

ชื่อเรื่องวิทยานิพนธ์ อิทธิพลทางนิเวศวิทยาของนกเกยตруนพื้นที่สูงต่อการสะสมการบอน
ชาตุอาหารและน้ำในตำบลป่าเปี้ย อำเภอแม่แตง จังหวัดเชียงใหม่

ผู้เขียน นาย วีรภัทร สุวรรณวงศ์

ปริญญา วิทยาศาสตรมหาบัณฑิต (เกษตรศาสตร์) ปฐพีศาสตร์

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

รศ. ดร. สุนทร คำยอง

อาจารย์ที่ปรึกษาหลัก

ดร. นิวัติ อนงค์รักษ์

อาจารย์ที่ปรึกษาร่วม

บทคัดย่อ

ศึกษาอิทธิพลทางนิเวศวิทยาของนกเกยตруนพื้นที่สูงต่อปริมาณการสะสม
การบอน ชาตุอาหารและน้ำ ในตำบลป่าเปี้ย อำเภอแม่แตง จังหวัดเชียงใหม่ โดยการคัดเลือกพื้นที่
สองหมู่บ้าน คือ หมู่บ้านแม่ไคร้และหมู่บ้านปางมะໂອ วางแปลงสี่เหลี่ยมตัวอ่างขนาด 40×40 ตาราง
เมตร จำนวนหมู่บ้านละ 5 แปลง เพื่อสำรวจพืชพรรณไม้ในสังคมพืช วัดเส้นรอบวงคำตันของ
ต้นไม้ความสูง 1.3 ม. จากพื้นดินและความสูงต้นไม้ที่มีความสูงตั้งแต่ 1.5 เมตร ขึ้นไป พบร่วาง
เกยตруนพื้นที่หมู่บ้านแม่ไคร้ มีความหนาแน่นต้นเมี่ยงพันแท่งระหว่าง 36-166 ต้นต่อไร่ มีจำนวน
ชนิดพันธุ์ไม้ป่าต่อแปลงพันแท่งระหว่าง 12-27 ชนิด รวมทั้งหมด 47 ชนิด (44 สกุล และ 30 วงศ์)
และมีความหนาแน่น 15-59 ต้นต่อไร่ วนเกยตруนพื้นที่หมู่บ้านปางมะໂອ มีความหนาแน่นต้นเมี่ยง
พันแท่งระหว่าง 67-172 ต้นต่อไร่ มีจำนวนชนิดพันธุ์ไม้ป่าต่อแปลงพันแท่งระหว่าง 16-31 ชนิด
รวม 65 ชนิด (59 สกุล และ 36 วงศ์) และมีความหนาแน่น 34-74 ต้นต่อไร่ พื้นที่หมู่บ้านแม่ไคร้
ไม่มีทะ โลส และเสลาเป็นพันธุ์ไม้เด่น ขณะที่พื้นที่หมู่บ้านปางมะໂອ มีทะ โลส แคหางค่างและก่อ
แหลม เป็นพันธุ์ไม้เด่น ด้วยความหลากหลายชนิดพันธุ์ไม้โดยใช้ Shannon-Wiener Index (SWI)
พบว่าพื้นที่หมู่บ้านแม่ไคร้ (2.06) มีมากกว่าบ้านปางมะໂອ (1.87) สมการแอลโลมิทรีเพื่อคำนวณ
ปริมาณมวลชีวภาพของต้นเมี่ยง ได้สร้างขึ้นจากการใช้ตัวอย่างต้นเมี่ยงสามต้น สำหรับการคำนวณ
ปริมาณมวลชีวภาพของพันธุ์ไม้ป่าใช้สมการของ Tsutsumi *et al.* (1983)

ดินในระบบวนเกยตруนพื้นที่หมู่บ้านแม่ไคร้และหมู่บ้านปางมะໂອ เป็นดินชนิดเดียวกัน
มีสมบัติทางกายภาพและทางเคมีคล้ายกัน แต่มีปริมาณการกักเก็บน้ำในดินชั้นล่างแตกต่างกันน้ำ

เป็นดินลึกมากกว่า 200 ซม. มีชั้นอินทรีย์วัตถุบนดินหนา 2-5 เซนติเมตร การพัฒนาการของหน้าตัดดินเป็นแบบ A-BA-Bt โดยมีการสะสมดินเหนียวในดินชั้นล่าง จัดอยู่ในอันดับ Ultisols อันดับย่อย Humults ดินบนมีความหนาแน่นก่อนข้างต่ำถึงต่ำ ดินล่างมีความหนาแน่นปานกลางถึงก่อนข้างต่ำ เนื้อดินบนเป็นแบบ sandy clay, sandy clay loam และ sandy loam ดินล่างมีเนื้อละเอียดแบบ sandy clay loam, clay loam และ clay ดินบนเป็นกรดปานกลางถึงกรดจัด ดินล่างเป็นกรดเล็กน้อย ดินบนมีปริมาณอินทรีย์วัตถุและการบ่อนสูงมากและลดลงตามความลึกของดิน ดินบนมีในโตรเจนปานกลางและต่ำถึงต่ำมากในดินชั้นล่าง มีฟอสฟอรัสที่เป็นประโยชน์ต่ำมาก โพแทสเซียมที่สกัดได้สูงมากในดินบนและสูงในดินล่าง แคลเซียมในดินบนมีค่าปานกลางและมีค่าต่ำในดินล่าง แมgnีเซียมในดินบนมีค่าสูงและปานกลางในดินล่าง โซเดียมมีค่าอยู่ในระดับต่ำตลอดชั้นดิน

ในชั้นดินลึก 200 เซนติเมตร ของพื้นที่หมู่บ้านแม่ไคร้และหมู่บ้านปางมะโอล ปริมาณเฉลี่ยของอินทรีย์วัตถุสะสม เท่ากับ 233.74 และ $184.11 \text{ Mg ha}^{-1}$ ปริมาณคาร์บอน 135.55 และ $106.77 \text{ Mg ha}^{-1}$ ในโตรเจนทั้งหมด 11847.02 และ $9206.12 \text{ kg ha}^{-1}$ ฟอสฟอรัสที่เป็นประโยชน์ 18.74 และ 19.57 kg ha^{-1} ปริมาณที่สามารถสกัดได้ของโพแทสเซียม 2756.89 และ $3650.95 \text{ kg ha}^{-1}$ แคลเซียม 4051.13 และ $3971.46 \text{ kg ha}^{-1}$ แมgnีเซียม 1605.20 และ $252.84 \text{ kg ha}^{-1}$ และโซเดียม 255.81 และ $252.84 \text{ kg ha}^{-1}$ ตามลำดับ

ปริมาณมวลชีวภาพของต้นเมี่ยงในวนเกษตรพื้นที่หมู่บ้านแม่ไคร้และหมู่บ้านปางมะโอลมีค่าเท่ากับ 2.77 และ 2.19 Mg ha^{-1} ตามลำดับ ขณะที่ปริมาณมวลชีวภาพของพื้นที่ไม้ป่า มีค่า 255.28 และ $160.53 \text{ Mg ha}^{-1}$ คำนวณเป็นปริมาณคาร์บอนสะสมในมวลชีวภาพของพื้นที่ทั้งหมดของพื้นที่หมู่บ้านแม่ไคร้ เท่ากับ $127.53 \text{ Mg ha}^{-1}$ ซึ่งมากกว่าพื้นที่หมู่บ้านปางมะโอล (80.40 Mg ha^{-1}) และเป็นปริมาณคาร์บอนสะสมในต้นเมี่ยงของหมู่บ้านแม่ไคร้และหมู่บ้านปางมะโอล เท่ากับ 1.35 และ 1.07 Mg ha^{-1} ตามลำดับ (ร้อยละ 1.06 และ 1.33 ของปริมาณคาร์บอนทั้งหมดในมวลชีวภาพพื้นที่)

ปริมาณการกักเก็บธาตุอาหารในมวลชีวภาพในระบบวนเกษตรของพื้นที่หมู่บ้านแม่ไคร้มีปริมาณที่มากกว่าพื้นที่หมู่บ้านปางมะโอลจากการมีปริมาณมวลชีวภาพที่มากกว่า โดยที่ระบบวนเกษตรหมู่บ้านแม่ไคร้มีปริมาณการกักเก็บในโตรเจน ฟอสฟอรัส โพแทสเซียม แคลเซียม และแมgnีเซียมในมวลชีวภาพ เท่ากับ 185.20 , 22.54 , 92.02 , 368.33 และ 55.42 kg ha^{-1} ตามลำดับ ซึ่งมากกว่าพื้นที่หมู่บ้านปางมะโอล (117.59 , 14.08 , 58.37 , 232.06 และ 34.99 kg ha^{-1} ตามลำดับ)

ปริมาณการการกักเก็บน้ำในต้นเมี่ยงของพื้นที่หมู่บ้านแม่ไคร้และหมู่บ้านปางมะโอลมีค่าเท่ากับ 2.81 และ $3.25 \text{ m}^3 \text{ ha}^{-1}$ ขณะที่ปริมาณการกักเก็บน้ำในพื้นที่ไม้ป่าค่าสูงถึง 275.31 และ $172.50 \text{ m}^3 \text{ ha}^{-1}$ ต้นเมี่ยงสามารถกักเก็บน้ำได้เพียงร้อยละ 1.01 และ 1.85 ของปริมาณน้ำทั้งหมด ในมวลชีวภาพพื้นที่ ปริมาณการกักเก็บน้ำในดินลึก 2 เมตร ของพื้นที่หมู่บ้านแม่ไคร้ และหมู่บ้านปาง

มะโ-io เท่ากับ 9281.38 และ $9233.94 \text{ m}^3 \text{ ha}^{-1}$ ตามลำดับ ปริมาณการกักเก็บน้ำ วันที่ 12 กรกฎาคม พ.ศ. 2556 ซึ่งอยู่ในช่วงกลางฤดูฝน มีค่าเท่ากับ $6814.31 \text{ m}^3 \text{ ha}^{-1}$ และ $6144.69 \text{ m}^3 \text{ ha}^{-1}$ ตามลำดับ (ร้อยละ 73.42 และ 66.54 ของปริมาณการกักเก็บน้ำสูงสุด)

ระบบนิเวศวนเกษตรสวนเมี่ยงในพื้นที่หมู่บ้านแม่ไคร้มีปริมาณการกักเก็บคาร์บอน เท่ากับ $42.09 \text{ Mg rai}^{-1}$ ($263.08 \text{ Mg ha}^{-1}$) ซึ่งมากกว่าพื้นที่หมู่บ้านปางมะโ-io ($29.95 \text{ Mg rai}^{-1}$, $187.17 \text{ Mg ha}^{-1}$) ปริมาณการกักเก็บในโตรเจนของพื้นที่หมู่บ้านแม่ไคร้มีค่า 2.08 Mg rai^{-1} (13.03 Mg ha^{-1}) ซึ่งมากกว่าพื้นที่หมู่บ้านปางมะโ-io (1.59 Mg rai^{-1} , 9.94 Mg ha^{-1}) ปริมาณการกักเก็บธาตุอาหารอื่นๆ ในระบบนิเวศ ประกอบด้วยปริมาณทั้งหมดในมวลชีวภาพพืชและปริมาณที่สามารถสกัดได้ในดิน พบว่า ฟอสฟอรัสในพื้นที่หมู่บ้านแม่ไคร้มและหมู่บ้านปางมะโ-io มีค่า $26.04 \text{ kg rai}^{-1}$ ($162.77 \text{ kg ha}^{-1}$) และ $17.21 \text{ kg rai}^{-1}$ ($107.59 \text{ kg ha}^{-1}$) โพแทสเซียมมีค่า $535.16 \text{ kg rai}^{-1}$ ($3344.75 \text{ kg ha}^{-1}$) และ $642.52 \text{ kg rai}^{-1}$ ($4015.78 \text{ kg ha}^{-1}$) แคลเซียมมีค่า $1024.72 \text{ kg rai}^{-1}$ ($6404.49 \text{ kg ha}^{-1}$) และ $867.49 \text{ kg rai}^{-1}$ ($5421.83 \text{ kg ha}^{-1}$) ขณะที่แมกนีเซียมมีค่า $313.47 \text{ kg rai}^{-1}$ ($1959.16 \text{ kg ha}^{-1}$) และ $353.97 \text{ kg rai}^{-1}$ ($2212.34 \text{ kg ha}^{-1}$) ตามลำดับ ปริมาณธาตุอาหารเหล่านี้พื้นที่บ้านแม่ไคร้มีมากกว่าบ้านปางมะโ-io

ระบบนิเวศวนเกษตรสวนเมี่ยงสามารถกักเก็บน้ำไว้ในมวลชีวภาพของพืชและในดิน พบว่า พื้นที่หมู่บ้านแม่ไคร้มีศักยภาพการกักเก็บน้ำได้สูงสุด เท่ากับ $1529.52 \text{ m}^3 \text{ rai}^{-1}$ ($9559.51 \text{ m}^3 \text{ ha}^{-1}$) ซึ่งมากกว่าพื้นที่หมู่บ้านปางมะโ-io ที่มีค่า เท่ากับ $1505.54 \text{ m}^3 \text{ rai}^{-1}$ ($9409.63 \text{ m}^3 \text{ ha}^{-1}$) โดยมีปริมาณการกักเก็บในมวลชีวภาพของพืชพันแปรระหว่าง $28.11-44.50 \text{ m}^3 \text{ rai}^{-1}$

ระบบนิเวศวนเกษตรสวนเมี่ยงจึงสามารถกักเก็บคาร์บอน ธาตุอาหารและน้ำได้มาก พอสมควร ซึ่งจะเป็นผลดีต่อระบบนิเวศบนพื้นที่ดินน้ำบนที่สูง เพื่อช่วยลดปัญหาสภาวะโลกร้อน การเกิดน้ำท่วมบ่ำ ความแห้งแล้งและปลดปล่อยน้ำลงสู่ล้ำธาร ซึ่งเป็นผลดีต่อวิถีชีวิตของชุมชนบนพื้นที่สูงและพื้นที่ด้านล่าง

Thesis Title Ecological Influences of Highland Agroforest on Carbon, Nutrient and Water Storages in Pa Pae Sub-district, Mae Taeng District, Chiang Mai Province

Author Mr. Werapat Suwanwong

Degree Master of Science (Agriculture) Soil Science

Thesis Advisory Committee

Assoc. Prof. Dr. Soontorn Khamyong

Advisor

Dr. Niwat Anongrak

Co-advisor

ABSTRACT

The ecological influences of a tea-based highland agroforest on storages of carbon, nutrients and water in Pa Pae sub-district, Mae Taeng district, Chiang Mai province were studied. Two sites were selected, Mae Khrai (Site 1) and Pang Ma O (Site 2) villages. Five sampling plots, each of size $40 \times 40 \text{ m}^2$, were used for vegetation survey in plant communities. The stem girths at 1.3 m above ground and heights of all tree species of height $\geq 1.5 \text{ m}$ were measured in these plots. Densities of tea in the agroforest of Site 1 varied between 36 and 166 tree rai $^{-1}$. The species richness of forest trees varied among plots, 12-27 species with a total of 47 tree species (44 genera, 30 families), and had densities of 15 to 59 tree rai $^{-1}$. As for Site 2, the species richness varied between 16-31 species with a total of 66 species (59 genera, 36 families), and densities of 34 to 74 tree rai $^{-1}$. The dominant trees in Site 1 were mainly *Schima wallichii* and *Lagerstroemia tomentosa* whereas *Fernandoa adenophylla*, *S. wallichii* and *Castanopsis ferox* were dominated in Site 2. The species diversity using Shannon-Wiener Index (SWI) was higher in Site 1 (2.06), and lower in Site 2 (1.87). Three individuals of tea were cut for making allometric equations. The biomass of shade trees was calculated using allometric equations of Tsutsumi *et al.* (1983).

Soils in agroforest of Site 1 (Mae Khrai) and Site 2 (Pang Ma O) were the same type with similar physical and chemical properties. However, they were somewhat difference of water storage in subsoils. The soils were more than 200 cm in depth, and with 2-5 cm organic layers.

The developing soil profiles were A-BA-Bt with the high clay accumulation in subsoils, and classified into Order Ultisols, Suborder Humults. Bulk densities in the surface soil were moderately low to low, and moderate to moderately low in subsoils. Textures in the surface soils were sandy clay, sandy clay loam and sandy loam whereas those in subsoils were sandy clay loam, clay loam and clay. Surface soils had moderately acid to strongly acid while subsoils were slightly acid. The high contents of organic matter and carbon were found in surface soils and lower in subsoils whereas nitrogen contents were moderately low to medium, and very low in subsoils. Available phosphorus concentrations were very low throughout soil profiles. Extractable potassium contents were very high in surface soil and high in subsoil whereas the extractable calcium and magnesium were medium in surface soil and low in subsoil, and the extractable sodium was very low throughout the soil profiles.

Within 200 cm soil depth, the amounts of nutrients in Site 1 and Site 2 were different, organic matter : 233.74 and 184.11 Mg ha⁻¹, carbon : 135.55 and 106.77 Mg ha⁻¹, total nitrogen : 11847.02 and 9206.12 Mg ha⁻¹, available phosphorus : 18.74 and 19.57 kg ha⁻¹, extractable potassium : 2756.89 and 3650.95 kg ha⁻¹, extractable calcium : 4051.13 !! ດະ 3971.46 kg ha⁻¹, extractable magnesium : 1605.20 !! ດະ 252.84 kg ha⁻¹, and extractable sodium : 255.81 !! ດະ 252.84 kg ha⁻¹, respectively.

Biomass amounts of tea in Site 1 and Site 2 were 2.77 and 2.19 Mg ha⁻¹, respectively, whereas those of forest species were in the following order: 255.28 and 160.53 Mg ha⁻¹. The total carbon storage in plant biomass of Site 1 was 127.53 Mg ha⁻¹, higher than Site 2 (80.40 Mg ha⁻¹). The carbon amounts stored in tea biomass of the two sites were 1.35 !! ດະ 1.07 Mg ha⁻¹, respectively (1.06% and 1.33% of total carbon storage in plant biomass).

Nutrients stored in plant biomass of agroforests in the two sites were different. Nitrogen, phosphorus, potassium, calcium and magnesium in Site 1 were 185.20, 22.54, 92.02, 368.33 and 55.42 kg ha⁻¹, respectively, while those in Site 2 were in the following order : 117.59, 14.08, 58.37, 232.06 and 34.99 kg ha⁻¹.

Amounts of water storage in tea biomass of Site 1 and Site 2 were calculated to 2.81 and 3.25 m³ ha⁻¹, respectively, whereas those of forest species were in the following order: 275.31 and 172.50 Mg ha⁻¹. The tea in these sites could store the water amounts of only 1.01% and 1.85% of the total biomass water. The maximum potentials of soil water storages within 2 m depth of the

two sites were measured at 9281.38 and 9233.94 m³ ha⁻¹, respectively. The water storages in soils on 12th July 2013 (middle rainy season) were determined to 6814.31 m³ ha⁻¹ and 6144.69 m³ ha⁻¹, respectively, (73.42% and 66.54% of the maximum capacity).

Carbon storage in agroforest ecosystems of Site 1 was calculated to 42.09 Mg rai⁻¹ (263.08 Mg ha⁻¹) that was higher than Site 2 (29.95 Mg rai⁻¹, 187.17 Mg ha⁻¹). Nitrogen storage in Site 1 was 2.08 Mg rai⁻¹ (13.03 Mg ha⁻¹), higher than Site 2 (1.59 Mg rai⁻¹, 9.94 Mg ha⁻¹). As for other nutrients, the total amounts in plant biomass and extractable amounts in soil were considered, phosphorus in Site 1 and Site 2 : 26.04 kg rai⁻¹ (162.77 kg ha⁻¹) and 17.21 kg rai⁻¹ (107.59 kg ha⁻¹), potassium : 535.16 kg rai⁻¹ (3344.75 kg ha⁻¹) and 642.52 kg rai⁻¹ (4015.78 kg ha⁻¹), calcium : 1024.72 kg rai⁻¹ (6404.49 kg ha⁻¹) and 867.49 kg rai⁻¹ (5421.83 kg ha⁻¹), magnesium : 313.47 kg rai⁻¹ (1959.16 kg ha⁻¹) and 353.97 kg rai⁻¹ (2212.34 kg ha⁻¹). The amounts of these nutrients in soil of Site 1 were higher than those in Site 2.

Water storage in the agroforest ecosystem was occurred mainly in plant biomass and soil system. The maximum water capacity of agroforest in Site 1 was $1529.50 \text{ m}^3 \text{ rai}^{-1}$ (9559.51 $\text{m}^3 \text{ ha}^{-1}$) whereas that in Site 2 was $1505.54 \text{ m}^3 \text{ rai}^{-1}$ (9409.63 $\text{m}^3 \text{ ha}^{-1}$). The water stored in plant biomass in agroforests of Site 1 and Site 2 varied between $28.11\text{--}44.50 \text{ m}^3 \text{ rai}^{-1}$.

The tea-based agroforest ecosystems could store the appreciable amounts of carbon, nutrients and water that beneficial to the highland watershed ecosystem as reducing global warming problem, flash flood, drought and water supply for the villager livelihood in highland and lower land communities.