หน้า กิตติกรรมประกาศ ค บทคัดย่อภาษาไทย บทคัดย่อภาษาอังกฤษ ฉ สารบาญ Ա สารบาญตาราง IJ สารบาญภาพ ຈຼິ อักษรย่อและสัญลักษณ์ ຄ บทที่ 1 บทนำ 1.1 ที่มาและความสำคัญ 1.2 วัตถุประสงค์ของงานวิจัย บทที่ 2 วรรณกรรมปริทัศน์ 5 2.1 ความรู้ทั่วไปเกี่ยวกับวัสดุออกไซด์นำไฟฟ้าโปร่งใส 5 2.2 ฟิล์มบางออกไซค์นำไฟฟ้าโปรงใส 6 2.2.1 วัสดุนำไฟฟ้าโปร่งใสออกไซด์ชนิดสารประกอบ 2 ชนิด 7 2.3 แนวทางการออกแบบวัสดุออกไซด์นำไฟฟ้าโปร่งใส 8 อุปกรณ์ที่มีการใช้วัสดุออกไซค์นำไฟฟ้าโปร่งใส 2.4 9 กระบวนการผลิตวัสดุนำไฟฟ้าโปร่งใสสำหรับการใช้งาน 2.5 10 สารประกอบอินเดียมออกไซด์ 2.6 12 การศึกษาสมบัติทางไฟฟ้าและทางแสงของฟิล์มออกไซด์ 2.7 13 นำไฟฟ้าโปร่งแสง 2.8 การศึกษาสมบัติทางไฟฟ้าและทางแสงของฟิล์ม 23 อินเดียมออกไซด์เจือไทเทเนียม 29 2.9 สารกึ่งตัวนำ 2.9.1 สารกึ่งตัวนำบริสุทธิ์ 29 2.9.2 สารกึ่งตัวนำไม่บริสุทธิ์ 31 2.9.2.1 สารกึ่งตัวนำชนิดเอ็น 31

สารบาญ

	2.9.2.2 สารกึ่งตัวนำชนิดพื	32		
2.10	2.10 สมบัติทางแสง			
	2.10.1 สมบัติการดูดกลื่นแสง	33		
	2.10.2 การวัดสัมประสิทธิ์การดูดกลืนแสง	36		
2.11	เ การเคลือบฟิล์มบาง	38		
	2.11.1 หลักการของการพ่นเคลือบวิธีแยกสลายด้วยความร้อน	39		
	หรือสเปรย์ไพโรไลซิส			
	2.11.2 ตัวทำละอองแบบอัลตราโซนิก	43		
บทที่ 3	วิธีการทดลอง	45		
3.1	สารเคมี	45		
3.2	วัสดุที่ใช้ในการทดลอง	45		
3.3	เครื่องมือที่ใช้ในการทคลอง	46		
3.4	การทำความสะอาคซับสเตรตแก้วก่อนการเกลือบฟิล์ม	47		
3.5	การเตรียมสารละลายแอลกอฮอล์	48		
3.6	การเตรียมฟิล์มอินเคียมออกไซค์เจือไทเทเนียม	50		
3.7	การตรวจสอบ โครงสร้างผลึกด้วยเทคนิกการเลี้ยวเบนของรังสีเอกซ์	55		
3.8	การศึกษา โครงสร้างจุลภาค โดยใช้กล้องจุลทรรศน์อิเล็กตรอนแบบ	57		
	ส่องกราด			
3.9	การศึกษา โครงสร้างจุลภาค โดยใช้กล้องจุลทรรศน์อิเล็กตรอนแบบ	59		
	แรงอะตอม			
3.10) การตรวจสอบสมบัติทางแสง	60		
	3.10.1 การตรวจสอบร้อยละการส่องผ่านแสง	60		
	3.10.2 การประมาณค่าแถบช่องว่างพลังงาน	61		
3.11	เ การตรวจสอบสมบัติทางไฟฟ้า	62		
บทที่ 4	ผลการทดลองและการอภิปรายผลการทดลอง	66		
6 4.1	การเตรียมฟิล์มอินเคียมออกไซค์เจือไทเทนียมโคยมีเงื่อนไข	66		
	การเจือไทเทเนียมแตกต่างกัน			

