ผลการทดลองและวิเคราะห์ผลการทดลอง

4.1 การศึกษาหาลักษณะเฉพาะของฟิล์มซิงก์ออกไซด์ 4.1.1 ฟิล์มบางซิงก์ออกไซด์ที่ได้จากการสปาร์ค

งานวิจัยนี้ได้ศึกษาและเตรียมฟิล์มบางซิงก์ออกไซด์ที่ได้จากการสปาร์คด้วยศักย์ไฟฟ้าแรง สูง โดยกำหนดเงื่อนไขในการสปาร์คคือจำนวนรอบในการสปาร์คที่ 10, 25, 50 และ 100 รอบลง บนกระจกนำไฟฟ้า ปรากฏว่าได้ฟิล์มบางที่ได้มีสีขาวเข้มและมีความหนาขึ้นเมื่อมีการสปาร์คที่ จำนวนรอบมากขึ้น แสดงดังรูป 4.1

รูปที่ 4.1 แสดงฟิล์มที่ได้จากการสปาร์คที่เงื่อนไข 10, 25, 50 และ 100 รอบ

จากนั้นนำฟิล์มบางซิงก์ออกไซด์ที่ได้จากการสปาร์คมาเผาที่อุณหภูมิ 400 องศาเซลเซียส นาน 6 ชั่วโมงโดยนำฟิล์มบางซิงก์ออกไซด์ตัวอย่างที่ได้จากการสปาร์คที่ 100 รอบ นำไปศึกษา ลักษณะพื้นผิวโดยใช้กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (FE-SEM) พบว่าอนุภาคซิงก์ ออกไซด์ที่ได้มีขนาดเล็กในระดับนาโนเมตร (ZnO nanoparticles, ZN) และมีการกระจายขนาด ของอนุภากที่มีเส้นผ่านศูนย์กลางอยู่ที่ประมาณ 30 – 40 นาโนเมตร แสดงดังรูป 4.2

50

ร**ูปที่ 4.2** แสดง (a) ลักษณะพื้นผิว และ (b) การกระจายของอนุภาค ของฟิล์มบางซิงก์ออกไซด์ ที่ได้ จากการสปาร์คจำนวน 100 รอบ เผาที่ 400 องศาเซลเซียส นาน 6 ชั่วโมง

และเมื่อนำฟิล์มบางซิงก์ออกไซด์ที่ได้จากการสปาร์คมาหาความหนาโดยการทำ cross section โดยใช้กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (FE-SEM) ได้ความหนาในแต่ละ เงื่อนไขโดยแสดงความหนาตัวอย่างที่ได้จากการสปาร์คที่จำนวน 100 รอบ แสดงดังรูปที่ 4.3(a) และเมื่อนำความหนาที่คำนวนได้จากรูป FE-SEM กับจำนวนรอบในการสปาร์คนำมาพล็อตกราฟ จะได้กราฟที่มีลักษณะเป็นเส้นตรง แสดงดังรูปที่ 4.3(b) และแสดงก่าความหนาต่างๆที่กำนวนได้ แสดงดังตาราง 4.1

ร**ูปที่ 4.3** แสดง (a) ความหนาของฟิล์มบางที่ได้จากการสปาร์คจำนวน 100 รอบ และ (b) กราฟ ความหนาของฟิล์มบางซิงก์ออกไซค์ต่อจำนวนรอบในการสปาร์ก

a	1	<u>a</u> °	~ °	ካ ኖ-ചካይ	1 0 9	ਾ ~ ਪੈ ਅ
ตารางท 4.	1 แสดงคาความหนาข	องฟลมบา	งซงกออเ	า เซคท เคจาก	การสบารคไเ	มแตละเงอน ไข

จำนวนรอบ	10	25	50	100
ความหนา(µm)	1.06±0.11	2.67±0.27	3.75±0.38	9.28±0.93

และเมื่อนำฟิล์มบางซิงก์ออกไซด์ที่ได้จากการสปาร์คมาทดสอบสมบัติทางโครงสร้างโดย การทำ X-Ray diffraction (XRD) เพื่อวิเคราะห์หาลักษณะเฉพาะของฟิล์มบางซิงก์ออกไซด์ แสดงดังรูป 4.4 เมื่อมาวิเคราะห์หามุมเลี้ยวเบนซึ่งเป็นลักษณะเฉพาะของสาร พบว่าในฟิล์มบางที่ ได้จากการสปาร์คพบพีคของซิงก์ออกไซด์ที่มุม 20 ต่างๆ คือ 31.8°, 34.4°, 36.3°, 47.5°, 56.6°, 62.9°, และ 67.8° ตรงกับระนาบ (hkl) คือ (100), (002), (101), (102), (110), (103), และ (112) ตามลำดับ แสดงว่าฟิล์มบางที่ได้จากการสปาร์คลวดซิงก์เป็นฟิล์มบางซิงก์ออกไซด์

รูปที่ 4.4 แสดงสเปกตรัมของฟิล์มบางซิงก์ออกไซด์ที่ได้จากการสปาร์กที่จำนวน 100 รอบ

4.1.2 ผงซิงก์ออกไซด์ (ZnO powder) และ ผงนาโนซิงก์ออกไซด์ (ZnO nanopowder)

ฟิล์มซิงก์ออกไซด์ที่ใช้ในการสกรีนทับลงบนฟิล์มบางซิงก์ออกไซด์ที่ได้จากการสปาร์คทำ เป็นสองชั้นในโฟโตอิเล็กโทรด ใช้ผงซิงก์ออกไซด์อยู่สองลักษณะคือ ผงซิงก์ออกไซด์ (ZnO powder, ZP) และ ผงนาโนซิงก์ออกไซด์ (ZnO nanopowder, ZNP) เมื่อนำไปวิเคราะห์หา ลักษณะพื้นผิวโดยใช้กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (FE-SEM) พบว่าลักษณะพื้นผิว ของฟิล์มซิงก์ออกไซด์ที่ได้ ขนาดของผงซิงก์ออกไซด์ (ZP) มีขนาดใหญ่กว่า ผงนาโนซิงก์ ออกไซด์ (ZNP) และ ซิงก์ออกไซด์ที่ได้จากการสปาร์ก (ZN) ตามลำดับ โดยมีการกระจายขนาด ของอนุภาคที่มีเส้นผ่านศูนย์กลางอยู่ที่ประมาณ 100 – 150 นาโนเมตร แสดงดังรูป 4.5 และขนาด ของผงนาโนซิงก์ออกไซด์ (ZNP) มีขนาดเส้นผ่านศูนย์กลางอยู่ที่ประมาณ 60 – 80 นาโนเมตร แสดงดังรูป 4.6

