สารบัญ

		หน้า
กิตติกร	รมประกาศ	ค
บทคัดย่	่อภาษาไทย	9
ABSTR	RACT	ฉ
สารบัญ	ตาราง	IJ
สารบัญ	กาพ	IJ
บทที่ 1	บทนำ	
	1.1 ความสำคัญและที่มาของงานวิจัย	1
	1.2 วัตถุประสงค์ของงานวิจัย	11
บทที่ 2	ทฤษฎี	
	2.1 เซลล์แสงอาทิตย์ชนิคสีย้อมไวแสง (Dye-sensitized Solar Cells, DSSCs)	12
	2.2 สมบัติของสารซิงก์ออกไซค์ (ZnO properties)	15
	2.3 สมบัติขิงสีย้อมอีโอซินวาย (Eosine-Y)	16
	2.4 ฟิล์มบางออกไซค์นำไฟฟ้าโปร่งแสง (transparent conducting oxide thin	
	film,TCO)	18
	2.5 ตัวรับแสง (photo sensitizer)	18
	2.6 ค่ามวลอากาศ (air mass)	19
	2.7 การวัคประสิทธิภาพของเซลล์แสงอาทิตย์ชนิคสีย้อม	21
	2.8 อิมพิแคนซ์ทางเคมีไฟฟ้าสเปกโทรสโคปี (electrochemical impedance	
	spectroscopy, EIS)	22
	2.9 กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (scanning electron microscope, SEM)	26
	2.10 รามานสเปกโทรสโคปี (Raman spectroscopy)	28
บทที่ 3	วัสคุ อุปกรณ์ และวิธีการทคลอง	
	3.1 สารเคมีที่ใช้ในการทดลอง	32

3.2 วัสดุอุปกรณ์ และเครื่องมือที่ใช้ในการทดลอง	33
3.3 วิธีการทดลอง	39
3.3.1 การเตรียมเคาน์เตอร์อิเล็กโทรด	40
3.3.2 การเตรียมสารละลายอิเล็กโทรไลต์	40
3.3.3 การเตรียมสี่ย้อมไวแสง (Eosin-Y)	41
3.3.4 การเตรียม ซิงก์ออกไซด์เตตระพอด	41
3.3.5 การศึกษาชั้นความหนาที่เหมาะสมของ ซิงก์ออกไซค์อนุภาคนาโน, ผงซิงก์	
ออกไซค์ และซิงก์ออกไซค์เตระพอค เพื่อใช้เป็นโฟโตอิเล็กโทรค ในการสร้าง	
เซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง ที่ความหนา 1 – 4 ชั้นเทป เพื่อใช้อ้างอิง	42
3.3.6 การศึกษาอัตราส่วนความหนาที่เหมาะสม ของซิงก์ออกไซค์แต่ละชั้นฟิล์ม	
เพื่อใช้เป็นโฟโตอิเล็กโทรดของเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง แบบ	
ฟิล์มสองชั้น ที่อัตราส่วนความหนา 1:1, 1:2, 1:3, 2:2 และ 3:1 โดยใช้ชั้น	
เทปเป็นตัวควบคุม	46
3.3.7 การศึกษาอัตราส่วนผสมของซิงก์ออกไซค์ เพื่อใช้เป็นโฟโตอิเล็กโทรค	
ของเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง ที่มีอัตราส่วนผสมเป็น 1:3 , 1:1	
และ 3:2	49
บทที่ 4 ผลการทคลองและว่เคราะหผลการทคลอง	
4.1 ลักษณะทางกายภาพ และสมบัติทางแสงของซึ่งก่ออกไซด์อนุภาคนาโน,	
ผงซึ่งก้ออกใซด์ และซึ่งก้ออกใซด์เตระพอด	51
4.2 ผลการศึกษาชั้นความหนาที่เหมาะสมของ ซึ่งก่ออกไซค่อนุภาคนาโน,	
ผงซิงก์ออกไซค์ และซิงก์ออกไซค์เตระพอค เพื่อใช้เป็นโฟโตอิเล็กโทรค ในการ	
สร้างเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสง ที่ความหนา 1 – 4 ชั้นเทป เพื่อใช้อ้างอิง	53
4.3 ผลการศึกษาอัตราส่วนความหนาที่เหมาะสม ของซิงก์ออกไซด์แต่ละชั้นฟิล์ม	
เพื่อประยุกต์ใช้เป็นโฟโตอิเล็กโทรคของเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสง	
แบบฟิล์มสองชั้น ที่อัตราส่วนความหนา 1:1, 1:2, 1:3, 2:2 และ 3:1 โดยใช้	
ชั้นเทปเป็นตัวควบกุม และใช้ซิงก์ออกไซค์อนุภาคนาโนเป็นฟิล์มชั้นล่าง	59
4.3.1 ฟิล์มสองชั้นของ ซิงก์ออกไซด์อนุภาคนาโน / ผงซิงก์ออกไซด์	59
4.3.2 ฟิล์มสองชั้นของ ซิงก์ออกไซค์อนุภาคนาโน / ซิงออกไซค์เตตระพอค	64