	4.1.1 ผลการตรวจสอบองค์ประกอบทางเคมีและเฟสด้วยเทคนิค	66
	การเลยวเบนของรงสเอกซ	
	4.1.2 ผลการตรวจสอบโครงสร้างจุลภาคด้วยเทคนิค	68
	กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด	
	4.1.3 ขนาดเกรน	71
	4.1.4 ผลการตรวจสอบโครงสร้างจุลภาคด้วยเทคนิคกล้องจุลทรรศน์	72
	อิเล็กตรอนแบบแรงอะตอม	
	4.1.5 ผลการตรวจสอบสมบัติทางไฟฟ้าของฟิล์มอินเดียมออกไซด์	74
	เจือไทเทเนียม	
	4.1.5.1 สภาพต้านทานไฟฟ้า	74
	4.1.6 ผลการตรวจสอบสมบัติทางแสงของฟิล์มอินเดียมออกไซด์	77
	เจือไทเทเนียม	
	4.1.6.1 ร้อยละการส่องผ่านแสง	77
	4.1.6.2 การประมาณค่าแถบช่องว่างพลังงาน	79
4.2	การเตรียมฟิล์มอินเคียมออกไซค์เจือไทเทนียมโคยมีเงื่อนไข	80
	ของอุณหภูมิอบอ่อนต่างกัน	
	4.2.1 ผลการตรวจสอบองค์ประกอบทางเคมีและเฟสด้วยเทคนิค	81
	การเลี้ยวเบนของรังสีเอกซ์	
	4.2.2 ขนาดเกรน	82
	4.2.3 ผลการตรวจสอบโครงสร้างจุลภาคด้วยเทคนิคกล้องจุลทรรศน์	83
	อิเล็กตรอนแบบแรงอะตอม	
	4.2.4 ผลการตรวจสอบสมบัติทางไฟฟ้า	85
	4.2.4.1 สภาพด้านทานไฟฟ้า	85
	4.2.5 ผลการตรวจสอบสมบัติทางแสง	87
	4.2.5.1 ร้อยละการส่องผ่านแสง	87
	4.2.5.2 การประมาณค่าแถบช่องว่างพลังงาน	88
บทที่ 5	สรุปผลการทคลองและข้อเสนอแนะ	90
5.1	สรุปผลการทดลอง	90

ល្ង

5.1.1 ผลการเตรียมฟิล์มอินเดียมออกไซด์เจือไทเทนียมที่เงื่อนไข การเจือไทเทเนียมแตกต่างกัน	90
5.1.2 การเตรียมฟิล์มอินเดียมออกไซด์เจือไทเทนียมที่มีเงื่อนไข ของอณหภมิอบอ่อนแตกต่างกัน	91
5.2 ข้อเสนอแนะ	92
เอกสารอ้างอิง	93
ภาคผนวก แฟ้มข้อมูลรูปแบบการเลี้ยวเบนของรังสีเอกซ์	98
ประวัติผู้เขียน	100

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

สารบาญตาราง

ตาราง		หน้า
2.1	กระบวนการเตรียมฟิล์มออกไซด์นำไฟฟ้าโปร่งใสในอดีตที่ผ่านมา	11
2.2	สมบัติต่างๆ ของอินเดียมออกไซด์	13
3.1	อัตราส่วนผสมของสารตั้งต้นฟิล์มอินเดียมออกไซด์เจือไทเทเนียม	49
4.1	ขนาดเกรน โดยเฉลี่ยของฟิล์ม ITiO ที่อบอ่อนที่อุณหภูมิ 450 °C	72
4.2	ค่าสภาพต้านทานไฟฟ้าของฟิล์ม ITiO ที่อบอ่อนที่อุณหภูมิ 450 🗆 °C	76
4.3	ขนาดเกรน โดยเฉลี่ยของฟิล์ม ITiO ที่ปริมาณการเจือ Ti เท่ากับ 0.1 at.%	83
	อบอ่อนที่อุณหภูมิ 450 🗌 🗆 °C	
4.4	ค่าสภาพต้านไฟฟ้าของฟิล์ม ITiO ที่ปริมาณการเจือ Ti เท่ากับ 0.1 at.%	86
	หลังอบอ่อนที่อุณหภูมิ 250-400 🗌 🗌 🖓 °C	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