สรุปในการวิจัยใช้ซิงก์ออกไซด์ที่เตรียมได้อยู่สามลักษณะ คือ ฟิล์มบางซิงก์ออกไซด์ที่ได้ จากการสปาร์ค (ZN) ซึ่งมีขนาดอนุภาคซิงก์ออกไซด์เล็กที่สุดประมาณ 30 – 40 นาโนเมตร ต่อมา คือ ผงนาโนซิงก์ออกไซด์ (ZNP) 60 – 80 นาโนเมตร และ ผงซิงก์ออกไซด์ (ZP) 100 – 150 นาโน เมตร ตามลำดับ ซึ่งจะนำไปประยุกต์ใช้ในการทำเป็นสองชั้นในโฟโตอิเล็กโทรด ต่อไป

ร**ูปที่ 4.6** แสดง (a) ลักษณะพื้นผิว และ (b) การกระจายของอนุภาค ของผงนาโนซิงก์ออกไซด์ (ZNP)

เมื่อนำฟิล์มซิงก์ออกไซด์ที่ได้ไปแช่ในสีข้อมไวแสง Eosin Y พบว่าลักษณะการเกาะของสี ข้อมจะมีความเข้มต่างกันคือที่เป็นฟิล์มซิงก์ออกไซด์ที่ได้จากการสปาร์คจะมีสีที่เข้มกว่าผงนาโน ซิงก์ออกไซด์ และผงซิงก์ออกไซด์ ตามลำดับ เนื่องจากขนาดของอนุภาคซิงก์ออกไซด์ที่แตกต่าง กันทำให้การดูดซับโมเลกุลของสีข้อม Eosin Y มีค่าต่างกัน แสดงดังรูป 4.7

ร**ูปที่ 4.7** แสดงลักษณะการดูดซึมสีข้อม Eosin Y ของ (a) ฟิล์มซิงก์ออกไซด์ที่ได้จากการสปาร์ก (ZN) (b) ผงนาโนซิงก์ออกไซด์ (ZNP) และ (c) ผงซิงก์ออกไซด์ (ZP)

จากนั้นนำส่วนที่เป็นขั้วโฟโตอิเล็กโทรคไปทำการแช่ในสีย้อม Eosin Y แล้วนำมา ประกอบเซลล์เข้ากับขั้วเคาน์เตอร์อิเล็กโทรค ที่มีฟิล์มของแพลทินัมติคอยู่บนกระจกนำไฟฟ้า โคย มีชั้นของพาราฟิล์มกั้นอยู่ระหว่างขั้วทั้งสองแสคงคังรูปที่ 4.8

ร**ูปที่ 4.8** แสดง ส่วนประกอบของเซลล์เซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง (a) โฟโตอิเล็กโทรด (b) เกาน์เตอร์อิเล็กโทรด และ (c) เซลล์แสงอาทิตย์ที่ประกอบเสร็จแล้ว

4.2 การศึกษาผลของความหนาของฟิล์มบางซิงก์ออกไซด์ที่ได้จากการสปาร์คต่อ ประสิทธิภาพของเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง

ในการวิจัยนี้ได้ทำการเปลี่ยนความหนาของฟิล์มบางซิงก์ออกไซด์โดยการควบคุมจำนวน รอบในการสปาร์ก ที่จำนวน 10, 25, 50 และ 100 รอบ เมื่อนำเซลล์ที่สปาร์กไปวัดประสิทธิภาพ แสดงดังรูป 4.9 และแสดงค่าพารามิเตอร์ต่างๆ ดังตาราง 4.2 พบว่าประสิทธิภาพของเซลล์ แสงอาทิตย์ชนิดสีย้อมไวแสงมีค่ามากขึ้นเมื่อมีการสปาร์กในจำนวนรอบที่มากขึ้นแต่ก่า ประสิทธิภาพที่ได้ยังมีค่าน้อย อาจเป็นผลมาจากเซลล์ที่ทำจากการสปาร์กอย่างเดียวมีความหนาของ ฟิล์มซิงก์ออกไซด์ที่บางและไม่ก่อยมีความสม่ำเสมอทำให้ก่าความหนาแน่นของกระแสมีก่าน้อย โดยเฉพาะที่สปาร์ก 10 รอบ จะเห็นว่าเส้นกราฟก่อยข้างไม่สม่ำเสมอ ส่งผลให้ก่าประสิทธิภาพมีก่า ต่ำไปด้วย

ร**ูปที่ 4.9** แสดงลักษณะเฉพาะทางความหนาแน่นของกระแสไฟฟ้าต่อความต่างศักย์ของเซลล์ แสงอาทิตย์ที่ได้จากการสปาร์ค 10, 25, 50 และ 100 รอบ

Copyright[©] by Chiang Mai University All rights reserved

адтан				
จำนวนรอบใน การสปาร์ค	$V_{OC}\left(\mathrm{V} ight)$	J_{SC} (mA/cm ²)	FF	η (%)
10	0.48	0.19	0.43	0.04
25	0.48	0.35	0.60	0.10
50	0.50	1.15	0.60	0.34
100	0.51	1.65	0.60	0.50

ตารางที่ 4.2 แสดงค่าพารามิเตอร์ทางไฟฟ้าของเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสงที่ได้จากการ สปาร์ค

4.3 การศึกษาผลของความหนาของฟิล์มบางซิงก์ออกไซด์ที่ได้จากการสปาร์คในการทำ เป็นสองชั้นในโฟโตอิเล็กโทรดต่อประสิทธิภาพของเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง

การศึกษาผลของความหนาของชั้นฟิล์มบางซิงก์ออกไซด์ที่ได้จากการสปาร์กในการทำเป็น สองชั้นในโฟโตอิเล็กโทรดต่อประสิทธิภาพของเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง จำเป็นต้องมี ความหนาที่เหมาะสมเพื่อที่จะทำให้เซลล์แสงอาทิตย์ชนิดสีย้อมไวแสงมีประสิทธิภาพที่ดีที่สุด ใน การวิจัยนี้ได้ทำการเปลี่ยนความหนาของฟิล์มบางซิงก์ออกไซด์โดยการควบคุมจำนวนรอบใน การสปาร์ก ที่จำนวน 10, 25, 50 และ 100 รอบ แล้วสกรีนทับด้วยผงซิงก์ออกไซด์ (ZP) และ ผงนา-โนซิงก์ออกไซด์ (ZNP) เพื่อทำเป็นสองชั้นในโฟโตอิเล็กโทรด เมื่อนำเซลล์แสงอาทิตย์ที่ประกอบ เสร็จแล้วนำไปวัดประสิทธิภาพการเปลี่ยนพลังงานแสงเป็นพลังงานไฟฟ้า โดยวัดลักษณะเฉพาะ ทางความหนาแน่นของกระแสไฟฟ้าต่อความต่างศักย์ แสดงดังรูป 4.10

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

ร**ูปที่ 4.10** แสดงลักษณะเฉพาะทางความหนาแน่นของกระแสไฟฟ้าต่อความต่างศักย์ของ (a) ผง ซิงก์ออกไซด์ (ZP) และ (b) ผงนาโนซิงก์ออกไซด์ (ZNP) เมื่อทำเป็นสองชั้นในโฟโตอิเล็กโทรด