4.4 ผลการศึกษาอัตราส่วนผสมของซิงก์ออกไซด์ เพื่อใช้เป็นโฟโตอิเล็กโทรด	
ของเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสง ที่มีอัตราส่วนผสมเป็น 1:3,1:1 และ 3:2	69
บทที่ 5 สรุปผลการทคลองและข้อเสนอแนะ	
5.1 สรุปผลการทดลอง	75
5.1.1 ลักษณะทางกายภาพ และสมบัติทางแสงของซิงก์ออกไซค์อนุภาคนาโน,	
ผงซิงก์ออกไซด์ และซิงก์ออกไซด์เตระพอด	75
5.1.2 ผลการศึกษาชั้นความหนาที่เหมาะสมของ ซิงก์ออกไซค์อนุภาคนาโน,	
ผงซิงก์ออกไซด์ และซิงก์ออกไซด์เตระพอด เพื่อใช้เป็นโฟโตอิเล็กโทรด	
ในการสร้างเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง ที่ความหนา 1 – 4 ชั้นเทป	
เพื่อใช้อ้างอิง	75
5.1.3 ผลการศึกษาอัตราส่วนความหนาที่เหมาะสม ของซิงก์ออกไซด์ แต่ละ	
ชั้นฟิล์ม เพื่อประยุกต์ใช้เป็นโฟโตอิเล็กโทรดของเซลล์แสงอาทิตย์ชนิด	
สีย้อมไวแสง แบบฟิล์มสองชั้น ที่อัตราส่วนความหนา 1:1, 1:2, 1:3, 2:2	
และ 3:1 โดยใช้ชั้นเทปเป็นตัวกวบกุม และใช้ซิงก์ออกไซด์อนุภาคนาโน	
เป็นฟิล์มชั้นล่าง	
5.1.3.1 ฟิล์มสองชั้นของ ซิงก์ออกไซค์อนุภาคนาโน / ผงซิงก์ออกไซค์	76
5.1.3.2 ฟิล์มสองชั้นของ ซิงก์ออกไซด์อนุภาคนาโน / ซิงก์ออกไซด์	
เตตระพอด	76
5.1.4 ผลการศึกษาอัตราส่วนผสมของซิงก์ออกไซด์ เพื่อใช้เป็นโฟโตอิเล็กโทรด	
ของเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสง ที่มีอัตราส่วนผสมเป็น 1:3 , 1:1	
และ 3:2	77
5.2 ข้อเสนอแนะ	78
บรรณานุกรม	79
ภาคผนวก	
	82
ภาคผนวก ข	91
ประวัติผู้เขียน	93

