สารบาญ

หน้า

ค

9

จ

ល្ង

ฎ

Б

1

1

3

3

4

5

7

7

12

กิตติกรรมประกาศ บทคัดย่อภาษาไทย บทคัดย่ออังกฤษ สารบาญตาราง สารบาญรูป สัญลักษณ์และอักษรย่อ

บทที่ 1 บทนำ

- 1.1 ที่มาและความสำคัญของโครงการ
- 1.2 วัสคุนาโนทินไดออกไซด์
- 1.3 โลหะแทรนซิชัน
- 1.4 แก๊สเซ็นเซอร์
 - 1.4.1 ประเภทของแก๊สเซ็นเซอร์
- หลักการในการผลิตวัสดุนาโนโลหะออกไซด์โดยกระบวนการเฟลมสเปรย์ ไพโรลิซิส
- 1.6 สรุปสาระสำคัญจากเอกสารที่เกี่ยวข้อง
 - งานวิจัยที่เกี่ยวข้องในส่วนของการสังเคราะห์อนุภาคนาโนทิน ใดออกไซด์บริสุทธิ์และเจือด้วยโลหะชนิดต่างๆโดยวิธีเฟลมสเปรย์ ไพโรลิซิส
 - 1.6.2 งานวิจัยที่เกี่ยวข้องในการสังเคราะห์อนุภาคนาโนทินไดออกไซด์
 9
 บริสุทธิ์และเจือด้วยโลหะแทรนซิชันชนิดต่าง ๆ เพื่อใช้ทำเป็น
 - เซ็นเซอร์ โดยวิธีต่าง ๆ
- 1.7 วัตถุประสงค์ของการศึกษา
- 1.8 ขอบเขตการศึกษา
- บทที่ 2 ทฤษฎีที่เกี่ยวข้อง
 - 2.1 ทินไดออกไซด์

		2.1.1	สมบัติทางกายภาพ	14
		2.1.2	โครงสร้างทินไดออกไซด์	14
	2.2	แมงกานี	ิส	15
	2.3	ໂນຄືນດີນ	້າມ	15
	2.4	แก๊สไฮ	โครเจน	16
	2.5	แก๊สไฮโ	โครเจนซัลไฟค์	17
	2.6	แก๊สอะจี	ชิโตน	18
	2.7	แก๊สเอท	านอล	19
	2.8	แก๊สแอม	มโมเนีย	20
	2.9	กระบวเ	เการเฟลมสเปรย์ไพโรลิซิส	21
	2.10	การเตรีย	เมเซนเซอร์ โดยวิธีเคลือบหมุนเหวี่ยงกระจาย	22
	2.11	หลักการ	รเครื่องมือวิเคราะห์สมบัติของฟิล์มบาง	27
		2.11.1	การเลี้ยวเบนของรังสีเอกซ์	27
		2.11.2	หลักการทำงานของเครื่องเอกซ์เรย์ดิฟแฟรกชัน	28
		2.11.3	กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดและการกระจายตัว	30
			ด้วยรังสีเอกซ์	
		2.11.4	กล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน	33
		2.11.5	เครื่องมือวิเคราะห์พื้นที่ผิวจำเพาะบีอีที	36
		2.11.6	การวิเคราะห์ โดยเทคนิคสเปกโตรส โกปีของอนุภาค	39
			อิเล็กตรอนที่ถูกปลดปล่อยด้วยรังสีเอกซ์	
	2.12	ตัวตรวร	งวัดแก๊ส	41
		2.12.1	ประเภทของแก๊สเซนเซอร์	41
		2.12.2	หลักการทั่วไปในการตรวจวัดของแก๊สเซนเซอร์	42
		2.12.3	คุณสมบัติของแก๊สเซนเซอร์	43
บทที่ 3	วิธีกา	รทคลอง		47
	3.1	การสร้าง	มแผ่นรองรับที่ใช้เป็นอุปกรณ์หัวว ั ดแก๊ส	48
		3.1.1	การสร้างหน้ากากโดยวิธีการชุบเคลือบด้วยไฟฟ้า	48
		3.1.2	การทำขั้วไฟฟ้าโดยวิธีสปัตเตอริง	

	3.2	การสังเศ	าราะห์อนุภาคทินไดออกไซด์บริสุทธิ์และอนุภาคทิน	52
		ไดออกไ	lซค์ที่เจือด้วยโลหะชนิดอะลูมินาขนาดนาโน	
		โดยวิธีเา	ฟรมสเปรย์ใพโรลิซิส	
		3.2.1	สารเคมีและวัสดุ	52
		3.2.2	อุปกรณ์และเครื่องมือ	52
		3.2.3	วิธีการเตรียมสารละลายตั้งต้น	53
		3.2.4	กระบวนการสังเคราะห์อนุภาคนาโนทินไดออกไซด์โดย	54
			วิธีเฟรมสเปรย์ใพโรลิซิส	
		3.2.5	ขั้นตอนการปิคเครื่องเฟลมสเปรย์ใพโรลิซิสแบบฉุกเฉิน	55
	3.3	การเตรีย	มมเซนเซอร์ โดยวิชีเคลือบหมุนเหวี่ยงกระจาย	56
	3.4	เงื่อนไข	การทดสอบการตอบสนองของแก๊สเซนเซอร์ต่อสภาวะแวดล้อม	57
บทที่ 4	ผลกา	รทคลอง		59
	4.1	คุณสมา	บัติของอนุภาคนาโนทินไดออกไซด์บริสุทธิ์และที่เงือด้วยโลหะ	59
		ในกลุ่ม	แทรนซิชันแมงกานีส และ โมลิบดินัม	
		4.1.1	ผลการวิเคราะห์ลักษณะของเปลวไฟ	59
		4.1.2	ผลการวิเคราะห์โดยวิธีการเลี้ยวเบนของรังสีเอกซ์ของอนุภาคนาโน	62
		4.1.3	การวิเคราะห์ก่าพื้นผิวจำเพาะและการกำนวณขนาคอนุภานาโน	64
			โดยวิธีการดูดซับและคายแก๊สในโตรเจนโดยวิธีการ บีอีที	
		4.1.4	ผลการวิเคราะห์ขนาดของอนุภากจากกล้องจุลทรรศน์อิเล็กตรอน	67
			แบบส่องกราด	
		4.1.5	ผลการวิเคราะห์องค์ประกอบธาตุโดยการกระจายพลังงานของ	72
			รังสีเอกซ์และการกระจายพลังงานของรังสีเอกซ์	
		4.1.6	ผลการวิเคราะห์ขนาดอนุภากจากล้องจุลทรรศน์อิเล็กตรอนแบบ	75
			ส่องผ่าน	
	4.2	คุณสม	บัติของเซนเซอร์ฟิล์มบางทินไดออกไซค์บริสุทธิ์และที่เจือด้วยโลหะ	81
		ในกลุ่ม	แเทรนซิชันแมงกานีส และ โมลิบคินัม	
		4.2.1	สัณฐานวิทยาของเซนเซอร์ภายหลังการทดสอบเซนเซอร์	81
		4.2.2	ผลการวิเคราะห์ โดยวิธีการเลี้ยวเบนของรังสีเอกซ์ของเซนเซอร์	86
			ภายหลังการทดสอบเซนเซอร์	