สารบาญภาพ

รูป		หน้า
2.1	การรายงานสภาพต้านทานไฟฟ้าของฟิล์มออกไซด์นำไฟฟ้าโปร่งใสแบบ	8
	สารประกอบ 2 ชนิด ในปี ค.ศ. 1970-2000: ฟิล์มดีบุกออกไซด์และดีบุก	
	ออกไซด์ที่มีสารเจือ (SnO $_2\square$) อินเดียมออกไซด์และอินเดียมออกไซด์ที่มีสาร	
	เจือ (In ₂ O ₃) และซิงค์ออกไซด์และซิงค์ออกไซด์ที่มีสารเจือ (ZnO)	
2.2	ความสัมพันธ์ระหว่างช่องว่างแถบพลังงานกับวัสคุออกไซค์นำไฟฟ้าโปร่งใส	9
	แบบสารประกอบ 2 ชนิค แบบสารประกอบออกไซค์ 3 ชนิคและแบบสาร	
	ประกอบออกไซค์หลายชนิดผสมกัน (เส้น)	
2.3	ลักษณะ โครงสร้างของอินเคียมออกไซค์แบบ cubic bixyite-type (C- In2O3)	8
2.4	อัตราส่วนของ Al/Zn (at.%) ที่มีต่อสภาพด้านทานไฟฟ้า ($^{ m ho}$) ความหนาแน่น	
	ประจุพาหะ (n) และสภาพคล่องของประจุพาหะ (μ) ของฟิล์ม AZO	
2.5	(ก) รูปแบบการเลี้ยวเบนของรังสีเอกซ์ของฟีล์มบาง ZnO: F ตกสะสมบน	15
	ซับสเตรตอุณหภูมิ 500 °C ที่อัตราส่วนของการเติมกรคอะซิติกแตกต่างกัน	
	(ข) ภาพถ่ายกล้องจุลทรรศ์อิเล็กตรอนแบบแรงอะตอมของฟิล์มบาง ZnO: F	
	ตกสะสมบนซับสเตรตอุณหภูมิ 500 °C ที่อัตราส่วนของการเติมกรคอะซีติก	
	(a) 7/100, (b) 10/100, (c) 20/100, (d) 30/100 ແລະ (e) 40/100	
	(ก) แสดงวงวนฮีสเทอร์ซิสของ BiFeO, ที่อุณหภูมิต่างๆ (ข) แสดงสเปกตรัมของ	10
	การเปลี่ยนสถานะประจุในวัสคุเซรามิก BiFeO3 โดยเทคนิค XPS (1) 800 องศา	
	เซลเซียส (RPLS) (2) 820 องศาเซลเซียส (RPLS) (3) 880 องศาเซลเซียส (SSR)	
2.6	ปริมาณการเจือ Ga (at.%) ที่มีต่อสภาพด้านทานไฟฟ้า ความหนาแน่นประจุพาหะ	16
	และสภาพคล่องของประจุพาหะของฟิล์ม GZO	
2.7	(ก) อัตราส่วนความเข้มของพลังงานระหว่างระนาบ (400) และระนาบ (222)	17
	(I ₄₀₀ /I ₂₂₂) ของฟิล์มบาง ITO ที่อุณหภูมิซับสเตรตแตกต่าง (ข) ความสัมพันธ์	
	ระหว่างปริมาณ การเงือดีบุกในสารละลายที่มีต่อสภาพด้านทานไฟฟ้าของ	
	ฟิล์มบาง ITO	
2.8	ความสัมพันธ์ระหว่างปริมาณการเจือโมลิดินัมที่มีต่อสภาพด้านทานไฟฟ้า	18
	และสภาพคล่องของประจุพาหะของฟิล์ม IMO	