สารบัญตาราง

ตารางที่ 1.1	ค่าพารามิเตอร์ทางไฟฟ้าของเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง	
	ซิงก์ออกไซค์แต่ละ โครงสร้าง	6
ตารางที่ 1.2	ค่าพารามิเตอร์ทางไฟฟ้าของเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสงไททาเนียม	
	ใดออกไซด์ แบบเป็นฟิล์มสองชั้น เปรียบเทียบกับที่เป็นฟิล์มชั้นเดียว	9
ตารางที่ 1.3	ค่าพารามิเตอร์ทางไฟฟ้าของเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสงไททาเนียม	
	ใดออกไซด์ แบบเป็นฟิล์มผสม เปรียบเทียบกับที่เป็นฟิล์มแบบไม่ผสม	11
ตารางที่ 2.1	สมบัติกายภาพบางประการของซิงก์ออกไซด์	16
ตารางที่ 2.2	สมบัติของ Eosin-Y	17
ตารางที่ 4.1	ค่าพารามิเตอร์ทางไฟฟ้าทั้งหมด ของเซลล์แสงอาทิตย์ที่มีโฟโตอิเล็กโทรด เป็นซิงก์ออกไซด์แบบต่างๆ ที่ความหนา 1 – 4 ชั้นเทป	
	a) มีผงซิงก์ออกไซด์เป็นฐาน b) มีซิงก์ออกไซด์อนุภาคนาโนเป็นฐาน และ	
	c) มีซิงก์ออกไซด์เตตระพอดเป็นฐาน	56
ตารางที่ 4.2	สรุปประสิทธิภาพของเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสงที่ความหนา 1 - 4 ชั้น	57
ตารางที่ 4.3	ประสิทธิภาพ และค่าพารามิเตอร์ทางไฟฟ้า ของเซลล์แสงอาทิตย์ชนิดสีย้อม	
	ไวแสง ที่มีโฟโตอิเล็กโทรดเป็นซิงก์ออกไซด์แบบต่างๆ ที่ความหนา 2 ชั้นเทป	58
ตารางที่ 4.4	ค่าพารามิเตอร์ทางไฟฟ้า ของเซลล์แสงอาทิตย์ ชนิคสีย้อมไวแสงแบบฟิล์ม สองชั้น NP/P	61
ตารางที่ 4.5	ค่าพารามิเตอร์ทางไฟฟ้า ของฟิล์มสองชั้น NP/P เทียบกับแบบชั้นเคียวปกติ	63
ตารางที่ 4.6	ค่าพารามิเตอร์ทางไฟฟ้า ของเซลล์แสงอาทิตย์ ชนิคสีย้อมไวแสงแบบฟิล์ม	
	สองชั้น NP/T	66
ตารางที่ 4.7	ค่าพารามิเตอร์ทางไฟฟ้า ของฟิล์มสองชั้น NP/T เทียบกับแบบชั้นเดียวปกติ	68
ตารางที่ 4.8	ประสิทธิภาพของเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสงที่มีซิงก์ออกไซค์ผสม	
	(NP+P) เป็นโฟโตอิเล็กโทรด เทียบกับแบบไม่ผสม ที่ความหนา 1 - 4 ชั้นเทป	69
ตารางที่ 4.9	ค่าพารามิเตอร์ทางไฟฟ้า ของฟิล์มผสม NP+P เทียบกับแบบไม่ผสม	72
ตารางที่ 5.1	การเปรียบเทียบประสิทธิภาพเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสงกับงานวิจัยอื่นๆ	78

