

ชื่อเรื่องวิทยานิพนธ์

การเพาะเลี้ยงสาหร่ายขนาดเล็กในสภาพวิถีธรรมชาติโดยอุ่นไชด์
ความเข้มข้นสูงเพื่อผลิตน้ำมันชีวภาพ

ผู้เขียน

นางสาวจิรนันท์ ศรีพุทธา

ปริญญา

วิทยาศาสตรมหาบัณฑิต (จุลชีววิทยาประยุกต์)

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

อาจารย์ ดร. จิรพร เพกเกะ¹
รองศาสตราจารย์ ดร. ยุวดี พีรพรพิศาล²

อาจารย์ที่ปรึกษาหลัก¹
อาจารย์ที่ปรึกษาร่วม²

บทคัดย่อ

ในปัจจุบันความต้องการที่จะใช้พลังงานปิโตรเลียมเพิ่มสูงขึ้น แต่พลังงานดังกล่าวเริ่มมีปริมาณลดลงและมีราคาสูงขึ้นอย่างต่อเนื่อง ประกอบกับการเพิ่มขึ้นของก๊าซคาร์บอนไดออกไซด์ในชั้นบรรยากาศ ส่งผลกระทบต่อสิ่งแวดล้อมและก่อให้เกิดภัยพิบัติต่างๆ ต่อสภาพภูมิอากาศ ขณะที่สาหร่ายขนาดเล็ก สามารถดูดซึมน้ำมันชีวภาพ ได้ออกไซด์จากบรรยากาศเพื่อใช้ในกระบวนการสังเคราะห์แสง และมีการสะสมกรดไขมันในปริมาณมากจึงเหมาะสมต่อการนำไปผลิตเป็นน้ำมันชีวภาพ ดังนั้นงานวิจัยนี้จึงเพาะเลี้ยงสาหร่ายขนาดเล็กที่สามารถทนก๊าซคาร์บอนไดออกไซด์ความเข้มข้นสูงเพื่อผลิตน้ำมันชีวภาพ โดยเพาะเลี้ยงสาหร่ายขนาดเล็กสายพันธุ์เดียว 11 สายพันธุ์ และกลุ่มสาหร่ายขนาดเล็กแบบผสม 3 กลุ่ม ในอาหารสูตร CMU03 ปริมาตร 5 ลิตร ให้ก๊าซคาร์บอนไดออกไซด์ความเข้มข้น 100% (v.v⁻¹) ด้วยอัตราการไหล 0.4 vvm เพาะเลี้ยงจนถึงระยะ stationary phase วัดผลผลิตที่ได้โดยศึกษาจากช่วงเวลาสาหร่ายในรูปของน้ำหนักแห้ง และคำนวณหาผลผลิตช่วงเวลา พบรากลุ่มสาหร่ายขนาดเล็กแบบผสมทั้ง 3 กลุ่มเจริญได้โดยไม่มีความแตกต่างกัน อย่างมีนัยสำคัญทางสถิติ ($P < 0.05$) โดยกลุ่มสาหร่ายขนาดเล็กแบบผสมกลุ่มที่มี *Acutodesmus (Scenedesmus) dimorphus* (Turpin) Tsarenko เป็นชนิดเด่นมีแนวโน้มว่าจะมีการผลิตชีวมวลสูงกว่ากลุ่มสาหร่ายขนาดเล็กแบบผสมกลุ่มอื่นๆ และสาหร่ายสายพันธุ์เดียว

ที่สามารถเจริญเติบโตได้ดีที่สุดคือ *Chlorella* sp. AARL G011 โดยมีผลผลิตชีวมวล เท่ากับ $11.87 \pm 6.01 \text{ mg.L}^{-1} \cdot \text{d}^{-1}$ ซึ่งสูงกว่าสาหร่ายขนาดเล็กสายพันธุ์เดียวกันนิดอื่นๆ อย่างมีนัยสำคัญทางสถิติ ($P < 0.05$) จากนั้นจึงเลือกสายพันธุ์ที่มีไขมันสูง ได้แก่ กลุ่มสาหร่ายขนาดเล็กแบบผสม กลุ่มที่ 3 ซึ่งมี *Acutodesmus (Scenedesmus) dimorphus* (Turpin) Tsarenko เป็นชนิดเด่น และสายพันธุ์เดียว 2 สายพันธุ์คือ *Chlorella* sp. AARL G011 และ *Chlorella* sp. AARL G049 น้ำยาขนาดการเพาะเลี้ยงปริมาตร 100 ลิตร โดยให้ก้าชาร์บอนไครอออกไซด์และอัตราการไหลเช่นเดียวกับการทดลองก่อนหน้า พบว่าผลผลิตชีวมวลของสาหร่ายทั้ง 3 สายพันธุ์ ไม่มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ ($P < 0.05$) แต่ *Chlorella* sp. AARL G049 มีแนวโน้มที่จะให้เปอร์เซ็นต์ลิพิดสูงสุด จึงนำมาเพาะเลี้ยงในปริมาตร 1,000 ลิตร ด้วยสภาวะเช่นเดียวกับที่ผ่านมา พบว่ามีเปอร์เซ็นต์ลิพิดสูงสุดเท่ากับ 10.78% และมีกรดไขมัน กรดปาล์มิติก (C16:0) กรดสเตียริก (C18:0) และกรดอัลฟ์อิโนเลอิก (C18:3) เป็นองค์ประกอบสามารถนำไปผลิตใบโอดีเซลได้ ชีวมวลก่อนการสกัด ไขมัน มีโปรตีนเทียบเท่ากับหางนมผง ซึ่งเท่ากับ $36.62 \text{ g.100g}^{-1}$ น้ำหนักแห้ง และมีค่าโภะหนักไม่เกินมาตรฐานกำหนดสามารถนำมาผสมในอาหารปลาได้ ส่วนค่าสาหร่ายที่เหลือจากการสกัด ไขมัน มีโปรตีนเทียบเท่ากับหางนมผง คือ $31.73 \text{ g.100 g}^{-1}$ น้ำหนักแห้ง แต่พบแคดเมียม โครเมียม ปรอท ทองแดง จึงไม่เหมาะสมต่อการเป็นอาหารปลา แต่มีแนวโน้มที่จะนำสาหร่ายขนาดเล็กมาใช้ประโยชน์ทั้งในด้านการลดก้าชาร์บอนไครอออกไซด์ในระดับอุตสาหกรรมและพัฒนาแหล่งพลังงานทางเลือกในอนาคตได้

Thesis Title Microalgal Cultivation in High CO₂ Concentration Condition for Bio Oil Production

Author Miss Cheeranan Sriphuttha

Degree Master of Science (Applied Microbiology)

Thesis Advisory Committee

Lect. Dr. Jeerapron Pekkoh

Advisor

Assoc. Prof. Dr. Yuwadee Peerapronpisal

Co-advisor

Abstract

Presently, the need for petroleum energy is rising but the amount is decreasing and the price is increasing steadily. The increase is carbon dioxide (CO₂) in the atmosphere results in the environment and catastrophic climate change. Microalgae can absorb atmospheric CO₂ for used in photosynthesis and accumulate significant amount of fatty acid. Therefore they are suitable for bio – oil production. Thus, this research was aimed to cultivate high CO₂ tolerant microalgae for bio – oil production. Eleven strains of monoculture microalgae and 3 groups of mixed microalgal culture were cultivated in 5 liters of CMU03 medium supplied with 100% (v.v⁻¹) carbon dioxide at the flow rate of 0.4 vvm until stationary phase was attained. The productivity was determined by study form biomass as dry weight and calculating biomass productivity. It was found that there was no significant difference in the growth of the three mixed microalgal cultures ($P < 0.05$). Mixed microalgal culture with *Acutodesmus (Scenedesmus) dimorphus* (Turpin) Tsarenko as dominant strain was liable to give higher biomass than other mixed cultures. The monoculture which grew best was *Chlorella* sp. AARL G011 with biomass productivity of 11.87 ± 6.01 mg.L⁻¹.d⁻¹ and was significantly higher than those of other monocultures ($P < 0.05$). Three highest

lipid strains, including mixed microalgal culture 3 has *Acutodesmus (Scenedesmus) dimorphus* (Turpin) Tsarenko as dominant strain and 2 monoculture as *Chlorella* sp. AARL G011 and *Chlorella* sp. AARL G049, were selected to be up scaled to 100 liters of culture volume with the same carbon dioxide concentration and flow rate of previous experiment. It was found that the growth of the three microalgal cultures was not significant different ($P<0.05$). *Chlorella* sp. AARL G049 was liable to give highest lipid content. Therefore, it was cultivated at 1,000 liters culture at the same conditions. It was found that the highest lipid content was 10.78% and major fatty acids were palmitic acid (C16:0) stearic acid (C18:0) and alpha linolenic acid (C18:3), which can be used for biodiesel production. Biomass has protein content equated to skim milk powder was 36.62 g.100g⁻¹ dry weight and it has heavy metals not over standard can suitable for fish feed. Microalgal residue from lipid extraction has protein content equated to skim milk powder was 31.73 g.100 g⁻¹ dry weight, but it contains heavy metals such as cadmium, chromium, copper and mercury. Thus, it is not suitable for fish feed but microalgal cultivation could be applied for reducing CO₂ in industries and developed as alternative energy source in the future.