(ก) ความสัมพันธ์ระหว่างปริมาณการเงือฟลูออรีนที่มีต่อสภาพต้านทานไฟฟ้า

และสภาพคล่องของประจุพาหะของฟิล์ม FTO ที่อุณหภูมิซับสเตรตเท่ากับ 400

2.9

- °C และความหนาฟิล์มเท่ากับ 550 nm (ข) รูปแบบการเลี้ยวเบนของรังสีเอกซ์ ของฟิล์ม FTO (ปริมาณการเจือฟลูออรีน 0.5 M) ที่อุณหภูมิซับสเตรตแตกต่างกัน 2.10 ภาพถ่ายกล้องจุลทรรศ์อิเล็กตรอนแบบส่องกราดของฟิล์ม FTO (ปริมาณการเจือ 21 ฟลูออรีน 0.5 M) ที่อุณหภูมิซับสเตรตแตกต่างกัน (a) 360 °C, (b) 400 °C (c) 500 °C และ (d) ขนาคเกรนฟิล์ม FTO ที่เคลือบบนซับสเตรตที่อุณหภูมิ แตกต่างกัน ความสัมพันธ์ระหว่างอุณหภูมิของซับสเตรตที่มีต่อสภาพด้านทานไฟฟ้าและ 2.11 21 สภาพคล่องของประจุพาหะของฟิล์ม FTO (ปริมาณการเจือฟลูออรีนเท่ากับ 0.5 M) ความสัมพันธ์ระหว่างปริมาณการเจือไทเทเนียมที่มีต่อสภาพต้านทานไฟฟ้า 2.12 23 ้ความหนาแน่นประจุและสภาพคล่องของประจุพาหะของฟิล์ม ITiO ที่เคลือบ ภายใต้ความดันของก๊าซ 0.6 Pa ปริมาณของออกซิเจนในก๊าซสปัตเตอริง 1 vol% ตกสะสมบนซับสเตรตที่อุณหภูมิห้องและ 300 ^oC และความหนาฟิล์ม 500 nm สเปคตรัมการส่องผ่านและการสะท้อนของฟิล์ม ITiO เจือไทเทเนียม 0.8 at.% 2.13 24 และ 1.6. at.% และฟิล์ม ITO ในช่วงความยาวคลื่น 200-2600 nm ภายใต้ความ คันของก๊าซ 0.6 Pa ปริมาณของออกซิเจนในก๊าซสปัตเตอริง: 1 vol% ตกสะสม บนซับสเตรตที่อุณหภูมิห้องและ 300 [°]C และความหนาฟิล์ม ITiO เจือไทเทเนียม 0.8 at.%, 1.6 at.% และฟิล์ม ITO เท่ากับ 204, 212 และ 158 nm ตามลำคับ รูปแบบการเลี้ยวเบนของรังสีเอกซ์ของฟิล์ม ITiO ก่อนและหลังอบอ่อน 2.14 25 ที่อุณหภูมิ 150 °C และ 250 °C ตามลำคับ 2.15 สภาพต้านทานไฟฟ้าของฟิล์ม ITiO ที่ความหนาฟิล์มแตกต่างกัน 25 สภาพต้านทานไฟฟ้าของฟิล์ม ITiO ก่อนและหลังอบอ่อนที่อุณหภูมิ 300 °C 2.16 26 ที่ความหนาฟิล์มแตกต่างกัน 26
- 2.17 สเปคตรัมการส่องผ่านของแสงของฟิล์ม ITiO ก่อนและ หลังอบอ่อนที่อุณหภูมิ 300 °C
- 2.18 สเปลตรัมการส่องผ่านของแสงของฟิล์ม ITiO, ITO และ FTO หลังอบอ่อน ที่อุณหภูมิ 500 °C 10 นาที
- 2.19 สภาพต้านทานไฟฟ้าของฟิล์ม ITiO, ITO และ FTO หลังอบอ่อนที่อุณหภูมิ 500 °C 10 นาที

