
sec	second (วินาที)
SPECT	Single photon emission computed tomography
SAF	Specific absorbed fraction
T	target organ (อวัยวะเป้าหมาย)
t	time(เวลา)
T ₄	thyroxine หรือ tetraiodothyronine
T ₃	triiodothyronine
T _b	biological half - life (ครึ่งชีวิตทางชีวภาพของสารกัมมันตรังสี)
TcO ₄	Technetium pertechnetate
Tc-99m	Technetium-99m
T _{eff}	effective half-life (ครึ่งชีวิตยังผล)
	physical half – life (ครึ่งชีวิตทางกายภาพของสารกัมมันตรังสี)
TRHight	thyrotropin releasing hormone
TSH	thyroid stimulating hormone
ТРО	thyroperoxidase
WBS	whole body scan
ϕ	absorbed fraction