สารบัญภาพ

ภาพที่ 1.1 โครงสร้างซิงก์ออกไซค์เผาที่อุณหภูมิ a) 300 °C, b) 400 °C, c) 500 °C และ d) 600 °	C 3
ภาพที่ 1.2 ค่าความหนาแน่นกระแสไฟฟ้า ($J_{ m sc}$) กับความต่างศักย์ไฟฟ้า ($V_{ m oc}$) ของเซลล์	
แสงอาทิตย์ชนิดสีย้อมไวแสงที่ได้ เมื่อเผาในอุณหภูมิต่างๆ	4
ภาพที่ 1.3 ค่า J-V characteristics curve ของฟิล์มซิงก์ออกไซค์ ที่มีความหนา 40 µm	4
ภาพที่ 1.4 โครงสร้างของซิงก์ออกไซค์แบบต่างๆ a) ZnO-nanobelt, b) ZnO nano-tetrapod,	
c) ZnO-powder	5
ภาพที่ 1.5 ค่า J-V characteristics curves ของฟิล์มซิงก์ออกไซค์ แต่ละ โครงสร้าง	6
ภาพที่ 1.6 โครงสร้างของ TiO ₂ a) TiO ₂ nanocrystal , b) TiO ₂ nanotube	
c) TiO ₂ ที่วิเคราะห์ด้วย X-Ray Diffractometer	7
ภาพที่ 1.7 ภาพ SEM a) ภาพแสดงภาคตัดขวางของฟิล์มสองชั้น ,	
b) ผิวหน้าของ TiO2 nanotube c) ผิวหน้าของ TiO2 nanopaticle	8
ภาพที่ 1.8 J-V characteristics curves	9
ภาพที่ 1.9 โครงสร้างของฟิล์มผสม TiO ₂ ที่ผสมกันระหว่างผลึกนาโน กับแบบผงปกติ	
ในอัตราส่วนต่างๆ a) อัตราส่วน 0.8:0.2 , b) อัตราส่วน 0.7:0.3 ,	
c) อัตราส่วน 0.6:0.4, d) อัตราส่วน 0.5:0.5	10
ภาพที่ 1.10 J-V characteristics curves	10
ภาพที่ 2.1 โครงสร้างทั่วไปของเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง	12
ภาพที่ 2.2 ระดับพลังงาน และการเกลื่อนที่ของอิเล็กตรอนในเซลล์แสงอาทิตย์ชนิดสีย้อม	14
ภาพที่ 2.3 โครงสร้าง wurtzite hexagonal ของสารกึ่งตัวนำซิงก์ออกไซค์	-15
ภาพที่ 2.4 โครงสร้างโมเลกุลของ Eosin-Y	16
ภาพที่ 2.5 ช่วงการดูดกลื่นพลังงานของ Eosin-Y	17
ภาพที่ 2.6 การเปรียบเทียบระดับพลังงานของสีย้อมไวแสงและแถบนำไฟฟ้าของซิงก์ออกไซด์	, 18
ภาพที่ 2.7 ค่ามวลอากาศ 2005 ม 2006 ยายาง	19
ภาพที่ 2.8 สเปกตรัมของแสงมาตรฐานที่ ASTM กำหนด	20

ภาพที่ 2.9	ความสัมพันธ์ระหว่างความหนาแน่นกระแสไฟฟ้า กับความต่างศักย์ไฟฟ้าของ	
	เซลล์แสงอาทิตย์	21
ภาพที่ 2.10	วงจรไฟฟ้าที่ใช้ในการวัดค่ากระแสไฟฟ้าวงจรปิดและศักย์ไฟฟ้าวงจรเปิด	22
ภาพที่ 2.11	ศักย์ไฟฟ้าและกระแสไฟฟ้าพึงก์ชันไซน์ในวงจรกระแสสลับที่มีความต่างเฟส ϕ	23
ภาพที่ 2.12	a) วงจรตัวต้านทานขนานกับตัวเก็บประจุ และ b) Nyquist plot ของวงจร a)	24
ภาพที่ 2.13	Nyquist plot ทั่วไปของเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสง	25
ภาพที่ 2.14	วงจรวัดอิมพิแดนซ์ทางเกมีไฟฟ้าสเปกโทรสโกปี	25
ภาพที่ 2.15	ส่วนประกอบของกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด	27
ภาพที่ 2.16	แผนภาพระดับพลังงานของการกระเจิงแบบ เรลีย์ ส โตกรามาน และ	
	แอนติส โตกรามาน	29
ภาพที่ 2.17	สเปกตรัมรามานของซิงก์ออกไซด์	30
ภาพที่ 2.18	ส่วนประกอบพื้นฐานของเครื่องรามานสเปกโทรมิเตอร์	31
ภาพท 3.1	ลกษณะของซงกออก โซด แบบตาง ๆ	32
ภาพท 3.2 ส่	ลกษณะผง Eosin-Y ทโซเปนสยอม	33
ภาพท 3.3 ส่	ลกษณะกระจก FTO	33
ภาพที่ 3.4 ส่	ถักษณะทิศัคกระจก 	34
ภาพที่ 3.5 	ลักษณะครกบดสารพร้อมที่บด	34
ภาพที่ 3.6 เ	ลักษณะเครื่องชั่งสาร	35
ภาพที่ 3.7	ลักษณะเครื่อง ultrasonic cleaner	35
ภาพที่ 3.8	ลักษณะเครื่อง hotplate stirrer	36
ภาพที่ 3.9	ลักษณะของเครื่องเป่าลมร้อน	36
ภาพที่ 3.10	ลักษณะของเตาเผาสาร	37
ภาพที่ 3.11	ลักษณะเครื่องวัดประสิทธิภาพเซลล์แสงอาทิตย์	38
ภาพที่ 3.12	ส่วนประกอบของเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสง	39
ภาพที่ 3.13	แผนผังอุณหภูมิที่ใช้ในการเผาเกาน์เตอร์อิเล็ก โทรด	40
ภาพที่ 3.14	สีข้อมไวแสง Eosin-Y ที่เตรียมได้	41
ภาพที่ 3.15	เตาเผาแบบท่อ สำหรับสังเคราะห์ ซิงก์ออกไซด์เตตระพอด	42
ภาพที่ 3.16	กระจกนำไฟฟ้าที่ถูกสกรีนด้วยซิงก์ออกไซด์ทับลงไป	43