เมื่อหาก่าพารามิเตอร์ทางไฟฟ้าจากรูป 4.10 สามารถหาก่าต่างๆได้เช่น ก่าความหนาแน่น กระแสไฟฟ้าลัดวงจร (J_{SC}) ก่ากวามต่างศักย์ไฟฟ้าวงจรเปิด (V_{OC}) ก่าฟิลแฟกเตอร์ (FF) ก่า ประสิทธิภาพการเปลี่ยนพลังงานแสงเป็นพลังงานไฟฟ้า (η(%)) ความต้านทานของเซลล์ แสงอาทิตย์ (R_s) และ กวามต้านทานที่เกิดจากการสูญเสียภายในเซลล์ (R_{sh}) แสดงดังตารางที่ 4.3

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

Upper- layer	sparking cycles (cycles)	Sample label	Thickness (µm)	J_{SC} (mA/cm ²)	V _{OC} (V)	FF	η (%)	$egin{array}{c} R_{sh} \ (\Omega) \end{array}$	R_s (Ω)
	0	ZP	0	2.12	0.54	0.59	0.68	5545	68
ZnO	10	10ZN/ZP	1.06±0.11	2.89	0.52	0.50	0.75	2500	62
powder	25	25ZN/ZP	2.67±0.27	3.48	0.51	0.46	0.81	1112	63
	50	50ZN/ZP	3.75±0.38	4.71	0.51	0.46	1.11	778	50
	100	100ZN/ZP	9.28±0.93	4.45	0.51	0.47	1.07	630	49
	0	ZNP	0	3.66	0.48	0.49	0.86	1230	50
7n0	10	10ZN/ZNP	1.06±0.11	4.07	0.48	0.47	0.92	1230	52
nano	25	25ZN/ZNP	2.67±0.27	4.91	0.47	0.42	0.97	684	50
powder	50	50ZN/ZNP	3.75±0.38	5.59	0.47	0.43	1.14	536	44
	100	100ZN/ZNP	9.28±0.93	5.17	0.49	0.45	1.13	640	45

ตารางที่ 4.3 แสดงค่าพารามิเตอร์ทางไฟฟ้าของเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสงเมื่อทำเป็นสอง ชั้นในโฟโตอิเล็กโทรด

จากตาราง 4.3 จะเห็นว่าเมื่อจำนวนรอบในการสปาร์คมีค่าเพิ่มขึ้นหรือความหนาของฟิล์ม ซิงก์ออกไซค์ที่ได้จากการสปาร์คมีค่าเพิ่มขึ้น ค่าประสิทธิภาพการเปลี่ยนพลังงานแสงเป็นพลังงาน ไฟฟ้าของเซลล์แสงอาทิตย์จะมีค่าเพิ่มขึ้นด้วย จาก 0.68% ไปเป็น 0.75%, 0.81% และ 1.11% ของผงซิงก์ออกไซค์ (ZP) และ 0.86% ไปเป็น 0.92%, 0.97%, 1.14% ของผงนาโนซิงก์ออกไซค์ (ZNP) ภายใต้การสปาร์คที่จำนวนรอบ 10, 25 และ 50 รอบ ตามลำคับ แสดงการเปรียบเทียบ ประสิทธิภาพระหว่างผงซิงก์ออกไซค์ (ZP) และผงนาโนซิงก์ออกไซค์ (ZNP) แสดงคังรูป 4.11

ข้อสังเกต จะเห็นว่าที่ทำการสปาร์คจำนวน 50 รอบ มีประสิทธิภาพสูงที่สุด แต่ในการ ทดลองเราได้กำหนดความหนาของฟิล์มทั้งหมดให้คงที่ ซึ่งความหนาของชั้นซิงก์ออกไซด์ทั้งหมด เป็นปัจจัยที่สำคัญต่อประสิทธิภาพของเซลล์แสงอาทิตย์ ดังนั้นการเปลี่ยนความหนาของฟิล์มผง ซิงก์ออกไซด์ทั้งหมดที่ใช้สกรีนโดยใช้ความหนาของชั้นซิงก์ออกไซด์ที่เตรียมจากการสปาร์คคงที่ ที่ 50 รอบ น่าจะเป็นปัจจัยหนึ่งที่ส่งผลต่อการเปลี่ยนแปลงประสิทธิภาพของเซลล์แสงอาทิตย์ จึง เป็นประเด็นที่น่าสนใจศึกษาต่อไปในอนาคต

ร**ูปที่ 4.11** แสดงการเปรียบเทียบค่าประสิทธิภาพต่อจำนวนรอบในการสปาร์ค ระหว่างผงซิงก์ ออกไซค์ (ZP) และผงนาโนซิงก์ออกไซค์ (ZNP)

การเพิ่มขึ้นของประสิทธิภาพส่วนใหญ่เป็นผลมาจากการเพิ่มขึ้นของความหนาแน่น กระแส (J_{SC}) ที่จะมีค่าเพิ่มขึ้นเมื่อจำนวนรอบในการสปาร์คเพิ่มขึ้น และลดลงเมื่อจำนวนรอบที่ใช้ ในการสปาร์คมีการสปาร์คที่ 100 รอบ แสดงคังรูป 4.12

ร**ูปที่ 4.12** แสดงการเปรียบเทียบค่าความหนาแน่นกระแส (J_{SC}) ต่อจำนวนรอบในการสปาร์ค ระหว่างผงซิงก์ออกไซด์ (ZP) และผงนาโนซิงก์ออกไซด์ (ZNP) เมื่อดูก่าความต่างศักย์ของวงจรเปิด (V_{oc}) และค่า FF พบว่า เซลล์แสงอาทิตย์ชนิดสีย้อม ไวแสงที่ใช้ผงซิงก์ออกไซด์ (ZP) ในการทำเป็นสองชั้นในโฟโตอิเล็กโทรดจะมีค่า V_{oc} และ FF มากกว่า เซลล์แสงอาทิตย์ชนิดสีย้อมไวแสงที่ใช้ผงนาโนซิงก์ออกไซด์ (ZNP) แสดงดังรูป 4.1 จาก F. E. Gálvez [31] สามารถอธิบายโดยการที่ก่าการกระเจิงของแสงมีค่าเพิ่มขึ้นก่าความต่างศักย์ ของวงจรเปิด (V_{oc}) ก็จะมีก่าสูงขึ้นตาม โดยเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสงที่ใช้ผงซิงก์ ออกไซด์ (ZP) มีก่าการกระเจิงของแสงที่มากกว่าเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสงที่ใช้ผงนาโน ซิงก์ออกไซด์ (ZNP) จึงมีก่าความต่างศักย์ของวงจรเปิด (V_{oc}) และก่า FF มากกว่า