20

28

2.20	แสดงช่องว่างแถบพลังงานของสารไคอิเล็กทริก สารกึ่งตัวนำและ โลหะ	29
2.21	แสดงการนำไฟฟ้าโดยการเคลื่อนที่ของอิเล็กตรอนและโฮล	30
	ขณะอยู่ในสนามไฟฟ้า	
2.22	แสดงตัวรับและตัวให้อิเล็กตรอนในพันธะโควาเลนซ์ของผลึกซิลิกอน	31
2.23	แถบพลังงานของสารกึ่งตัวนำชนิดเอ็น	32
2.24	แถบพลังงานสารกึ่งตัวนำชนิคพี	34
2.25	ลักษณะของการย้ายสถานะพลังงานของสาร (a) การย้ายสถานะแบบตรง	35
	(b) การย้ายสถานะแบบไม่ตรง	
2.26	การทคลองการวัคสัมประสิทธิ์การดูดกลืนแสง	36
2.27	สเปกตรัมการส่องผ่านของแสงของฟิล์ม ZnO (a) สเปกตรัมการส่องผ่าน	38
	ของแสงของฟิล์ม ZnO (b) กราฟความสัมพันธ์ระหว่าง $ig(lpha h vig)^2$ และ hv	
	ซึ่งจะให้ค่าช่องว่างแถบพลังงานจากส่วนตัดของแกนของพลังงานโฟตอน	
2.28	ประเภทของกระบวนการเคลือบฟิล์มบาง	39
2.29	ใดอะแกรมเปรียบเทียบกลไกต่าง ๆ ที่เป็นไปได้ในกระบวนการพ่นเคลือบ	40
	วิธีแยกสลายด้วยความร้อนเมื่อละอองสารมีขนาดต่างๆ	
2.30	ความสัมพันธ์ระหว่างอัตราเร็วการปลูก (growth rate) ฟิล์มกับส่วนกลับ	41
	ของอุณหภูมิ	
2.31	ส่วนประกอบของตัวทำละอองอัลตราโซนิก	44
2.32	ลักษณะการเกิดละอองจากตัวทำละอองอัลตราโซนิก	44
3.1	(a) เครื่องอัลตราโซนิก (ultrasonic) รุ่น UP 200S และ	47
	(b) เตาอบสารอุณหภูมิ 120 ⁰ C	
3.2	แผนผังขั้นตอนการทำกวามสะอาคซับสเตรตแก้ว (กระจกสไลค์)	48
3.3	(a) ผงอินเดียมไตรคลอไรด์ (InCl ₃) ความบริสุทธิ์ 99.999% (b) ไทเทเนียม	50
	เตตระไอโซโพรพอกไซค์ (C ₁₂ H ₂₈ O4Ti) ความบริสุทธิ์ 97% (c) เอทานอล	
	(CH ₃ CH ₂ OH) ความบริสุทธิ์ 99.99% และ (d) กรคไฮโครคลอริก (HCl)	
	ความบริสุทธิ์ 37%	
3.4	บีกเกอร์ ขวดแก้วพร้อมฝาปิด ขวดแก้วรูปชมพู่ เข็มฉีดยาทำจากแก้วโบโรซิลิเกต	50
	กระบอกตวงและปีเปตขนาดต่างๆ	
3.5	ระบบการทำงานสำหรับการพ่นเคลือบฟิล์มด้วยระบบอัลตราโซนิก สเปรย์ไฟโรไลซิส	51