อาพที่ 2.17 แพลล์แสงอาทิตย์ที่แตรียงได้ และพร้องเฉรงเวไปพดสองเประสิทธิอาพต่อไป	44
111MN 221/ נסנטוננוסם וואוסטנאוסט נא נונפאוסטספיר בחטאננסר ביפט אדו וואא גרב	
ภาพที่ 3.18 โครงสร้างเซลล์แสงอาทิตย์ที่เตรียมได้	44
ภาพที่ 3.19 แผนผังการเตรียมเซลล์แสงอาทิตย์ ที่ใช้ผงซิงก์ออกไซค์, ซิงก์ออกไซค์อนุภาคนาโน	
และ ซิงก์ออกไซค์เตตระพอค เป็นโฟโตอิเล็กโทรค ที่ความหนา 1 - 4 ชั้นเทป	45
ภาพที่ 3.20 โครงสร้างเซลล์แสงอาทิตย์ โคยมีขั้วอิเล็กโทรคเป็นฟิล์มสองชั้น	47
ภาพที่ 3.21 แผนผังการศึกษาอัตราส่วนความหนาที่เหมาะสม ของซิงก์ออกไซด์แต่ละชั้นฟิล์ม	
เพื่อใช้เป็นขั้วโฟโตอิเล็กโทรด ของเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง โดยมี	
อัตราส่วนความหนาของชั้นฟิล์มเป็น 1:1, 1:2, 1:3, 2:2 และ 3:1	48
ภาพที่ 3.22 การศึกษาอัตราส่วนผสมของซิงก์ออกไซด์อนุภาคนาโนกับผงซิงก์ออกไซด์	
เพื่อใช้เป็นโฟโตอิเล็กโทรด ของเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง โดยมี	
อัตราส่วนผสมเป็น 1:3 , 1:1 และ 3:2	50
ภาพที่ 4.1 ภาพถ่าย SEM แสดงลักษณะทางกายภาพของ a) ซึ่งก้ออกไซด้อนุภาคนาโน	
b) ผงซิงก์ออกไซด์ และ c) ซิงก์ออกไซด์เตตระพอด	51
ภาพที่ 4.2 รามานสเปกตรัมของ ซิ่งก์ออกไซด์อนุภาคนาโน, ผงซิ่งก์ออกไซด์ และ	
ซิงก์ออกไซล์เตตระพอด	52
ภาพที่ 4.3 a) J-V characteristic curves ของฟิล์มผงซิงก์ออกไซค์	
b) อิมพิแคนซ์ทางเคมีไฟฟ้าสเปกโทรสโคปี ของฟิล์มผงซิงก์ออกไซด์	53
ภาพที่ 4.4 a) J-V characteristic curves ของฟิล์มซิงก์ออกไซด์อนุภาคนาโน	
b) อิมพิแคนซ์ทางเคมีไฟฟ้าสเปกโทรสโคปี ของฟิล์มซิงก์ออกไซค์อนุภาคนาโน	54
ภาพที่ 4.5 a) J-V characteristic curves ของฟิล์มซิงก์ออกไซด์เตตระพอด	
b) อิมพิแคนซ์ทางเคมีไฟฟ้าสเปกโทรสโคปี ของฟิล์มซิงก์ออกไซค์เตตระพอค	55
ภาพที่ 4.6 สรุปประสิทธิภาพของเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง ที่ช่วงความหนา	
1- 4 ชั้นเทป	57
ภาพที่ 4.7 ความสัมพันธ์ระหว่างความหนาแน่นกระแสไฟฟ้ากับความต่างศักย์ไฟฟ้า	
ของเซลล์แสงอาทิตย์ชนิคสีย้อมไวแสง ที่มีโฟโตอิเล็กโทรคเป็นซิงก์ออกไซค์	
all uuuning onts reserve	58
ภาพที่ 4.8 a) J-V characteristic curves ของฟิล์มสองชั้นซิงก์ออกไซด์ NP/P	
b) อิมพิแคนซ์ทางเคมีไฟฟ้าสเปกโทรสโคปี ของฟิล์มสองชั้น NP/P	60

ภาพที่ 4.9 a) J-V characteristic curves ของฟิล์มสองชั้น NP/P เทียบกับแบบชั้นเดียวปกติ	
b) อิมพิแคนซ์ทางเคมีไฟฟ้าสเปกโทรสโคปี ของฟิล์มสองชั้น NP/P เทียบกับ	
แบบชั้นเดียวปกติ	62
ภาพที่ 4.10 ภาพถ่าย SEM แสดงลักษณะทางกายภาพ ของภาคตัดขวางบริเวณรอยต่อของ	
ฟิล์มสองชั้นของซิงก์ออกไซด์ NP/P	63
ภาพที่ 4.11 a) J-V characteristic curves ของฟิล์มสองชั้น NP/T	
b) อิมพิแคนซ์ทางเคมีไฟฟ้าสเปกโทรสโคปี ของฟิล์มสองชั้น NP/T	65
ภาพที่ 4.12 a) J-V characteristic curves ของฟิล์มสองชั้น NP/T เทียบกับแบบชั้นเดียวปกติ	
b) อิมพิแคนซ์ทางเคมีไฟฟ้าสเปกโทรสโคปี ของฟิล์มสองชั้น NP/T เทียบกับ	
แบบชั้นเดียวปกติ	67
ภาพที่ 4.13 ภาพถ่าย SEM แสดงลักษณะทางกายภาพ ของภาคตัดขวางบริเวณรอยต่อของ	
ฟิล์มสองชั้นของซิงก์ออกไซด์ NP/T	68
ภาพที่ 4.14 ประสิทธิภาพของเซลล์แสงอาทิตย์ชนิดสีย้อมไวแสง ที่มีซิงก์ออกไซค์ผสม	
(NP+P) เป็นโฟโตอิเล็กโทรด ในอัตราส่วนต่างๆ ที่ช่วงความหนา 1 - 4 ชั้นเทป	70
ภาพที่ 4.15 a) J-V Characteristic Curves ของฟิล์มผสม NP+P เทียบกับแบบไม่ผสม	
b) อิมพิแคนซ์ทางเคมีไฟฟ้าสเปกโทรสโคปี ของฟิล์มผสม NP+P เทียบกับ	
แบบไม่ผสม	71
ภาพที่ 4.16 ภาพถ่าย SEM แสคงลักษณะทางกายภาพของฟิล์มผสมซิงออกไซค์อนุภาค	
นาโน กับผงซิงก์ออกไซค์ในอัตราส่วนต่างๆ a) อัตราส่วน 1:3	
b) อัตราส่วน 1:1 และ c) อัตราส่วน 3:2	73
ถาพที่ 5.1 การเปรียบเทียบประสิทธิกาพของเหลอ์แสงอาทิตย์หนิดสีย้อบไวแสงกับบาบ	

ภาพท 5.1 การเบรยบเทยบบระสทธภาพของเซลลแสงอาทตยชนคสยอม เวแสงกบงาน วิจัยอื่นๆ 78

Copyright[©] by Chiang Mai University All rights reserved