จากรูป 4.10 เราสามารกำนวณหาก่ากวามต้ำนทานของเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง (Series resistance, *R_s*) และก่ากวามต้ำนทานที่เกิดจากการสุญเสียภายในเซลล์ (Shunt resistance, *R_{sh}*) ได้จากกราฟประสิทธิภาพโดยหากวามชันของกราฟแสดงก่าดังตาราง 4.3 เมื่อนำ ก่ามาเปรียบเทียบกันระหว่างผงซิงก์ออกไซด์ (ZP) และผงนาโนซิงก์ออกไซด์ (ZNP) แสดงดังรูป 4.14 พบว่าก่ากวามต้านทานของเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง (*R_s*) และก่ากวามต้านทานที่ เกิดจากการสุญเสียภายในเซลล์ (*R_{sh}*) ของผงซิงก์ออกไซด์ (ZP) จะมีก่ามากกว่าผงนาโนซิงก์ ออกไซด์ (ZNP) เมื่อทำเป็นสองชั้นในโฟโตอิเล็กโทรด เกิดจากการกระเจิงของอิเล็กตรอนภายใน เซลล์แสงอาทิตย์ โดยอนุภากซิงก์ออกไซด์ที่มีขนาดเล็กจะมีก่าการกระเจิงของอิเล็กตรอนจะมีก่า มากกว่าซิงก์ออกไซด์ที่มีอนุภาคขนาดใหญ่

61

ร**ูปที่ 4.14** แสดงการเปรียบเทียบระหว่างผงซิงก์ออกไซด์ (ZP) และผงนาโนซิงก์ออกไซด์ (ZNP) ของค่า (a) Series resistance, *R_s* และ (b) Shunt resistance, *R_{sh}* ต่อจำนวนรอบในการสปาร์ค

อย่างไรก็ตามค่าประสิทธิภาพการเปลี่ยนพลังงานแสงเป็นพลังงานไฟฟ้าจะมีค่าลคลงเมื่อมี การสปาร์กที่จำนวนรอบ 100 รอบ ของทั้งผงซิงก์ออกไซด์ (ZP) และผงนาโนซิงก์ออกไซด์ (ZNP) ที่ใช้ในการสกรีนทับฟิล์มบางที่ได้จากการสปาร์ก โดยการศึกษาการเปลี่ยนแปลงพลังงานขึ้นอยู่กับ จำนวนรอบในการสปาร์ก ซึ่งสามารถจะอธิบายได้ในสมบัติทางแสงและสมบัติทางไฟฟ้าของเซลล์ แสงอาทิตย์ชนิดสีย้อมไวแสง โดยการใช้การวัดการสะท้อนแสงของเซลล์แสงอาทิตย์ (reflectance spectroscopy) และการศึกษาความด้านทานภายในเซลล์ (EIS)

4.4 ผลของประสิทธิภาพของเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสงในการทำเป็นสอง ชั้นในโฟโตอิเล็กโทรด โดยใช้การศึกษาสมบัติทางแสง (Optical Properties)

สำหรับการศึกษาสมบัติทางแสงโดยการวัดการสะท้อนแสงในโฟโตอิเล็กโทรดของการทำ เป็นสองชั้นของซิงก์ออกไซด์ โดยการใช้ UV-vis spectroscopy ที่อยู่ในขอบเขตของความยาว กลื่น 400 – 750 นาโนเมตร แสดงดังรูป 4.15 แสดงการสะท้อนแสงของซิงก์ออกไซด์ที่ทำเป็นสอง ชั้นในโฟโตอิเล็กโทรดหลังจากที่แช่ในสีย้อม (Eosin Y) แล้ว โดยใช้ผงซิงก์ออกไซด์ (ZP) และผง นาโนซิงก์ออกไซด์ (ZNP) ในการสกรีนทับ

ร**ูปที่ 4.15** แสดงสเปกตรัมการสะท้อนแสงของ (a) ผงซิงก์ออกไซด์ (ZP) และ (b) ผงนาโนซิงก์ ออกไซด์ (ZNP) เมื่อใช้สกรีนทับบนฟิล์มบางซิงก์ออกไซด์ที่ได้จากการสปาร์กเพื่อทำเป็นสอง ชั้นในโฟโตอิเล็กโทรด

พบว่าการสะท้อนแสงของของตัวอย่างที่ใช้ผงซิงก์ออกไซด์ในการสกรีนทับฟิล์มบางซิงก์ ออกไซด์จากการสปาร์ก ZN/ZP มีการเปลี่ยนแปลงอย่างเห็นได้ชัดเมื่อชั้นของฟิล์มบางที่ได้จาก การสปาร์กมีการเปลี่ยนแปลง เมื่อพิจารณาหาค่าเปอร์เซ็นต์การสะท้อนของแสง (%R) ที่ความยาว กลื่น 550 นาโนเมตรเปรียบเทียบกับจำนวนรอบของการสปาร์ก พบว่าก่าการสะท้อนจะมีก่าลคลง เมื่อมีการสปาร์กที่จำนวนรอบมากขึ้นและจะเริ่มกงที่เมื่อมีการสปาร์กที่จำนวน 100 รอบแสดงดัง รูป 4.16

ร**ูปที่ 4.16** แสดงก่าการสะท้อนแสงที่กวามยาวกลื่น 550 นาโนเมตร ต่อจำนวนรอบในการสปาร์ก ของผงซิงก์ออกไซด์ (ZP) ในการทำเป็นสองชั้นในโฟโตอิเล็กโทรด

ส่วนการสะท้อนแสงของของตัวอย่างที่ใช้ผงนาโนซิงก์ออกไซด์ในการสกรีนทับฟิล์มบางซิงก์ ออกไซด์จากการสปาร์ก ZN/ZNP พบว่าสเปกตรัมที่ได้ไม่ก่อยเปลี่ยนแปลงเมื่อฟิล์มบางซิงก์ ออกไซด์จากการสปาร์กมีการเปลี่ยนแปลง โดยเป็นผลของความแตกต่างของอนุภาคซิงก์ออกไซด์ ซึ่งอนุภาคซิงก์ออกไซด์ที่ได้จากการสปาร์ก (ZN) มีขนาดต่างจากผงซิงก์ออกไซด์ (ZP) ทำให้การ สะท้อนของแสงมีแตกต่างกัน ส่วนอนุภาคซิงก์ออกไซด์ที่ได้จากการสปาร์ก (ZN) มีขนาด ใกล้เกียงกับผงนาโนซิงก์ออกไซด์ (ZNP) ทำให้สเปกตรัมการสะท้อนของแสงมีค่าใกล้เกียงกัน หรือไม่ก่อยเปลี่ยนแปลง

ในการวัดการสะท้อนของแสงในทุกตัวอย่างได้ยิ่งแสงผ่านด้านกระจกนำไฟฟ้า (FTO) แล้วผ่านไปยังฟิล์มซิงก์ออกไซด์ โดยทั่วไปแสงจะเกิดการกระเจิงภายในขั้วโฟโตอิเล็กโทรด โดย ก่าการกระเจิงของแสงสามารถแปลงค่าได้จาก สเปกตรัมการสะท้อนของแสง สามารถเขียนเป็น สมการได้ ดังสมการ 4.1

$$S = 1 - (R + T)$$

โดย

S คือ สัมประสิทธิ์การกระเจิงของแสง R คือ สัมประสิทธิ์การสะท้อนของแสง T คือ สัมประสิทธิ์การทะลุผ่านของแสง (4.1)

อข่างไรก็ตามความหนาของของฟิล์มซิงก์ออกไซค์ในโฟโตอิเล็กโทรคทั้งหมดถูกควบคุม ความหนาด้วยความหนาของขั้นเทปหรือความหนาคงที่ เพราะฉะนั้นค่าสัมประสิทธิ์การทะลุผ่าน (T) จึงไม่เปลี่ยนแปลง ให้การทะลุผ่านของแสงเป็นค่าคงที่ ดังนั้นส่วนของการกระเจิงของแสงจะ สัมพันธ์กับการสะท้อนของแสง ตามสมการ 4.1 โดยการกระเจิงของแสงแสดงถึงการดูคซับแสง ภายในเซลล์แสงอาทิตย์ ถ้าการกระเจิงของแสงภายในเซลล์มีค่ามาก การดูคซับแสงก็จะมีค่ามากขึ้น ทำให้ประสิทธิภาพมีค่าเพิ่มขึ้น [5, 19, 20] จากรูป 4.15 (a) ความแตกต่างระหว่างเซลล์ที่ไม่ได้ สปาร์คหรือใช้ผงซิงก์ออกไซค์อย่างเดียวและการทำเป็นสองชั้นในโฟโตอิเล็กโทรค แสดงให้เห็น ว่าฟิล์มที่ทำเป็นสองชั้นในโฟโตอิเล็กโทรคมีค่าการกระเจิงของแสงสูงกว่าฟิล์มที่ทำเป็นชั้นเดียว ของผงซิงก์ออกไซค์ (ZP) และการสะท้อนของแสงมีค่าลคลงเมื่อความหนาของชั้นฟิล์มบางซิงก์ ออกไซค์ที่ได้จากการสปาร์คมีค่าเพิ่มขึ้น อย่างไรก็ตามเมื่อชั้นที่ใช้ในการสกรีนทับเปลี่ยนมาเป็นผง นาโนซิงก์ออกไซค์ (ZNP) ค่าการสะท้อนของแสงภายในโฟโตอิเล็กโทรคไม่ค่อยเปลี่ยนแปลงเมื่อ เปลี่ยนความหนาของฟิล์มบางซิงก์ออกไซค์ที่ได้จากการสปาร์ก ซึ่งจะสามารถอธิบายได้ว่าขนาด ของอนุภาคซิงก์ออกไซด์ที่ได้จากการสปาร์ก (ZN) มีขนาดใกล้เกียงกับผงนาโนซิงก์ออกไซค์ (ZNP) ทำให้การสะท้อนของแสงไม่ค่อยเปลี่ยนแปลง

4.5 ผลของประสิทธิภาพของเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสงในการทำเป็นสอง ชั้นในโฟโตอิเล็กโทรด โดยใช้การศึกษาสมบัติทางไฟฟ้า (Electrical Properties)

สำหรับการศึกษาสมบัติทางไฟฟ้า อิมพิแดนซ์ทางเคมีไฟฟ้าสเปกโทรสโคปี (EIS) ใช้ใน การศึกษากระบวนการการเคลื่อนไหวของมวลภายในทางเคมีไฟฟ้า เช่นการเคลื่อนที่ของ อิเล็กตรอน (Electron transfer) การคืนกลับของประจุอิเล็กตรอน (Charge recombination) หรือ ช่วงเวลาของอิเล็กตรอน (Electron life time) การวิเคราะห์อิมพิแดนซ์ (EIS) ทำในช่วง ความถิ่ 1 ถึง 10000 Hz กับไฟฟ้ากระแสสลับ 20 mV ที่ 100 mW/cm² ของความเข้มแสง

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

โดยข้อมูลที่ได้จากการวิเคราะห์อิมพิแดนซ์ (EIS) โดยสามารถเขียนกราฟได้อยู่สองแบบ คือ Nyquist และ Bode plots แสดงดังรูป 4.17 และ 4.18 เมื่อหาค่าพารามิเตอร์ทางไฟฟ้าจากรูป 4.17, 4.18 สามารถหาค่าต่างๆได้เช่น ความต้านทานของกระจกนำไฟฟ้า (R_I) ความต้านทานของ การนำประจุ (Charge transfer resistance, R_{CT}) ช่วงเวลาของอิเล็กตรอน (Electron life time, τ) แสดงดังตารางที่ 4.4

ร**ูปที่ 4.17** แสดงกราฟ Nyquist plots ของ (a) ผงซิงก์ออกไซด์ (ZP) และ (b) ผงนาโนซิงก์ ออกไซด์ (ZNP) เมื่อใช้สกรีนทับฟิล์มบางซิงก์ออกไซด์จากการสปาร์คทำเป็นสองชั้นในโฟโต

อิเล็กโทรด

ลิขสิทธิมหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

ร**ูปที่ 4.18** แสดงกราฟ Bode plots ของ (a) ผงซิงก์ออกไซด์ (ZP) และ (b) ผงนาโนซิงก์ออกไซด์ (ZNP) เมื่อใช้สกรีนทับบนฟิล์มบางซิงก์ออกไซด์ที่ได้จากการสปาร์คเพื่อทำเป็นสองชั้นในโฟโต อิเล็กโทรด

ตารางที่ 4.4 แสดงค่าพารามิเตอร์อิมพิแดนซ์ทางเกมีไฟฟ้าสเปกโทรสโกปี (EIS) ของเซลล์
แสงอาทิตย์ชนิคสีย้อมไวแสงเมื่อทำเป็นสองชั้นในโฟโตอิเล็กโทรค

การสกรีน	จำนวนรอบ					
ทำเป็นสอง	ในการ	$R_1(\Omega)$	$R_{CT}(\Omega)$	f(Hz)	ω (rad)	τ (ms)
ชั้น	สปาร์ค					
	0	7.5	120.9	140	879.6	1.1
	10	14.5	46.6	46	289.1	3.5
ZnO	25	8.5	33.0	80	502.6	2.0
powder	50	10.8	21.7	52	326.7	3.1
•	100	13.6	24.4	40	251.3	4.0
ight	0	16.7	40.2	28	175.9	5.7
7-0 -	10	16.0	30.7	24	150.8	6.6
ZnO nano powder	25	14.6	27.3	20	125.7	8.0
	50	20.3	21.4	16	100.5	9.9
	100	15.9	22.7	22	138.2	7.2