պ

		4.2.3	ผลการวิเคราะห์ผง และตัวเซนเซอร์ของอนุภาคนาโน	89
			ทินไดออกไซด์ที่เจือด้วยแมงกานีสในปริมาณ 1 wt% และ	
			โมลิบดินัมในปริมาณ 2 wt% ด้วยเครื่องสเปกโตรสโคปีของอนุภาค	
			อิเล็กตรอนที่ถูกปลดปล่อยด้วยรังสีเอกซ์	
	4.3	คุณสม	บัติการตอบสนองต่อแก๊สสภาวะแวคล้อม	99
		4.3.1	คุณสมบัติการตอบสนองต่อแก๊สสภาวะแวคล้อมของเซนเซอร์ทิน	100
			ใดออกไซด์บริสุทธิ์และที่เจือด้วยแมงกานีส	
		4.3.2	คุณสมบัติการตอบสนองต่อแก๊สสภาวะแวคล้อมของเซนเซอร์ทิน	101
			ใดออกไซด์บริสุทธิ์และที่เจือด้วยโมลิบดินัม	
		4.3.3	การคัดสรรจำเพาะต่อแก๊สสภาวะแวคล้อม	102
บทที่ 5	สรุปผ	ล และ ข้	อเสนอแนะ	143
275	5.1 1	การสังเค	ราะห์อนุภาคนาโนทินไดออกไซด์บริสุทธิ์และที่เจือด้วยโลหะ	144
		แทรนซิร	ชั้นแมงกานี้สและ โมลิบดินัม	
	5.2	การวิเคร	าะห์ลักษณะเฉพาะของผงอนุภาคนาโนทินไดออกไซด์บริสุทธิ์	144
		และที่เจือ	ด้วยโลหะแทรนซิชันแมงกานีสและ โมลิบดินัม	
	5.3	การวิเคร	าะห์ลักษณะเฉพาะของเซนเซอร์อนุภาคนาโนทินไดออกไซด์ 📀	145
		ນรີสุทธิ์แ	ละที่เจือด้วยโลหะแทรนซิชันแมงกานีสและ โมลิบดินัม	
4	5.4	การประยุ	เ ุกต์เป็นอุปกรณ์ตรวจวัดแก๊สของเซนเซอร์	145

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

สารบาญตาราง

		หน้า
ตาราง 2.1	ส่วนประกอบหลักที่สำคัญและหน้าที่ของเครื่องเอกซ์เรย์ดิฟแฟรกชัน	28
ตาราง 4.1	ค่าพื้นที่ผิวจำเพาะ และ ขนาคจากการคำนวณของอนุภาคนาโนทินไคออกไซค์	66
	บริสุทธิ์ และเจือด้วยโลหะแทรนซิชันทั้งสองชนิด	
ตาราง 4.2	แสดงก่าพถังงานยึดเหนี่ยวของผง และตัวเซนเซอร์อนุภากนาโนทินไดออกไซด์	94
	เจือด้วย แมงกานีสในปริมาณ 1 wt% ด้วยเครื่องสเปกโตรสโคปีของอนุภาค	
	อิเล็กตรอนที่ถูกปลคปล่อยค้วยรังสีเอกซ์	
ตาราง 4.3	แสดงก่าพถังงานยึดเหนี่ยวของผง และตัวเซนเซอร์อนุภากนาโนทินไดออกไซด์	96
	เจือด้วยโมลิบดินัมในปริมาณ 2 wt% ด้วยเครื่องสเปกโตรสโคปีของอนุภาคอิเล็ก	