ମ୍ମା

3.6	แผนผังขั้นตอนการเตรียมฟิล์ม ITiO ที่ปริมาณการเจือ C ₁₂ H ₂₈ O ₄ Ti	52
	เท่ากับ 0.01-0.045 M	
3.7	แผนผังการอบอ่อนฟิล์ม ITiO ที่ปริมาณการเจือ C ₁₂ H ₂₈ O4Ti เท่ากับ 0.01-0.045 M	53
3.8	แผนผังขั้นตอนการเตรียมฟิล์ม ITiO ที่ปริมาณการเจือ C ₁₂ H ₂₈ O ₄ Ti	54
	เท่ากับ n M อบอ่อนที่อุณหภูมิต่างกัน	
3.9	แผนผังการอบอ่อนฟิล์ม ITiO ที่ปริมาณการเจือ C ₁₂ H ₂₈ O4Ti เท่ากับ n M	58
3.10	การวิเคราะห์ผลึกโดยใช้เครื่องมือการเลี้ยวเบนของรังสีเอกซ์	56
3.11	เครื่องสปัตเตอร์ รุ่น JFC-1100E	57
3.12	กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราคชนิค FE-SEM	58
	(JEOL JSM 5910LV) รุ่น 7274	
3.13	ส่วนประกอบและการทำงานพื้นฐานของกล้องจุลทรรศ์อิเล็กตรอน	59
	แบบแรงอะตอม	
3.14	กล้องจุลทรรศน์อิเล็กตรอนแบบแรงอะตอม Nanoscope III Digital instriment	60
3.15	เครื่อง UV-Vis-NIR spectrophotometer รุ่น UV-Vis Lamda 35	62
	ผลิตโดยบริษัท Perkin Elmer	
3.16	เครื่องวัดความต้านทานไฟฟ้าแบบ Van der Pauw method รุ่น B1500A	63
	ผลิตโดยบริษัท Agilent Technologies	
3.17	การติดคอนแทกส์เพื่อวัดก่าสภาพต้านทานไฟฟ้า	64
3.18	การวางหัววัดทั้ง 4 ลงบนกระจกสไลด์ที่เคลือบฟิล์ม ITiO	65
	เพื่อวัคสภาพต้านทานไฟฟ้าด้วยเทกนิก Four Point Probe	
3.19	เครื่องวัดความต้านทานไฟฟ้าแบบ Four point probe ใช้ power supply	65
	รุ่น 3458A Multimeter ผลิต โดยบริษัท Hewlett Packard; HP	
4.1	การเลี้ยวเบนของรังสีเอกซ์ของฟิล์ม ITiO ปริมาณการเจือ Ti เท่ากับ	68
	0.01-0.1 at.% อบอ่อนที่อุณหภูมิ 450 °C เมื่อเปรียบเทียบกับแฟ้มข้อมูล JCPDS	
4.2	ภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราคของผิวฟิล์ม ITiO	69
	เมื่อเจือ Ti ในปริมาณ (a) 0.01, (b) 0.03, (c) 0.05, (d) 0.07 และ (e) 0.1 at.%	
	อบอ่อนที่อุณหภูมิ 450 °C ที่กำลังขยาย 50,000 เท่า	
4.3	ภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราคของภาคตัดขวาง	70
	ฟิล์ม ITiO เมื่อเจือ Ti ในปริมาณ (a) 0.01, (b) 0.03, (c) 0.05, (d) 0.07	
	และ (e) 0.1 at.% อบอ่อนที่อุณหภูมิ 450 °C ที่กำลังขยาย 25,000 เท่า	