โดยทั่วไปแล้วกราฟ Nyquist plots จะแสดงเป็นรูปครึ่งวงกลมอยู่สามวงภายใต้ช่วงความถี่สูง ปานกลางและต่ำ อย่างไรก็ตามในการวิจัยนี้ จะศึกษาเพียงครึ่งวงกลมเดียว คือ ช่วงความถี่ปานกลาง ซึ่งความแตกต่างของครึ่งวงกลมจะขึ้นอยู่กับโครงสร้างภายในของโฟโตอิเล็กโทรด จากรูป 4.17 (a) และ (b) ขนาดของครึ่งวงกลมจะมีขนาดลดลงเมื่อความหนาของฟิล์มบางซิงก์ออกไซด์จาก การสปาร์คมีค่าเพิ่มขึ้น กราฟ Nyquist plots ที่มีขนาดเล็กลง บอกให้รู้ถึงความต้านทานของการนำ ประจุ (Charge transfer resistance, *R_{CT}*) รวมถึงรอยต่อระหว่างขั้วโฟโตอิเล็กโทรดกับอิเล็กโทร ไลต์ มีค่าความต้านทานลดลง แสดงดังรูป 4.19

ร**ูปที่ 4.19** แสดงการเปรียบเทียบค่าความค้ำนทานของการนำประจุต่อจำนวนรอบในการสปาร์ค ระหว่างผงซิงก์ออกไซด์ (ZP) และผงนาโนซิงก์ออกไซด์ (ZNP)

และพบว่าเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสงที่ทำการสปาร์กที่จำนวน 50 รอบของทั้งผงซิงก์ ออกไซด์ (ZP) และผงนาโนซิงก์ออกไซด์ (ZNP) ที่ใช้ทำเป็นสองชั้นในโฟโตอิเล็กโทรด มีก่าความ ด้านทานของการนำประจุ (Charge transfer resistance, *R_{CT}*) น้อยที่สุด ทำให้ก่าประสิทธิภาพ การเปลี่ยนแปลงพลังงานแสงเป็นพลังงานไฟฟ้ามีก่าสูงขึ้นด้วย

กราฟ Bode plots สามารถอธิบายได้ถึงช่วงเวลาของอิเล็กตรอน (Electron life time, τ) ซึ่งสามารถเขียนให้อยู่ในรูปของความถี่หรือความถี่เชิงมุม สามารถเขียนได้ดังสมการ 4.2 [21, 22]

$$=\frac{1}{\omega_{\max}}=\frac{1}{2\pi f_{\max}}$$

(4.2)

τ คือ ช่วงเวลาของอิเล็กตรอน (Electron life time)
 f_{max} คือ ความถี่สูงสุดที่ทำให้อิเล็กตรอนเริ่มเคลื่อนที่
 ω_{max} คือ ความถี่เชิงมุมสูงสุดที่ทำให้อิเล็กตรอนเริ่มเคลื่อนที่

โดย

จากรูป 4.18 (a) และ (b) แสคงให้เห็นพึกของกวามถี่ที่จุดต่างๆ ของโฟโตอิเล็กโทรด ทั้ง ผงซิงก์ออกไซด์ (ZP) และผงนาโนซิงก์ออกไซด์ (ZNP) ที่ใช้ในการสกรีนทับ พบว่าที่จุดสูงสุด (*f_{max}*) ของกราฟจะเลื่อนมาทางกวามถี่ที่มีก่าต่ำลงเปรียบเทียบกับเซลล์อ้างอิง แสดงว่าอิเล็กตรอน จะเกลื่อนที่ผ่านขั้วโฟโตอิเล็กโทรดได้ช้าลงเพราะการกระเจิงของอิเล็กตรอนภายในขั้วโฟโตอิเล็ก โทรด ทำให้ก่าช่วงเวลาของอิเล็กตรอน (Electron life time) มีก่าสูงขึ้น แสดงดังรูป 4.20

ร**ูปที่ 4.20** แสดงการเปรียบเทียบค่าช่วงเวลาของอิเล็กตรอน (Electron life time) ต่อจำนวนรอบ ในการสปาร์ค ระหว่างผงซิงก์ออกไซด์ (ZP) และผงนาโนซิงก์ออกไซด์ (ZNP)

การเพิ่มขึ้นของค่าช่วงเวลาของอิเล็กตรอน (Electron life time) แสดงให้เห็นว่าการเคลื่อนที่ของ อิเล็กตรอนภายในโฟโตอิเล็กโทรดของเซลล์แสงอาทิตย์จะเคลื่อนที่ผ่านได้ช้าลง [23] 4.6 วิเคราะห์การเพิ่มขึ้นของประสิทธิภาพของเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง ที่ทำ เป็นสองชั้นในโฟโตอิเล็กโทรด

จากการทดลอง การเพิ่มขึ้นของประสิทธิภาพของเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง ขึ้นอยู่กับผลของการดูดซับโมเลกุลของสีย้อม การกระเงิงของแสง และ การกระเงิงของอิเล็กตรอน ภายในโฟโตอิเล็กโทรด จากผลของสมบัติทางแสงและสมบัติทางไฟฟ้า สามารถอธิบายได้ว่าการ เพิ่มขึ้นของประสิทธิภาพของเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง เป็นผลมาจากความหนาที่แตกต่าง กันของฟิล์มบางซิงก์ออกไซด์ที่ได้จากการสปาร์คและขนาดของอนุภาคซิงก์ออกไซด์ที่แตกต่างกัน สามารถอธิบายได้ดังนี้

การเพิ่มขึ้นของความหนาแน่นของกระแส (*J*_{SC}) อธิบายได้โดยการดูดซับโมเลกุลของสี ย้อมของซิงก์ออกไซด์ ซึ่งเมื่อเปรียบเทียบเซลล์อ้างอิง ผงนาโนซิงก์ออกไซด์ (ZNP) มีขนาดของ อนุภาคซิงก์ออกไซด์ที่เล็กกว่าผงซิงก์ออกไซด์ (ZP) ดังนั้นพื้นที่ผิวของผงนาโนซิงก์ออกไซด์จะมี พื้นที่ผิวมากกว่าผงซิงก์ออกไซด์ ทำให้ความสามารถในการดูดซึมโมเลกุลของสีย้อมได้มากกว่า ดังนั้นเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสงที่ประกอบไปด้วยผงนาโนซิงก์ออกไซด์ในโฟโตอิเล็ก โทรดสามารถทำให้การเปลี่ยนพลังงานแสงเป็นพลังงานไฟฟ้ามีก่าสูงกว่าเซลล์แสงอาทิตย์ที่ทำด้วย ผงซิงก์ออกไซด์ (ZP) โดยผลการทดลองสามารถยืนยันได้จากค่าความหนาแน่นของกระแสของผง นาโนซิงก์ออกไซด์ที่มีค่าสูงกว่าผงซิงก์ออกไซด์ ดังตาราง 4.3

สมบัติทางแสงเราสามารถอธิบายการเดินทางของแสงทั้งการสะท้อน การกระเจิงของแสง และ การทะลุผ่านของแสง ภายในฟิล์มซิงก์ออกไซด์ของขั้วโฟโตอิเล็กโทรคสามารถแสดงได้ดังรูป 4.21

จากรูป 4.21 (a) และ (b) โดยทั่วไปความหนาแน่นของกระแส (*J_{SC}*) จะขึ้นอยู่กับความ หนาแน่นของจำนวนโฟตอนที่ผ่านกระจกนำไฟฟ้า (FTO) สู่ชั้นของซิงก์ออกไซด์ ดังนั้นเพื่อ ด้องการเพิ่มความหนาแน่นของจำนวนโฟตอน จึงต้องลดการสะท้อนของแสง[5, 24] และเพิ่มการ กระเจิงของแสงภายในเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง[5, 19] นอกจากนี้การกระเจิงของแสงยัง ขึ้นอยู่กับขนาดของอนุภาคซิงก์ออกไซด์และความยาวคลื่นของแสง ดังนั้นเราสามารถเพิ่มการ กระเจิงของแสงภายในโฟโตอิเล็กโทรคโดยการทำเป็นสองชั้นในโฟโตอิเล็กโทรคโดยการใช้ อนุภาคซิงก์ออกไซด์ที่มีขนาดที่ต่างกัน เพราะรอยต่อระหว่างอนุภาคซิงก์ออกไซด์ที่มีขนาดเล็กกับ ขนาดที่ใหญ่กว่าจะช่วยเพิ่มการกระเจิงขิงแสงภายในโฟโตอิเล็กโทรค[5] ซึ่งสามารถอธิบายได้ใน การทดลองที่เซลล์แสงอาทิตย์ที่มีค่าการสะท้อนของแสงที่ต่ำจะมีการกระเจิงของแสงที่สูง ทำให้ การเปลี่ยนแปลงพลังงานแสงเป็นพลังงานไฟฟ้ามีค่ามากขึ้น

สุดท้ายสามารถอธิบายถึงความหนาและขนาดของอนุภาคซิงก์ออกไซด์ที่มีขนาดเล็กของ ฟิล์มซิงก์ออกไซด์ที่ได้จากการสปาร์ค จะเป็นสิ่งที่ทำให้การเดินทางของอิเล็กตรอนภายในขั้วโฟโต อิเล็กโทรดเคลื่อนที่ผ่านได้ช้าลง สามารถอธิบายการเดินทางของอิเล็กตรอนภายในโฟโต อิเล็กโทรดได้ แสดงดังรูป 4.22 เรียกว่าการกระเจิงของอิเล็กตรอน (Electron scattering)

ร**ูปที่ 4.22** แสดงการเดินทางของอิเล็กตรอนภายในขั้วโฟโตอิเล็กโทรดเมื่อฟิล์มซิงก์ออกไซด์ที่ได้ จากการสปาร์กมีความหนา (a) น้อย (b) มาก

จากรูป 4.22 (a) และ (b) แสดงให้เห็นถึงแบบจำลองการเดินทางของอิเล็กตรอนภายใน ขั้วโฟโตอิเล็กโทรด การกระเจิงของอิเล็กตรอนภายในโฟโตอิเล็กโทรดจะส่งผลถึงการเปลี่ยนแปลง ประสิทธิภาพของเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง โดยการที่จะทำให้ก่าความหนาแน่นกระแส (J_{SC}) มีค่าลดลงเนื่องจากการเคลื่อนที่ของอิเล็กตรอนมีค่าช้าลง และส่งผลให้เกิดการไหลย้อนกลับ ของอิเล็กตรอน โดยสามารถอธิบายได้ว่าการกระเจิงของอิเล็กตรอนมีค่าสูงเกิดจากอนุภาคซิงก์ ออกไซด์มีขนาดเล็กและมีความหนามาก นอกจากนี้ความสามารถการกระเจิงของอิเล็กตรอน สามารถดูได้จากสมบัติทางไฟฟ้า เช่น ความด้านทานที่เกิดจากการสุญเสียภายในเซลล์ (Shunt resistance, R_{sh}) ค่าช่วงเวลาของอิเล็กตรอน (Electron life time, τ)

อย่างไรก็ตาม การที่จะเพิ่มการกระเจิงของแสงโดยการเพิ่มความหนาของฟิล์มที่ได้จาก การสปาร์คในโฟโตอิเล็กโทรด แต่ผลที่ได้คือค่าประสิทธิภาของเซลล์แสงอาทิตย์ก็ยังมีค่าต่ำอยู่ เนื่องมาจากค่าการกระเจิงของอิเล็กตรอนที่มีค่าสูงขึ้นเมื่อฟิล์มซิงก์ออกไซด์ที่ได้จากการสปาร์คมี ความหนาเพิ่มขึ้น โดยผลของการกระเจิงของแสงและการกระเจิงของอิเล็กตรอน ทั้งสองอย่างมีผล ต่อประสิทธิภาพของเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง ดังนั้นการรวมกันของการกระเจิงของแสง และการกระเจิงของอิเล็กตรอนควรศึกษาเพื่อหาค่าสูงสุดที่ทำให้ก่าประสิทธิภาพการเปลี่ยนแปลง พลังงานแสงเป็นพลังงานไฟฟ้ามีค่าสูงสุด

สำหรับการรวมกันของผลการกระเจิงของแสงและการกระเจิงของอิเล็กตรอน สามารถ เขียนสมการความหนาแน่นกระแสได้ใหม่แสดงดังสมการ 4.3

$$J_{sc} = \int_{\lambda_1}^{\lambda_2} qF(\lambda) [1 - R(\lambda) + S(\lambda)] Q_i(\lambda) d\lambda - \frac{V_{sh}}{R_{sh}}$$
(4.3)

โดย

q

 V_{sh}

J_{SC} คือ ความหนาแน่นของกระแสที่มีผลของการกระเจิงของแสง

- 🦯 คือ ประจุของอิเล็กตรอน (electron charge)
- λ₁ , λ₂ คือ ความยาวคลื่นจำกัด (อ้างอิงจากความยาวคลื่น 350 1100 นาโน เมตร ของสีย้อม Eosin Y)

 $F(\lambda)$ คือ ความหนาแน่นจำนวนโฟตอนของสเปกตรัมแสง (100 mW/cm²)

- *R(λ)* คือ ค่าสัมประสิทธิ์การสะท้อนของแสง คำนวณได้จากทฤษฎีและการ ทดลอง
- $S(\lambda)$ คือ ค่าการกระเจิงของแสง
- $Q_i(\lambda)$ คือ ประสิทธิภาพควันตัมภายใน (Internal quantum efficiency)
 - คือ ความต่างศักย์ที่เกิดจากการสุญเสียภายในเซลล์
- R_{sh} คือ ความต้านทานที่เกิดจากการสุญเสียภายในเซลล์

เมื่อพิจารณาการเพิ่มขึ้นของประสิทธิภาพภายใต้เงื่อนไขของความหนาของฟิล์มซิงก์ออกไซค์ที่ได้ จากการสปาร์ค สามารถอธิบายโดยใช้สมการที่ 4.3

จากตาราง 4.3 การเพิ่มความหนาของฟิล์มบางซิงก์ออกไซด์ที่ได้จากการสปาร์ค ค่าความ หนาแน่นของกระแส (J_{SC}) มีค่าเพิ่มขึ้นจาก 2.12 mA/cm² ไปเป็น 4.71 mA/cm² ของผงซิงก์ ออกไซด์ (ZP) ที่ทำเป็นสองชั้นในโฟโตอิเล็กโทรด สามารถอธิบายได้ด้วยการลดลงของค่าการ สะท้อนของแสงหรือการลดลงของ $R(\lambda)$ ในสมการที่ 4.3 อย่างไรก็ตามโฟโตอิเล็กโทรดที่ใช้ผงนา โนซิงก์ออกไซด์ (ZNP) ในการทำเป็นสองชั้น ค่าการสะท้อนของแสงไม่ค่อยเปลี่ยนแปลง แต่ค่า ความหนาแน่นของกระแสยังคงมีค่าเพิ่มขึ้นจาก 3.66 mA/cm² ไปเป็น 5.59 mA/cm² สามารถ อธิบายได้ว่าการเพิ่มขึ้นของความหนาแน่นกระแส (J_{SC}) เนื่องจากผลของการกระเจิงของแสงและ สามารถอธิบายได้ว่าฟิล์มสองชั้นในโฟโตอิเล็กโทรดที่ใช้ผงซิงก์ออกไซด์ (ZP) มีค่าการกระเจิง ของแสงมากกว่าฟิล์มที่ใช้ผงนาโนซิงก์ออกไซด์ (ZNP) เนื่องจากความแตกต่างของขนาดอนุภาค ซิงก์ออกไซด์ระหว่างทั้งสองชั้น ดังนั้น การกระเจิงของแสง $S(\lambda)$ จะมีค่าเพิ่มขึ้นจากการสะท้อน ของแสงมีก่าลดลงและเพิ่มการกระเจิงของแสงทำให้ค่าความหนาแน่นกระแสมีค่าเพิ่มขึ้นดังแสดง ในสมการที่ 4.3

อย่างไรก็ตาม ก่ากวามหนาแน่นกระแสจะมีก่าลดลงเมื่อกวามหนาของฟิล์มซิงก์ออกไซด์ที่ ได้จากการสปาร์กมีก่ามากขึ้น สามารถอธิบายได้ด้วยการกระเจิงของอิเล็กตรอนดูได้จากรูป 4.22 (a) และ (b) จากตาราง 4.3 ก่ากวามต้านทานที่เกิดจากการสูญเสียภายในเซลล์ (*R_{sh}*) จะมีก่าลดลง เมื่อกวามหนาของฟิล์มซิงก์ออกไซด์ที่ได้จากการสปาร์กมีก่ามากขึ้น จากการทดลองเซลล์ แสงอาทิตย์ชนิดสีย้อมไวแสงที่มีก่า *R_{sh}* น้อยบอกให้รู้ว่าการกระเจิงของอิเล็กตรอนจะมีก่ามากกว่า เซลล์แสงอาทิตย์ที่มีก่า *R_{sh}* มาก สามารถยืนยันได้จากการเพิ่มขึ้นของช่วงเวลาของอิเล็กตรอน (Electron life time, τ) ที่สามารถกำนวนได้จากกราฟ Bode phase และแสดงก่าดังตาราง 4.4

ดังนั้นการเพิ่มขึ้นของประสิทธิภาพที่ใช้สองชั้นในโฟโตอิเล็กโทรด ยังมีขีดจำกัดอยู่ภายใด้ กวามหนาของฟิล์มที่อยู่ชั้นล่าง โดยอธิบายได้โดยการดูผลของการกระเจิงของอิเล็กตรอนจากก่า FF เพราะก่า FF มีก่าต่ำบอกให้รู้ถึงก่ากวามต้านทานที่เกิดจากการสุญเสียภายในเซลล์ (R_{sh}) มีก่า ต่ำตามไปด้วยรวมกับช่วงเวลาของอิเล็กตรอน (Electron life time, τ) จะมีก่าสูงขึ้น สามารถ สรุปผลของการเพิ่มประสิทธิภาพการทำเป็นสองชั้นในโฟโตอิเล็กโทรดได้ดังตาราง 4.5 และ 4.6

72

ตารางที่ 4.5 แสดงการเปรียบเทียบค่ากันระหว่างผงซิงก์ออกไซด์ (ZP) กับ ผงนาโนซิงก์ออกไซด์ (ZNP)

ตัวแปรในเซลล์แสงอาทิตย์ ชนิดสีย้อมไวแสง		การเปรียบเทียบระหว่าง ผง ซิงก์ออกไซด์ (ZP) กับผง นาโนซิงก์ออกไซด์ (ZNP)	คำอธิบาย	
9	J_{SC} (single layer)	ZP < ZNP	การดูดซับของสีย้อม	
	In (double laver)	7P < 7NP	การกระเจิงของแสงและการ	
	JSC (double layer)		ดูคซับของสีย้อม	
	FF (single layer)	ZP > ZNP	การกระเจิงของอิเล็กตรอน	
	FF (double layer)	ZP >ZNP	การกระเจิงของอิเล็กตรอน	
	Shunt resistance	ZP > ZNP	การกระเจิงของอิเล็กตรอน	
	Electron life time	ZP < ZNP	การกระเจิงของอิเล็กตรอน	

ตารางที่ 4.6 แสดงผลของพารามิเตอร์ต่างๆเมื่อความหนาของฟิล์มซิงก์ออกไซด์ที่ได้จากการสปาร์ค มีค่าเพิ่มขึ้น

ตัวแปรในเซลล์แสงอาทิตย์ ชนิดสีย้อมไวแสง	ความหนาที่ได้จากการสปาร์ค มีค่าเพิ่มขึ้น	คำอธิบาย	
J _{SC}	เพิ่มขึ้น	การกระเจิงของแสงมีค่า เพิ่มขึ้นและการสะท้อนมีค่า ลดลง	
FF	ରନରଏ	การกระเจิงของอิเล็กตรอนมี ค่าเพิ่มขึ้น	
Shunt resistance	ଗମରଏ	การกระเจิงของอิเล็กตรอนมี ค่าเพิ่มขึ้น	
Electron life time	เพิ่มขึ้น	การกระเจิงของอิเล็กตรอนมี ค่าเพิ่มขึ้น	
Eff%	เพิ่มขึ้น	ความหนาแน่นกระแสมีค่า เพิ่มขึ้น	
righ	ts r	eserv	