ตรอนที่ถูกปลดปล่อยด้วยรังสีเอกซ์

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

สารบาญรูป

		หน้า
รูป 1.1	อุปกรณ์การตรวจจับแก๊สหรือ ใช้ทำงานเกี่ยวกับแก๊สโดยตรงที่พบในอุตสาหกรรม	1
	ระดับโลก	
รูป 1.2	เครื่องผลิตอนุภาคนาโนความบริสุทธิ์สูงเฟลมสเปรย์ใพโรลิซิส จัดตั้งที่คณะ	7
	วิทยาศาสตร์มหาวิทยาลัย เชียงใหม่ (ซ้าย) ลักษณะตัวอย่างของเปลวไฟที่เกิดขึ้น	
	ระหว่างการสังเคราะห์ซึ่งการเกิดปฏิกิริยานี้จะทำให้อนุภาคนาโนที่มีขนาดเล็ก	
	การกระจายตัวสูง และพื้นที่ผิวจำเพาะสูงด้วย (ขวา)	
รูป 2.1	แสดง โครงสร้างของดีทินไดออกไซด์	14
รูป 2.2	ลักษณะของแมงกานีสตามธรรมชาติ	15
รูป 2.3	ลักษณะของ โมลิบดินัมตามธรรมชาติ	15
รูป 2.4	คุณสมบัติของแก๊ส ไฮ โครเจน	16
รูป 2.5	ระคับปริมาณของแก๊สไฮโครเจนซัลไฟค์ที่มีผลกระทบต่อร่างกายมนุษย์	17
รูป 2.6	โครงสร้างโมเลกุลอะซิโตน	18
รูป 2.7	โครงสร้างโมเลกุลเอทานอล	19
รูป 2.8	ผลกระทบของแอม โมเนรยที่มีต่อร่างกาย	20
รูป 2.9	ขั้นตอนการเกิดปฏิกิริยาในกระบวนการเฟลมสเปรย์ไพโรลิซิส	22
รูป 2.10	แสดงการหยุดสารละลายลงบนแผ่นรองรับในการทำฟิล์มบางโดยวิธีเกลือบ	22
	หมุนเหวี่ยงกระจาย	
รูป 2.11	แสดงทิศทางการแผ่ของหยดของเหลวเมื่อหยดลงบนแผ่นรองรับขณะกำลังหมุน	23
รูป 2.12	ความสัมพันธ์ระหว่างความหนาของฟิล์มกับความเร็วเวลาและปริมาตรของ	24
	สารละลายที่ใช้ในการหมุนเหวี่ยง	
รูป 2.13	แสดงการให้ความร้อนในขณะทำการเกลือบหมุนเหวี่ยงกระจาย เพื่อเร่งการ	24
	ระเหยของสารละลาย	
รูป 2.14	(a) ห้องควบคุมความสะอาด, (b) กระบวนการเตรียมเซนเซอร์ โดยวิธีเคลือบ	26
	หมุนเหวี่ยงกระจาย และ (c) เตาเผาชนิคท่อแบบควบคุมอุณหภูมิได้	
รูป 2.15	การเลี้ยวเบนของรังสีเอกซ์	27
รูป 2.16	หลักการทำงานของเครื่องเอกซ์เรย์คิฟแฟรกชัน	28

รูป 2.17	ส่วนประกอบของหลอดผลิตรังสีเอกซ์	29	
รูป 2.18	แสดงการเกิดอันตรกิริยาระหว่างอิเล็กตรอนปฐมภูมิกับอะตอมตัวอย่าง	30	
รูป 2.19	แสดงส่วนประกอบภายในของกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกรา	31	
รูป 2.20	แสดงรูปแบบการวิเคราะห์ส่องกราดเฉพาะพื้นที่	32	
รูป 2.21	แสดงรูปแบบการวิเคราะห์ส่องกราดตามแนวเส้น	33	
รูป 2.22	(ก) อุปกรณ์ยึคติคชิ้นงาน (ข) แผ่นวางชิ้นงานที่ใช้ใน TEM	35	
รูป 2.23	ตัวอย่างกราฟที่ได้จากการคำนวณ โดยใช้สมการของ	38	
รูป 2.24	แผนภาพสรุปการทำงานหลักๆของเครื่อง	39	
รูป 2.25	ระบบวิเคราะห์พลังงานของอิเล็กตรอน ประกอบด้วยแผ่นโลหะคู่ขนาน รูปครึ่งวงกลม	40	
รูป 2.26	แสดงตัวอย่างการวิเคราะห์ผิวของทองแดงบริสุทธิ์ตำแหน่งของพึกต่างๆ	41	
	ในสเปกตรัมXPS เกิดมาจาการที่อนุภาคอิเล็กตรอนทั้ง 29 ตัวจัดเรียงตัวใน แต่ละอะตอมของทองแดง		
รูป 2.27	้ ลักษณะของกำแพงศักย์บริเวณขอบเกรนและพื้นผิว เมื่อเกิดการยึดติดของ	43	
	ออกซิเจนและเมื่อมีแก๊สเข้ามาทำปฏิกิริยากับออกซิเจน ไอออนแล้ว		
รูป 3.1	ใดอะแกรมขั้นตอนการดำเนินการวิจัย	47	
รูป 3.2	แสดงรูปแบบชั้นการเคลือบของแผ่นรองรับ	48	
รูป 3.3	ตัวอย่างลวดลายหน้ากากสำหรับใช้สร้างหัววัดแก๊ส	48	
	(ก) หน้ากากสำหรับสร้างขั้วไฟฟ้า และ(ข) หน้ากากสำหรับปิดขั้ว		
	ไฟฟ้าขณะเคลือบฟิล์ม		
รูป 3.4	แสดงรูปแผนผังอุปกรณ์การชุบเคลือบทางไฟฟ้า	50	
รูป 3.5	แผนภาพไดอะแกรมขั้นตอนการสร้างหน้ากาก เพื่อประดิษฐ์หัววัดแก๊ส	51	
รูป 3.6	(ก) เครื่องสปัตเตอริง (ข) แผ่นรองรับหลังการสปัตเตอริงค้วยทอง	51	
รูป 3.7	สารละลายที่ได้จากการเตรียมอนุภาคนาโนทินไดออกไซด์ที่ทำการเจือด้วย	53	
	โมลิบดินัมและแมงกานีส		
รูป 3.8	(a) ห้องปฏิบัติการทคสอบเซนเซอร์ เครื่องมือ อุปกรณ์ทคสอบแก๊สเซนเซอร์	57	
	ภายใต้สภาวะบรรยากาศ (b) ถังแก๊สทคสอบ (c) ฐานวางเซนเซอร์เพื่อทคสอบ		
	rights rese		
	pro-		

รูป 4.1	ขั้นตอนการก่อตัวของอนุภาคนาโนทินไดออกไซด์บริสุทธิ์ และ ลักษณะ	59	
	ของเปลวไฟที่เกิดการพ่นสารละลายตั้งต้น Tin (II) ethylhexanoate ละลายใน		
	ตัวทำละลายไซลีน		
รูป 4.2	ขั้นตอนการก่อตัวของอนุภาคนาโนทินไดออกไซด์ที่เจือด้วยโลหะในกลุ่ม	60	
	แทรนซิชันแมงกานีส และ โมลิบดินัม		
รูป 4.3	ลักษณะของเปลวไฟที่เกิดการพ่นสารละลายตั้งต้น Tin (II) ethylhexanoate	61	
	ผสมกับสารเจือชนิด Manganese acethylacetonate ในตัวทำละลาย เพื่อ		
	สังเคราะห์แมงกานีสและในตัวทำละลายเพื่อสังเคราะห์ทินไดออกไซด์		
	(a) SnO ₂ และ Mn/SnO ₂ ความเข้มข้น (b) 0.1, (c) 0.2, (d) 0.5, (e) 1 wt%		
รูป 4.4	ลักษณะของเปลวไฟที่เกิดการพ่นสารละลายตั้งต้น Tin (II) ethylhexanoate	61	
	ผสมกับ สารเจือชนิด Molybdenum ในตัวทำละลายเพื่อสังเคราะห์ (a) SnO ₂ และ		
	Mo/SnO ₂ ความเข้มข้น (b) 0.1, (c) 0.2, (d) 0.5, (e) 1, (f) 2 wt%		
รูป 4.5	การวิเคราะห์เฟสของผงละเอียดนาโนทินไดออกไซด์บริสุทธิ์ และ	63	
	เจือด้วยแมงกานีสในปริมาณ 0.1-1 wt% โดยเทคนิคการเลี้ยวเบนของรังสีเอกซ์		
รูป 4.6	การวิเคราะห์เฟสของผงละเอียดนาโนทินไดออกไซด์บริสุทธิ์ และเงือด้วย	64	
	โมลิบดินัมุในปริมาณ 0.1-2 wt% โดยเทคนิกการเลี้ยวเบนของรังสีเอกซ์		
รูป 4.7	กราฟแสดงความสัมพันธ์ของการวิเคราะห์ระหว่างก่าพื้นที่ผิวจำเพาะและ	66	
	ขนาดของอนุภาคนาโนของผงละเอียดนาโนทินไดออกไซด์บริสุทธิ์และ		
	ที่เจือด้วยแมงกานีสในปริมาณ 0.1-1 wt% โดยวิธีบีอีที		
รูป 4.8	ภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนอิเล็กตรอนแบบส่องกราด และ	67	
	การวิเคราะห์การกระจายตัวของพลังงานรังสีเอกซ์ของผงละเอียคนาโน		
	ทินไดออกไซด์บริสุทธิ์ที่สังเคราะห์โดยวิธีเฟลมสเปรย์ไพโรลิซิส		
รูป 4.9	ภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนอิเล็กตรอนแบบส่องกราด และ	68	
	การวิเคราะห์การกระจายตัวของพลังงานรังสีเอกซ์ของผงละเอียคนาโน		
	ทินไดออกไซด์ที่เจือด้วยแมงกานีสในปริมาณ 0.1 wt% ที่สังเคราะห์โดย		
	วิธีเฟลมสเปรย์ใพโรลิซิส		

All rights reserved

- รูป 4.10 ภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนอิเล็กตรอนแบบส่องกราค และ การวิเคราะห์การกระจายตัวของพลังงานรังสีเอกซ์ของผงละเอียคนาโน ทินไดออกไซค์ที่เจือด้วยแมงกานีสในปริมาณ 0.2 wt% ที่สังเคราะห์โดย วิชีเฟลมสเปรย์ไพโรลิซิส
- รูป 4.11 ภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนอิเล็กตรอนแบบส่องกราด และ การวิเคราะห์การกระจายตัวของพลังงานรังสีเอกซ์ของผงละเอียดนาโน ทินไดออกไซด์ที่เจือด้วยแมงกานีสในปริมาณ 0.5 wt% ที่สังเคราะห์โดย วิธีเฟลมสเปรย์ไพโรลิซิส
- รูป 4.12 ภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนอิเล็กตรอนแบบส่องกราค และ การวิเคราะห์การกระจายตัวของพลังงานรังสีเอกซ์ของผงละเอียดนาโน ทินไดออกไซด์ที่เจือด้วยแมงกานีสในปริมาณ 1 wt% ที่สังเคราะห์โดย วิธีเฟลมสเปรย์ไพโรลิซิส
- รูป 4.13 ภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนอิเล็กตรอนแบบส่องกราค และ การวิเคราะห์การกระจายตัวของพลังงานรังสีเอกซ์ของผงละเอียคนาโน ทินไดออกไซด์ที่เจือด้วยโมลิบดินัมในปริมาณ 0.1 wt% ที่สังเคราะห์โดย วิชีเฟลมสเปรย์ไพโรลิซิส
- รูป 4.14 ภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนอิเล็กตรอนแบบส่องกราด และ การวิเคราะห์การกระจายตัวของพลังงานรังสีเอกซ์ของผงละเอียดนาโน ทินไดออกไซด์ที่เจือด้วยโมลิบดินัมในปริมาณ 0.2 wt% ที่สังเกราะห์โดย วิชีเฟลมสเปรย์ไพโรลิซิส
- รูป 4.15 ภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนอิเล็กตรอนแบบส่องกราค และ การวิเคราะห์การกระจายตัวของพลังงานรังสีเอกซ์ของผงละเอียคนาโน ทินไดออกไซด์ที่เจือด้วยโมลิบดินัมในปริมาณ 0.5 wt% ที่สังเคราะห์โดย วิชีเฟลมสเปรย์ไพโรลิซิส
- รูป 4.16 ภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนอิเล็กตรอนแบบส่องกราด และ การวิเคราะห์การกระจายตัวของพลังงานรังสีเอกซ์ของผงละเอียดนาโน ทินไดออกไซด์ที่เจือด้วยโมลิบดินัมในปริมาณ 1 wt% ที่สังเคราะห์โดย วิธีเฟลมสเปรย์ไพโรลิซิส

68

.

69

69

70

71

71

รูป 4.17	ภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนอิเล็กตรอนแบบส่องกราค และ	72	
	การวิเคราะห์การกระจายตัวของพลังงานรังสีเอกซ์ของผงละเอียคนาโน		
	ทินไดออกไซด์ที่เจือด้วยโมลิบดินัมในปริมาณ 2 wt% ที่สังเคราะห์โดย		
	วิธีเฟลมสเปรย์ใพโรลิซิส		
รูป 4.18	ภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่านของผงละเอียด	76	
	นาโนทินไดออกไซค์บริสุทธิ์ (a) และเจือด้วยโลหะแมงกานีส 0.1-1 wt% (b-e)		
	ที่สังเคราะห์โดยวิธีเฟลมสเปรย์ไพโรลิซิส และรูปแบบการเลี้ยวเบนของ		
	อิเล็กตรอนซึ่งแทรกอยู่สัณฐานวิทยาของอนุภาคมีหลายลักษณะ		
	และการกระจายตัวของอนุภาคก่อนข้างคือนุภาคมีขนาคประมาณ 5-10 นาโนเมตร		
รูป 4.19	ภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่านของผงละเอียคนาโน	77	
	ทินไคออกไซค์บริสุทธิ์ (a) และเจือค้วยโลหะ โมลิบคินัม 0.1-2 wt% (b-f)		
	ที่สังเคราะห์โดยวิธีเฟลมสเปรย์ไพโรลิซิส และรูปแบบการเลี้ยวเบนของ		
	อิเล็กตรอนซึ่งแทรกอยู่สัณฐานวิทยาของอนุภากมีหลายลักษณะ		
	และการกระจายตัวของอนุภาคก่อนข้างคือนุภาคมีขนาคประมาณ 5-10 นาโนเมตร		
รูป 4.20	ความหนาของฟิล์มประมาณ 8 ใมโครเมตรซึ่งมีลักษณะที่ก่อนข้างแน่นตัว 🔘	81	
	และมีรูพรุนถูกทำการเหวี่ยงกระจายบนซับเสตรทชนิดอะลูมินาพิมพ์ลายตัวทอง		
	ด้านถ่างคือการวิเคราะห์องก์ประกอบของธาตุทั้งหมดในการเตรียมเซนเซอร์		
	ทินไดออกไซด์บริสุทธิ์โดยการกระจายตัวของรังสีเอกซ์ชนิดแบบเส้น		
	ที่ตอบสนองต่อแก๊สสภาวะแวคล้อมทั้งหมค 5 ชนิค แสดงในรูป (a)		
รูป 4.21	ความหนาของฟิล์มประมาณ 7-10 ใมโครเมตรซึ่งมีลักษณะที่ค่อนข้างแน่นตัวและ	82	
	มีรูพรุน ถูกทำการเหวี่ยงกระจายบนซับเสตรทชนิดอะลูมินาพิมพ์ลายตัวทอง		
	ด้านถ่างคือการวิเคราะห์องค์ประกอบของธาตุทั้งหมดในการเตรียมเซนเซอร์		
	ทินไดออกไซด์ที่เจือด้วยแมงกานีสในปริมาณ 0.1 wt% โดยการกระจายตัว		
	ของรังสีเอกซ์ชนิดแบบเส้นที่ตอบสนองต่อแก๊สสภาวะแวคล้อมทั้งหมด 5 ชนิด		
รูป 4.22	ความหนาของฟิล์มประมาณ 7-10 ใมโครเมตรซึ่งมีลักษณะที่ค่อนข้างแน่นตัวและ	82	
	มีรูพรุน ถูกทำการเหวี่ยงกระจายบนซับเสตรทชนิดอะลูมินาพิมพ์ลายตัวทองด้านล่าง		
	คือการวิเคราะห์องค์ประกอบของธาตุทั้งหมดในการเตรียมเซนเซอร์ทินไดออกไซด์		
	ที่เจือด้วยแมงกานีสในปริมาณ 0.2 wt% โดยการกระจายตัวของรังสีเอกซ์ชนิดแบบ		

ମ୍ମା

เส้นที่ตอบสนองต่อแก๊สสภาวะแวคล้อมทั้งหมค 5 ชนิค

- รูป 4.23 ความหนาของฟิล์มประมาณ 7-10 ไมโครเมตรซึ่งมีลักษณะที่ก่อนข้างแน่นตัวและ 83 มีรูพรุน ถูกทำการเหวี่ยงกระจายบนซับเสตรทชนิดอะลูมินาพิมพ์ลายตัวทองด้านล่าง คือการวิเคราะห์องค์ประกอบของธาตุทั้งหมดในการเตรียมเซนเซอร์ทินไดออกไซด์ ที่เจือด้วยแมงกานีสในปริมาณ 0.5 wt% โดยการกระจายตัวของรังสีเอกซ์ชนิดแบบ เส้นที่ตอบสนองต่อแก๊สสภาวะแวดล้อมทั้งหมด 5 ชนิด
- ฐป 4.24
- .24 ความหนาของฟิล์มประมาณ 7-10 ไม โครเมตรซึ่งมีลักษณะที่ก่อนข้างแน่นตัวและ 83 มีรูพรุน ถูกทำการเหวี่ยงกระจายบนซับเสตรทชนิดอะลูมินาพิมพ์ลายตัวทองด้านล่าง คือการวิเคราะห์องค์ประกอบของธาตุทั้งหมดในการเตรียมเซนเซอร์ทินไดออกไซด์ ที่เจือด้วยแมงกานีสในปริมาณ 1 wt% โดยการกระจายตัวของรังสีเอกซ์ชนิดแบบ เส้นที่ตอบสนองต่อแก๊สสภาวะแวดล้อมทั้งหมด 5 ชนิด
- รูป 4.25
- ความหนาของฟิล์มประมาณ 6-10 ไม โครเมตรซึ่งมีลักษณะที่ค่อนข้างแน่นตัวและ 84 มีรูพรุน ถูกทำการเหวี่ยงกระจายบนซับเสตรทชนิดอะลูมินาพิมพ์ลายตัวทองค้านล่าง คือการวิเคราะห์องก์ประกอบของธาตุทั้งหมดในการเตรียมเซนเซอร์ทินไดออกไซด์ ที่เจือด้วยโมลิบดินัมในปริมาณ 0.1 wt% โดยการกระจายตัวของรังสีเอกซ์ชนิดแบบ เส้นที่ตอบสนองต่อแก๊สสภาวะแวดล้อมทั้งหมด 5 ชนิด
- รูป 4.26 ความหนาของฟิล์มประมาณ 6-10 ไมโครเมตรซึ่งมีลักษณะที่ค่อนข้างแน่นตัวและ 84 มีรูพรุน ถูกทำการเหวี่ยงกระจายบนซับเสตรทชนิดอะลูมินาพิมพ์ลายตัวทองด้านล่าง คือการวิเคราะห์องค์ประกอบของธาตุทั้งหมดในการเตรียมเซนเซอร์ทินไดออกไซด์ ที่เจือด้วยโมลิบดินัมในปริมาณ 0.2 wt% โดยการกระจายตัวของรังสีเอกซ์ชนิดแบบ เส้นที่ตอบสนองต่อแก๊สสภาวะแวดล้อมทั้งหมด 5 ชนิด
- รูป 4.27 ความหนาของฟิล์มประมาณ 6-10 ไม โครเมตรซึ่งมีลักษณะที่ก่อนข้างแน่นตัวและ 85 มีรูพรุน ถูกทำการเหวี่ยงกระจายบนซับเสตรทชนิดอะลูมินาพิมพ์ลายตัวทองด้านล่าง คือการวิเคราะห์องค์ประกอบของธาตุทั้งหมดในการเตรียมเซนเซอร์ทินไดออกไซด์ ที่เจือด้วยโมลิบดินัมในปริมาณ 0.5 wt% โดยการกระจายตัวของรังสีเอกซ์ชนิดแบบ เส้นที่ตอบสนองต่อแก๊สสภาวะแวดล้อมทั้งหมด 5 ชนิด
- รูป 4.28 ความหนาของฟิล์มประมาณ 6-10 ใมโครเมตรซึ่งมีลักษณะที่ค่อนข้างแน่นตัวและ 85 มีรูพรุน ถูกทำการเหวี่ยงกระจายบนซับเสตรทชนิดอะลูมินาพิมพ์ลายตัวทองด้านล่าง คือการวิเคราะห์องค์ประกอบของธาตุทั้งหมดในการเตรียมเซนเซอร์ทินไดออกไซด์

	ที่เจือด้วยโมลิบดินัมในปริมาณ 1 wt% โดยการกระจายตัวของรังสีเอกซ์ชนิดแบบ	
	เส้นที่ตอบสนองต่อแก๊สสภาวะแวคล้อมทั้งหมค 5 ชนิค	
รูป 4.29	ความหนาของฟิล์มประมาณ 6-10 ใมโครเมตรซึ่งมีลักษณะที่ค่อนข้างแน่นตัวและ	86
	มีรูพรุน ถูกทำการเหวี่ยงกระจายบนซับเสตรทชนิดอะลูมินาพิมพ์ลายตัวทองด้านล่าง	
	คือการวิเคราะห์องค์ประกอบของธาตุทั้งหมดในการเตรียมเซนเซอร์ทินไดออกไซด์	
	ที่เจือด้วยโมลิบดินัมในปริมาณ 2 wt% โดยการกระจายตัวของรังสีเอกซ์ชนิดแบบ	
	เส้นที่ตอบสนองต่อแก๊สสภาวะแวคล้อมทั้งหมค 5 ชนิค	
รูป 4.30	การวิเคราะห์เฟสของเซนเซอร์ฟิล์มหนาของอนุภาคนาโนทินไดออกไซด์บริสุทธิ์	87
	และเจือด้วยแมงกานีสในปริมาณ 0.1-1 wt% โดยเทคนิคการเลี้ยวเบนของรังสีเอกซ์	
รูป 4.31	การวิเคราะห์เฟสของเซนเซอร์ฟิล์มหนาของอนุภาคนาโนทินไดออกไซด์บริสุทธิ์	88
	และเจือด้วยโมลิบดินัมในปริมาณ 0.1-2 wt% โดยเทคนิคการเลี้ยวเบนของ	
	รังสีเอกซ์	
รูป 4.32	แสดงผลการวิเคราะห์ผงอนุภาคนาโนทินไดออกไซด์ที่เจือด้วยแมงกานีสใน	90
	ปริมาณ 1 wt% ด้วยเครื่องสเปกโตรสโคปีของอนุภาคอิเล็กตรอนที่ถูก	
	ปลดปล่อยด้วยรังสีเอกซ์ (a) แมงกานีส (b) ทิน และ (c) ออกซิเจน	
รูป 4.33	แสดงผลการวิเคราะห์ผงอนุภาคนาโนทินไดออกไซด์ที่เงือด้วยแมงกานีสใน 🔘	91
	ปริมาณ 1 wt% ด้วยเครื่องสเปก โตรส โคปีของอนุภาคอิเล็กตรอนที่ถูกปลดปล่อย	
	ด้วยรังสีเอกซ์ (a) แมงกานีส (b) ทิน และ (c) ออกซิเจน	
รูป 4.34	แสดงผลการวิเคราะห์เซนเซอร์อนุภาคนาโนทินไดออกไซด์ที่เจือด้วยโมลิบดินัมใน	92
	ปริมาณ 2 wt% ด้วยเครื่องสเปกโตรสโคปีของอนุภาคอิเล็กตรอนที่ถูกปลดปล่อย	
	ด้วยรังสีเอกซ์ (a) โมลิบดินัม (b) ทิน และ (c) ออกซิเจน	
รูป 4.35	แสดงผลการวิเคราะห์เซนเซอร์อนุภากนาโนทินไดออกไซด์ที่เจือด้วยโมลิบดินัมใน	93
	ปริมาณ 2 wt% ด้วยเครื่องสเปก โตรส โคปีของอนุภาคอิเล็กตรอนที่ถูกปลดปล่อย	
	ด้วยรังสีเอกซ์ (a) โมลิบดินัม (b) ทิน และ (c) ออกซิเจน	
รูป 4.36	ความสัมพันธ์ระหว่างความต้านทานที่เปลี่ยนไปต่ออุณหภูมิคังรูปเรียงตาม	101
	ตัวอักษร(a-e) คืออุณหภูมิ 150, 200, 250, 300 และ 350 องศาเซลเซียส	
	ในการทคสอบการตอบสนองต่อแก๊ส ไฮโครเจนซัลไฟค์ที่ความเข้มข้นต่ำ	
	0.5-10 ppm ในทิศทางย้อนกลับความเข้มข้นของแก๊ส ภายใต้สภาวะบรรยากาศ	
รูป 4.37	ความสัมพันธ์ระหว่างค่าความไวและเวลาในการตอบสนองต่ออุณหภูมิคังรูป	102

	เรียงตามตัวอักษร (a-e) คืออุณหภูมิ 150, 200, 250, 300 และ 350 องศาเซลเซียส	
	ในการทคสอบการตอบสนองต่อแก๊สไฮโครเจนซัลไฟค์ที่ความเข้มข้นต่ำ	
	0.5-10 ppm ในทิศทางย้อนกลับความเข้มข้นของแก๊ส ภายใต้สภาวะบรรยากาศ	
รูป 4.38	ความสัมพันธ์ระหว่างความต้านทานที่เปลี่ยนไปต่ออุณหภูมิดังรูปเรียงตาม	105
	ตัวอักษร(a-e) คืออุณหภูมิ 150, 200, 250, 300 และ 350 องศาเซลเซียส	
	ในการทคสอบการตอบสนองต่อแก๊สไฮโครเจนที่กวามเข้มข้น 1.5-3 vol%	
	ในทิศทางย้อนกลับความเข้มข้นของแก๊ส ภายใต้สภาวะบรรยากาศ	
รูป 4.39	ความสัมพันธ์ระหว่างค่าความไวและเวลาในการตอบสนองต่ออุณหภูมิดังรูป	106
	เรียงตามตัวอักษร (a-e) คืออุณหภูมิ 150, 200, 250, 300 และ 350 องศาเซลเซียส	
	ในการทคสอบการตอบสนองต่อแก๊สไฮโครเจนที่ความเข้มข้น 1.5-3 vol%	
	ในทิศทางย้อนกลับความเข้มข้นของแก๊ส ภายใต้สภาวะบรรยากาศ	
รูป 4.40	ความสัมพันธ์ระหว่างค่าความไวและเวลาในการตอบสนองต่ออุณหภูมิคังรูป	109
	เรียงตามตัวอักษร (a-e) คืออุณหภูมิ 150, 200, 250, 300 และ 350 องศาเซลเซียส	
	ในการทคสอบการตอบสนองต่อแก๊สเอทานอลที่ความเข้มข้นต่ำ	
	50-1,000 ppm ในทิศทางย้อนกลับความเข้มข้นของแก๊ส ภายใต้สภาวะบรรยากาศ	
รูป 4.41	ความสัมพันธ์ระหว่างค่าความไวและเวลาในการตอบสนองต่ออุณหภูมิคังรูป	110
	เรียงตามตัวอักษร (a-e) คืออุณหภูมิ 150, 200, 250, 300 และ 350 องศาเซลเซียส	
	ในการทคสอบการตอบสนองต่อแก๊สเอทานอลที่ความเข้มข้นต่ำ	
	50-1,000 ppm ในทิศทางย้อนกลับความเข้มข้นของแก๊ส ภายใต้สภาวะบรรยากาศ	
รูป 4.42	ความสัมพันธ์ระหว่างความต้านทานที่เปลี่ยนไปต่ออุณหภูมิดังรูปเรียงตาม	113
	ตัวอักษร(a-e) คืออุณหภูมิ 150, 200, 250, 300 และ 350 องศาเซลเซียส	
	ในการทคสอบการตอบสนองต่อแก๊สแอมโมเนียที่ความเข้มข้น 100-2,000 ppm	
	ในทิศทางย้อนกลับความเข้มข้นของแก๊ส ภายใต้สภาวะบรรยากาศ	
รูป 4.43	ความสัมพันธ์ระหว่างค่าความไวและเวลาในการตอบสนองต่ออุณหภูมิคังรูป	114 📀
	เรียงตาม ตัวอักษร (a-e) คืออุณหภูมิ 150, 200, 250, 300 และ 350 องศาเซลเซียส	
	ในการทคสอบการตอบสนองต่อแก๊สแอมโมเนียที่ความเข้มข้น 100-2,000 ppm	
	ในทิศทางย้อนกลับความเข้มข้นของแก๊ส ภายใต้สภาวะบรรยากาศ	
รูป 4.44	ความสัมพันธ์ระหว่างความต้านทานที่เปลี่ยนไปต่ออุณหภูมิคังรูปเรียงตาม	117
	ตัวอักษร(a-e) คืออุณหภูมิ 150, 200, 250, 300 และ 350 องศาเซลเซียส	

ต

	ในการทคสอบการตอบสนองต่อแก๊สอะซิโตนที่ความเข้มข้น 50-2,000 ppm	
	ในทิศทางย้อนกลับความเข้มข้นของแก๊ส ภายใต้สภาวะบรรยากาศ	
รูป 4.45	ความสัมพันธ์ระหว่างค่าความไวและเวลาในการตอบสนองต่ออุณหภูมิคังรูป	118
	เรียงตามตัวอักษร (a-e) คืออุณหภูมิ 150, 200, 250, 300 และ 350 องศาเซลเซียส	
	ในการทคสอบการตอบสนองต่อแก๊สอะซิโตนที่ความเข้มข้น 50-2,000 ppm	
	ในทิศทางย้อนกลับความเข้มข้นของแก๊ส ภายใต้สภาวะบรรยากาศ	
รูป 4.46	ความสัมพันธ์ระหว่างความต้านทานที่เปลี่ยนไปต่ออุณหภูมิคังรูปเรียงตาม	121
	ตัวอักษร(a-e) คืออุณหภูมิ 150, 200, 250, 300 และ 350 องศาเซลเซียส	
	ในการทคสอบการตอบสนองต่อแก๊สไฮโครเจนซัลไฟค์ที่ความเข้มข้น	
	0.5-10 ppm ในทิศทางย้อนกลับความเข้มข้นของแก๊ส ภายใต้สภาวะบรรยากาศ	
รูป 4.47	ความสัมพันธ์ระหว่างค่าความไวและเวลาในการตอบสนองต่ออุณหภูมิดังรูป	122
	เรียงตามตัวอักษร (a-e) คืออุณหภูมิ 150, 200, 250, 300 และ 350 องศาเซลเซียส	
	ในการทดสอบการตอบสนองต่อแก๊สไฮโครเจนซัลไฟค์ที่ความเข้มข้น	
	0.5-10 ppm ในทิศทาง ย้อนกลับความเข้มข้นของแก๊ส ภายใต้สภาวะบรรยากาศ	
รูป 4.48	ความสัมพันธ์ระหว่างความต้านทานที่เปลี่ยนไปต่ออุณหภูมิดังรูปเรียงตาม	125
	ตัวอักษร (a-e) คืออุณหภูมิ 150, 200, 250, 300 และ 350 องศาเซลเซียส	
	ในการทคสอบ การตอบสนองต่อแก๊สไฮโครเจนที่ความเข้มข้น	
	1.5-3 vol% ในทิศทางย้อนกลับความเข้มข้นของแก๊ส ภายใต้สภาวะบรรยากาศ	
รูป 4.49	ความสัมพันธ์ระหว่างก่าความไวและเวลาในการตอบสนองต่ออุณหภูมิดังรูป	126
	เรียงตาม ตัวอักษร (a-e) คืออุณหภูมิ 150, 200, 250, 300 และ 350 องศาเซลเซียส	
	ในการทดสอบการตอบสนองต่อแก๊สไฮโครเจนที่ความเข้มข้น 1.5-3 vol%	
	ในทิศทางย้อนกลับความเข้มข้นของแก๊ส ภายใต้สภาวะบรรยากาศ	
รูป 4.50	ความสัมพันธ์ระหว่างความต้านทานที่เปลี่ยนไปต่ออุณหภูมิคังรูปเรียงตาม	129
	ตัวอักษร (a-e) คืออุณหภูมิ 150, 200, 250, 300 และ 350 องศาเซลเซียส	
	ในการทดสอบการตอบสนองต่อแก๊สเอทานอลที่ความเข้มข้น 50-1,000 ppm	
	ในทิศทางย้อนกลับความเข้มข้นของแก๊ส ภายใต้สภาวะบรรยากาศ	
รูป 4.51	ความสัมพันธ์ระหว่างก่ากวามไวและเวลาในการตอบสนองต่ออุณหภูมิดังรูป	130
	เรียงตามตัวอักษร (a-e) คืออุณหภูมิ 150, 200, 250, 300 และ 350 องศาเซลเซียส	
	ในการทดสอบการตอบสนองต่อแก๊สเอทานอลที่ความเข้มข้น 50-1,000 ppm	

ຄ

	ในทิศทางย้อนกลับความเข้มข้นของแก๊ส ภายใต้สภาวะบรรยากาศ	
รูป 4.52	ความสัมพันธ์ระหว่างความต้านทานที่เปลี่ยนไปต่ออุณหภูมิคังรูปเรียงตาม	133
	ตัวอักษร (a-e) คืออุณหภูมิ 150, 200, 250, 300 และ 350 องศาเซลเซียส	
	ในการทดสอบการตอบสนองต่อแก๊สแอม โมเนียที่ความเข้มข้น 100-2,000 ppm	
	ในทิศทางย้อนกลับความเข้มข้นของแก๊ส ภายใต้สภาวะบรรยากาศ	
รูป 4.53	ความสัมพันธ์ระหว่างค่าความไวและเวลาในการตอบสนองต่ออุณหภูมิดังรูป	134
	เรียงตามตัวอักษร (a-e) คืออุณหภูมิ 150, 200, 250, 300 และ 350 องศาเซลเซียส	
	ในการทดสอบการตอบสนองต่อแก๊สแอมโมเนียที่ความเข้มข้น 100-2,000 ppm	
	ในทิศทางย้อนกลับความเข้มข้นของแก๊ส ภายใต้สภาวะบรรยากาศ	
รูป 4.40	ความสัมพันธ์ระหว่างความต้านทานที่เปลี่ยนไปต่ออุณหภูมิดังรูปเรียงตาม	137
6	ตัวอักษร (a-e) คืออุณหภูมิ 150, 200, 250, 300 และ 350 องศาเซลเซียส	
	ในการทคสอบการตอบสนองต่อแก๊สอะซิโตนที่ความเข้มข้น 50-2,000 ppm	
	ในทิศทางย้อนกลับความเข้มข้นของแก๊ส ภายใต้สภาวะบรรยากาศ	
รูป 4.54	ความสัมพันธ์ระหว่างค่าความไวและเวลาในการตอบสนองต่ออุณหภูมิคังรูป	138
	เรียงตามตัวอักษร (a-e) คืออุณหภูมิ 150, 200, 250, 300 และ 350 องศาเซลเซียส	
	ในการทดสอบการตอบสนองต่อแก๊สอะซิโตนที่กวามเข้มข้น 50-2,000 ppm	
	ในทิศทางย้อนกลับความเข้มข้นของแก๊ส ภายใต้สภาวะบรรยากาศ	
รูป 4.55	การคัคสรรจำเพาะของเซนเซอร์ทินไคออกไซค์บริสุทธิ์และเจือค้วยโลหะ	140
	โมลิบคินัมปริมาณ 0.1-2 เปอร์เซ็นต์โคยน้ำหนัก ต่อแก๊สสภาวะแวคล้อมชนิค	
	อะซิโตน เอทานอล แอมโมเนีย ไฮโครเจน และ ไฮโครเจนซัลไฟค์	
	ภายใต้อุณหภูมิการทคสอบตั้งแต่ 150-350 องศาเซลเซียส	
รูป 4.56	การคัคสรรจำเพาะของเซนเซอร์ทินไคออกไซค์บริสุทธิ์และเจือค้วยโลหะ	142
	แมงกานีสปริมาณ 0.1-1 เปอร์เซ็นต์โดยน้ำหนัก ต่อแก๊สสภาวะแวคล้อมชนิค	
	ละซิโลน เอทานอล แอนโนเบีย ใชโละเอน และ ใชโละเอนซัลไฟล์	

All rights reserved

สัญลักษณ์และอักษรย่อ

FSP	Flame Spray Pyrolysis
JCPDS	Joint Committee Powder Diffraction Standard
SEM	Scaning Electron Microscopy
TEM	Transmission Electron Microscopy
XPS	X-ray Photo Electron Spectroscopy
XRD	X-ray Diffraction
EDS	Energy Dispersive X-ray Spectroscopy
Mn	Manganese
Мо	Molybdenum
SnO ₂	Tin dioxide
MoO ₃	Molybdenum dioxide
ppm	Part per million
wt%	Weight Percent
eV	Electron volt
nm	Nanomater
cm	Centimater
°C	Celcius Degree
vol%	Volume Percent
mmÅ	Millimater Angstorm
S	Sensor response
H ₂	Hydrogen
H ₂ S	Hydrogen Sulphide
C ₂ H ₅ OH	Ethanol
C ₃ H ₆ O	Acetone
NH ₃	Ammonia