น

4.4	ความสัมพันธ์ระหว่างปริมาณการเจือ Ti ที่มีต่อขนาดเกรนเฉลี่ยของฟิล์ม	71	
	ITiO หลังอบอ่อนที่อุณหภูมิ 450 °C		
4.5	ภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนแบบแรงอะตอมของฟิล์ม ITiO	73	
	เมื่อเจือ Ti ในปริมาณ (a) 0.01, (b) 0.03, (c) 0.05, (d) 0.07 และ (e) 0.1 at.%		
	อบอ่อนที่อุณหภูมิ 450 °C ที่ขนาดการส่องกราด 5×5 μm		
4.6	ความสัมพันธ์ระหว่างปริมาณการเจือ Ti ที่มีต่อค่าเฉลี่ยกำลังสองความหยาบผิว	74	
	ของฟิล์ม ITiO หลังอบอ่อนที่อุณหภูมิ 450 °C		
4.7	ความสัมพันธ์ระหว่างปริมาณการเจือ Ti ที่มีต่อค่าสภาพด้านทานไฟฟ้า	76	
	ของฟิล์ม ITiO หลังอบอ่อนที่อุณหภูมิ 450 °C		
4.8	สเปคตรัมการส่องผ่านแสงของฟิล์ม ITiO ที่ปริมาณการเจือ Ti เท่ากับ	78	
	0.01-0.1 at.% ก่อนอบอ่อนที่อุณหภูมิ 450 °C		
4.9	สเปคตรัมการส่องผ่านแสงของฟิล์ม ITiO ที่ปริมาณการเจือ Ti เท่ากับ	78	
	0.01-0.1 at.% หลังอบอ่อนที่อุณหภูมิ 450 °C		
4.10	ความสัมพันธ์ระหว่าง $ig(lpha h vig)^2$ และพลังงานโฟตอน $(h u)$ ของฟิล์ม ITiO	80	
	ที่ปริมาณการเจือ Ti เท่ากับ 0.01-0.1 at.% หลังอบอ่อนที่อุณหภูมิ 450 °C		
4.11	การเลี้ยวเบนของรังสีเอกซ์ของฟิล์ม ITiO ปริมาณการเจือ Ti เท่ากับ 0.1 at.%	82	
	อบอ่อนที่อุณหภูมิ 250-400 °C เมื่อเปรียบเทียบกับแฟ้มข้อมูล JCPDS		
4.12	ความสัมพันธ์ระหว่างอุณหภูมิอบอ่อนที่มีต่อขนาดเกรนเฉลี่ยของฟิล์ม ITiO	83	
	ที่ปริมาณการเจือ Ti เท่ากับ 0.1 at.%		
4.13	ภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนแบบแรงอะตอมของฟิล์ม ITiO	84	
	เมื่อปริมาณการเจือ Ti เท่ากับ 0.1 at.% อบอ่อนที่อุณหภูมิ (a) 250, (b) 300,		
	(c) 350 และ (e) 400 °C ที่ขนาดการส่องกราด 5×5 μm		
4.14	ความสัมพันธ์ระหว่างอุณหภูมิอบอ่อนที่มีต่อค่าเฉลี่ยกำลังสองความหยาบผิว	85	
	ของฟิล์ม ITiO ที่ปริมาณการเจือ Ti เท่ากับ 0.1 at.%		
4.15	ความสัมพันธ์ระหว่างอุณหภูมิอบอ่อนที่มีต่อค่าสภาพต้านไฟฟ้าของฟิล์ม ITiO	86	
	ที่ปริมาณการเจือ Ti เท่ากับ 0.1 at.%		
4.16	สเปคตรัมการส่องผ่านแสงของฟิล์ม ITiO ที่ปริมาณการเจือ Ti เท่ากับ 0.1 at.%	88	
	หลังอบอ่อนที่อุณหภูมิ 250-400 °C		

ค

- 4.17 ความสัมพันธ์ระหว่าง $(\alpha hv)^2$ และพลังงานโฟตอน (hv) ของฟิล์ม ITiO ที่ปริมาณการเจือ Ti เท่ากับ 0.1 at.% หลังอบอ่อนที่อุณหภูมิ 250-400 $^{\circ}$ C
- ก แฟ้มข้อมูลรูปแบบการเลี้ยวเบนของรังสีเอกซ์ของสาร In₂O₃ JCPDS หมายเลข 006-0416

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

89

99

อักษรย่อและสัญลักษณ์

ITiO	Titanium doped indium oxide
тсо	Transparent Conducting Oxide
ITO	Tin doped indium oxide
FTO	Fluorine dope indium oxide
AZO	Aluminum dope zinc oxide
FZO	Fluorine dope zinc oxide
GZO	Gallium dope zinc oxide
SZO	Silicon dope zinc oxide
IMO	Molybdenum dope indium oxide
IZO	Zinc dope indium oxide
InCl ₃	Indium (III) chloride
$\mathrm{C}_{12}\mathrm{H}_{28}\mathrm{O}_4\mathrm{Ti}$	Titanium (III) isopropoxide
HCI	Hydrochloric acid
CH ₃ CH ₂ OH	Ethanol
HNO ₃	Nitric acid
BCC	Body center cubic
CVD	Chemical vapor deposition
XRD	X-Ray Diffraction
SEM	Scanning Electron Microscopy
AFM	Atomic Force Microscopy
UV-Vis-NIR	Ultraviolet-Visible Near Infrared Spectrophotometer
ρ	Resistivity
μ	hall mobility
R	Resistance
R_s	Sheet resistance
E _g	Energy gap
E _a	Acceptor level
α	Absorption coefficient

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved