สารบัญ

	หน้า
กิตติกรรมประกาศ	1
บทคัดย่อภาษาไทย	จ
ABSTRACT	R
สารบัญตาราง	ฑ
สารบัญภาพ	ណ
สารบัญแผนภาพ	ค
สารบัญกราฟ	ต
อักษรย่อ	ົດ
สัญลักษณ์	น
บทที่ 1 บทนำ	1
1.1 ที่มาและความสำคัญ	1
1.2 วัตถุประสงค์ของการวิจัย 1.2 ประโพษท์สื่อออว่าวา ¹ ด้รับอาวารสีอนจะมีระควบสีบอน หลือเฉิทไรและด้	3
1.3 บวะ เขชนพศ เควางะ เควบง เกการทกษ แชงพฤษฎและ/หวอเชงบวะอุกด 1.4 ขอบเขตการศึกษา	3 4
	+
บทที่ 2 ทบทวนวรรณกรรม	5
2.1 ผิวหนัง	5
2.1.1 โครงสร้างของผิวหนัง	5

2.1.2 เส้นทางของสารในการซึมผ่านผิวหนัง	8
2.1.3 สีผิวและเมลานิน	10
1) ทฤษฎีการเกิดเมลานิน	11
2) กลไกการขจัดเมลานิน	15
2.2 เอนไซม์ไทโรซิเนส	15
2.3 กลไกการออกฤทธิ์ยับยั้งเอนไซม์ไทโรซิเนสของสาร	17
2.4 กลุ่มสารที่มีฤทธิ์ยับยั้งเอนไซม์ไทโรซิเนส	18
2.4.1 สารจากธรรมชาติ	18
2.4.2 สารสังเคราะห์	24
2.5 ความสัมพันธ์ของโครงสร้างของสารกลุ่มฟลาโวนอยค์และการออกฤทธิ์ยับยั้ง	
การทำงานของเอนไซม์ไทโรซิเนส	26
2.6 กลไกการยับยั้งการทำงานของเอนไซม์ไทโรซิเนสของ o-diphenol	27
2.7 วิธีการทคสอบฤทธิ์ยับยั้งการทำงานของเอนไซม์ไทโรซิเนส	29
2.8 ดาวเรื่อง	29
2.8.1 อนุกรมวิชานของคาวเรื่อง (<i>Tagetes erecta</i> Linn.)	30
2.8.2 ข้อมูลทางพฤกษศาสตร์และทางเคมี	30
2.8.3 สรรพคุณทางยา ฤทธิ์ทางเภสัชวิทยา และพิษวิทยา	31
2.9 ตัวพาอนุภาคไขมันระดับนาโน หรือ Nanostructured lipid carriers (NLC)	36
2.9.1 เทคนิคการเตรียม NLC	37
2.9.2 รูปแบบของ NLC	39
2.9.3 ข้อดีและประ โยชน์ของ NLC ทางยาและเครื่องสำอาง	41
2.9.4 ข้อเสียของ NLC ทางยาและเครื่องสำอาง	42
2.9.5 การตรวจสอบคุณลักษณะของอนุภาคไขมันแข็งขนาคนาโน	43
2.10 การพัฒนาตำรับและการทคสอบความคงตัว	47
2.10.1 วิธีการทดสอบความกงตัว	48
2.10.2 ตัวแปรที่ใช้ทดสอบความคงตัว	49
บทที่ 3 วิธีดำเนินการวิจัย	50
3.1 สารเคมี	50
3.2 อุปกรณ์และเครื่องมือ	51

3.3 วัตถุดิบสมุนไพร	52
3.4 การสกัดสารสำคัญจากดอกดาวเรื่อง	53
3.5 การวิเคราะห์สารประกอบฟลาโวนอยค์ในสารสกัคหยาบ	53
3.5.1 การตรวจสอบสารประกอบฟลาโวนอยค์ในสารสกัคค้วยวิธี Shinoda test	54
3.5.2 การวิเคราะห์ปริมาณสารประกอบฟลาโวนอยค์ (Total flavonoid content)	
ในสารสกัด	54
3.6 การแยกสารสกัคหยาบ EE ด้วยเทคนิค Vacuum Column Chromatography (VCC)	54
3.7 การทคสอบฤทธิ์ยับยั้งไทโรซิเนสในสารสกัดที่มีฟลาโวนอยค์เป็นองค์ประกอบ	
ด้วยวิธี mushroom tyrosinase inhibitory assay	55
3.8 การพัฒนาตำรับตัวพาอนุภาคนาโนไขมันชนิค NLC เปล่า	56
3.8.1 การเตรียมตำรับ NLC เปล่า	56
3.8.2 การทคสอบลักษณะทางกายภาพของตำรับ NLC เปล่า	57
3.8.3 การทคสอบความคงตัวของตำรับ NLC เปล่า ด้วยสภาวะเร่งจากอุณหภูมิ	57
3.9 การพัฒนาตำรับตัวพาอนุภาคนาโนไขมันชนิด NLC ที่กักเก็บสารสกัดดอก	
ดาวเรื่องที่มีฤทธิ์ยับยั้งการทำงานของเอนไซม์ไทโรซิเนส	58
3.9.1 การเตรียมตำรับ NLC ที่กักเก็บสารสกัคจากคอกคาวเรื่อง	58
3.9.2 การทคสอบลักษณะทางกายภาพของตำรับ NLC ที่กักเก็บสารสกัด	
คอกดาวเรื่อง	58
3.9.3 การทคสอบความคงตัวของตำรับ NLC ที่กักเก็บสารสกัคคอกดาวเรื่อง	
ด้วยสภาวะเร่งจากอุณหภูมิ	58
3.9.4 การทคสอบความคงตัวของสารสกัดจากดอกคาวเรื่อง	
ที่กักเก็บในตำรับ NLC	58
1) การวิเคราะห์ปริมาณสาร quercetagetin ในสารสกัคดอกดาวเรื่อง	
ที่กักเกีบในตำรับ NLC	59
 การวิเคราะห์ความสามารถในการยับยั้งการทำงานของเอนไซม์ 	
ใทโรซิเนสของสารสกัคดอกคาวเรื่องที่กักเก็บในตำรับ NLC	60
3.9.5 การทคสอบประสิทธิภาพการกักเก็บสารสกัดคอกคาวเรื่องในตำรับ NLC	60
3.9.6 การทคสอบการปลดปล่อยสารสกัดคอกดาวเรื่องในตำรับ NLC	61
บทที่ 4 ผลการทคลอง	63
4.1 การสกัดสารสำคัญจากคอกดาวเรื่อง	63

4.2 การวิเคราะห์หาสารประกอบฟลาโวนอยค์ในสารสกัดหยาบ	64
4.3 การแยกสารสกัคหยาบ EE ด้วยเทคนิค Vacuum Column Chromatography (VCC)	65
4.4 การหาสารประกอบฟลาโวนอยค์ในสารสกัค F1-F14	68
4.5 การทคสอบฤทธิ์ยับยั้งการทำงานของเอนไซม์ไทโรซิเนสในสารสกัคที่มี	
ฟลาโวนอยค์เป็นองค์ประกอบด้วยวิชี mushroom tyrosinase inhibitory assay	69
4.6 การพัฒนาตำรับตัวพาอนุภาคนาโนไขมันชนิด NLC เปล่า	71
4.6.1 วิธีการเตรียมตำรับ NLC เปล่า	71
4.6.2 การทคสอบลักษณะทางกายภาพและการทคสอบความคงตัว	
ของตำรับ NLC เปล่า ด้วยสภาวะเร่งจากอุณหภูมิ	72
4.6.3 การวิเคราะห์รูปร่างสัณฐานของอนุภาค NLC เปล่า ด้วยกล้อง	
จุลทรรศน์อิเล็กตรอนแบบส่องผ่าน	76
4.7 การพัฒนาตำรับตัวพาอนุภาคนาโนไขมันชนิด NLC ที่กักเก็บสารสกัดดอกดาวเรื่อง	
ที่มีฤทธิ์ยับยั้งการทำงานของเอนไซม์ไทโรซิเนส	77
4.7.1 วิธีการเตรียมตำรับ NLC ที่กักเก็บสารสกัดดอกดาวเรื่อง	77
4.7.2 การทคสอบลักษณะทางกายภาพและการทคสอบความคงตัวของตำรับ	
NLC ที่กักเก็บสารสกัคคอกคาวเรื่องด้วยสภาวะเร่งจากอุณหภูมิต่างๆ	82
4.7.3 การวิเคราะห์รูปร่างสัณฐานของอนุภาค NLC ที่กักเก็บสารสกัด	
คอกคาวเรื่องค้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน	83
4.7.4 การทคสอบความคงตัวของสารสกัคคอกคาวเรื่องที่กักเก็บ	
ในตำรับ NLC	83
4.7.5 การทคสอบประสิทธิภาพการกักเก็บสารสกัคดอกดาวเรื่องในตำรับ NLC	90
1) การวิเคราะห์ปริมาณสาร quercetagetin ในสารสกัดดอกดาวเรื่อง	
ด้วย High Performance Liquid Chromatography (HPLC)	90
2) % การกักเก็บของสารสกัดในตำรับตัวพาอนุภาคนาโนไขมันแข็งชนิด NLC	91
4.7.6 การทคสอบการปลคปล่อยสารสกัคดอกดาวเรื่องในตำรับ NLC	92
บทที่ 5 สรุปผลการทคลอง	95
บรรณานุกรม	99
รายการสิ่งพิมพ์เผยแพร่	107

ประวัติผู้เขียน

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved 110

สารบัญตาราง

ตารางที่ 2.1 แสดงโครงสร้างสารกลุ่มฟืนอลที่มีฤทธิ์ยับยั้งการทำงานของเอนไซม์ไทโรซิเนส	21
ตารางที่ 2.2 แสดงโครงสร้างสารกลุ่มโพลีฟีนอลที่มีฤทธิ์ยับยั้งการทำงานของเอนไซม์ไทโรซิเนส	25
61813LR0	
ตารางที่ 4.1 แสดงปริมาณสารสกัดหยาบที่สกัดได้จากผงดอกดาวเรื่องแห้ง 250 กรัมต่อครั้ง	
และ % yield ของสารสกัดหยาบ ซึ่งกิดเทียบจากผงดอกดาวเรื่องแห้ง	63
ตารางที่ 4.2 แสดงผลการวิเคราะห์หาสารประกอบฟลาโวนอยค์ในสารสกัด	64
ตารางที่ 4.3 แสดง % yield ของสารสกัดหยาบและ fraction ที่แยกได้จากสารสกัดหยาบ EE	
ด้วยเทคนิก VCC โดยกิดเทียบเท่าผงดอกดาวเรื่องแห้ง ผลการวิเคราะห์	
องค์ประกอบฟลาโวนอยค์ และฤทธิ์ยับยั้งการทำงานของเอนไซม์ไทโรซิเนส	67
ตารางที่ 4.4 แนวทางการพัฒนาสูตรตำรับ NLC เปล่า	72
ตารางที่ 4.5 แสดงสัดส่วนสารประกอบในตำรับ ลักษณะทางกายภาพ และความคงตัว	
ทางกายภาพของตำรับ NLC เปล่าที่พัฒนาได้	74
ตารางที่ 4.6 แสดงความคงตัวทางกายภาพของตำรับ NLC เปล่า ตำรับ A (A_base) และ B (B_base)	
ที่ผ่านการทดสอบสภาวะเร่งจากอุณหภูมิ	75
ตารางที่ 4.7 ลักษณะทายกายภาพของตำรับ NLC เปล่า (A_Base และ B_Base) ที่ผ่านการทดสอบ	
สภาวะเร่งจากอุณหภูมิ 🧳	76
ตารางที่ 4.8 แสดงความคงตัวทางกายภาพของตำรับ NLC ที่กักเก็บสารสกัด EE_1.0%_A และ	
EE_1.0%_B ที่ผ่านการทดสอบสภาวะเร่งจากอุณหภูมิ	79
ตารางที่ 4.9 แสดงความคงตัวทางกายภาพของตำรับ NLC ที่กักเก็บสารสกัด F8_0.2%_A และ	
F8_0.2%_B ที่ผ่านการทคสอบสภาวะเร่งจากอุณหภูมิ	80
ตารางที่ 4.10 แสดงลักษณะทางกายภาพของตำรับ NLC ที่กักเก็บสารสกัด EE_1.0%_A และ	
EE_1.0%_B ที่ผ่านการทดสอบสภาวะเร่งจากอุณหภูมิ เปรียบเทียบสารละลาย	
สารสกัด (EE 1.0% PEG) 8	81

ตารางที่ 4.11 แสดงลักษณะทางกายภาพของตำรับ NLC ที่กักเก็บสารสกัด F8_0.2%_A และ	
F8_0.2%_B ที่ผ่านการทคสอบสภาวะเร่งจากอุณหภูมิ เปรียบเทียบสารละลาย	
สารสกัด (F8_0.2%_PEG)	81
ตารางที่ 4.12 แสดงปริมาณการถูกกักเก็บของสารสกัดในตำรับตัวพาอนุภาคนาโนไขมันแข็ง	
ชนิด NLC	91
ตารางที่ 4.13 แสดงก่าการปลดปล่อยสารสำคัญในสารสกัดหยาบ EE จากตัวพา NLC ตำรับ A และ	
B เปรียบเทียบกับสารละลายสารสกัดเปล่า	93

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

สารบัญภาพ

	Y	
ห	น	J

ภาพที่ 2.1 ั	โครงสร้างผิวหนัง	6
ภาพที่ 2.2	เส้นทางการซึมผ่านของสารที่ผิวหนัง	10
ภาพที่ 2.3 เ	แสดงเซลล์สร้างสี และการกระจายของเม็ดสีในเซลล์ผิวหนังชั้นหนังกำพร้า	11
ภาพที่ 2.4 เ	แสดงโครงสร้างเคมีของ Oxytyrosinase, Mettyrosinase และ Deoxytyrosinase	17
ภาพที่ 2.5 เ	แสดง ก) โครงสร้างพื้นฐานของ flavonol ข) quercetagetin และ ค) benzo -y- pyrone	26
ภาพที่ 2.6 ห	ดอกดาวเรื่อง (<i>Tagetes erecta</i> L.)	29
ภาพที่ 2.7 ส	ลักษณะ wall material ของ NLC และการแลกเปลี่ยนสารที่กักเก็บภายในกับสิ่งแวคล้อม	36
ภาพที่ 2.8 รู	รูปแบบของ NLC	40
ภาพที่ 2.9 เ	เปรียบเทียบการแลกเปลี่ยนระหว่างสิ่งแวคล้อมข้างนอกอนุภาคกับสารสำคัญที่ถูกกักเก็บ	
۱	ไว้ในอนุภาคชนิด emulsion o/w (ก) และ NLC (บ)	41
ภาพที่ 2.10	การจัดเรียงตัวของโมเลกุล ใขมันแบบ crystal lattice(ก)และแบบ crystalline structure(ข)	41
ภาพที่ 2.11	การกระจายตัวของสารสำคัญใน NLC	47
ภาพที่ 3.1 เ	แสดงถำดับการบรรจุคอลัมน์เพื่อแยกสารด้วยเทคนิก VCC	55
ภาพที่ 3.2 เ	แสดง Franz diffusion cells	62
ภาพที่ 4.1 เ	แสดง TLC โครมาโตแกรมของสารสกัด (fraction) ที่แยกได้จาก EE ด้วยเทคนิค VCC,	
ີດ	สารสกัดหยาบ และสารเปรียบเทียบในเฟสเกลื่อนที่ เฮกเซน:เอทิลอะซิเตท: อะซิโตน	
ູ	ในอัตราส่วน 2:2:1	66
ภาพที่ 4.2 รู	รูปร่างสัณฐานของตัวพาอนุภาคไขมันแข็งชนิด NLC เปล่า	76
ภาพที่ 4.3 รู	รูปร่างสัณฐานของตัวพาอนุภาคไขมันแข็งชนิด NLC_A และ B ที่กักเก็บสารสกัดหยาบ	
	EE_1.0% และสารสกัด F8_0.2%	82
ภาพที่ 4.4 เ	แสดง HPLC โครมาโตแกรมของสารสกัดหยาบ EE (ก) สารสกัด F8 (ข) และ	
(quercetagetin (A)	91

สารบัญแผนภาพ

แผนภาพที่ 2.1	เส้นทางการผลิตเอนไซม์ไทโรซิเนสจากการที่ผิวหนังถูกกระตุ้นด้วยรังสียูวี	13
แผนภาพที่ 2.2	ชีวสังเคราะห์ของเมลานิน	14
แผนภาพที่ 2.3	กลไกการยับยั้งของ inhibitor	18
แผนภาพที่ 2.4	กลไกการยับยั้งการทำงานของเอนไซม์โรซิเนสจากการเกิดออกซิเดชั่นของ	
	สารตั้งต้น o-diphenol ด้วยการทำงานของเอนไซม์ cresolase และ catecholase	28
<u>.</u>		

แผนภาพที่ 3.1 แสดงขั้นตอนการสกัดสารจากคอกดาวเรื่องด้วยตัวทำละลายอินทรีย์

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

สารบัญกราฟ

กราฟที่ 4.1 แสดงปริมาณฟลาโวนอยค์ในสารสกัดหยาบและ fraction	68
กราฟที่ 4.2 แสดงฤทธิ์ยับยั้งการทำงานของเอนไซม์ไทโรซิเนสของสารเปรียบเทียบต่างๆ	
สารในคอกคาวเรื่อง และสารสกัคคอกคาวเรื่อง	69
กราฟที่ 4.3 แสดงการเปรียบเทียบปริมาณ quercetagetin (ppm) ใน EE_1.0%_A และ EE_1.0%_B	
ที่เก็บในแต่ละสภาวะ ซึ่งวิเคราะห์ด้วย UV spectrophotometer	84
กราฟที่ 4.4 แสดงการเปรียบเทียบปริมาณ quercetagetin (ppm) ใน F8_0.2%_A และ F8_0.2%_B	
ที่เก็บในแต่ละสภาวะ ซึ่งวิเคราะห์ด้วย UV spectrophotometer	85
กราฟที่ 4.5 แสดงการเปรียบเทียบฤทธิ์ยับยั้งการทำงานของเอนไซม์ไทโรซิเนสของ EE_1.0%_A	
และ EE_1.0%_B ที่เก็บในแต่ละสภาวะ	87
กราฟที่ 4.6 แสดงการเปรียบเทียบฤทธิ์ยับยั้งการทำงานของเอนไซม์ไทโรซิเนสของ F8_0.2%_A	
และ F8_0.2%_B ที่เก็บในแต่ละสภาวะ	88
กราฟที่ 4.7 แสดงการปลดปล่อยสารสกัดหยาบ EE และ F8 จากตัวพา NLC ตำรับ A และ B	
เปรียบเทียบกับสารละลายสารสกัด	92
441 UNIVERS	
Oltr	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

อักษรย่อ

AUC	area under curve
AFM	atomicforce microscope
C18	carbon 18
cAMP	cyclic adenosine monophosphate
DRT	dark room temperature
°C	degree celsius
DI	deionized
DHI	5, 6-dihydroxyindole
DHICA	5, 6-dihydroxyindole-2-carboxylic acid
DPPH	2, 2'-diphenyl-l-picrylhydrazyl
E	enzyme
EC	enzyme commission
ES	enzyme-substrate complex
EI	enzyme-Inhibitor complex
ESI	enzyme-substrate-Inhibitor complex
EGC	epigallocatechin
ECG	epigallocatechin-3-O-gallate
EGCG	epigallocatechin-3-O-gallate
EA	ethanol extract
EE	ethyl acetate extract
EtOAc	ethyl acetate
ERK	extracellular signal-regulated kinase
F	fraction
F8	fraction 8
GCG	gallocatechin-3-O-gallate

GC-MS	gas chromatography-mass spectrometry
g	gram
IC ₅₀	half maximal inhibitory concentration
НС	heating cooling
HE	hexane extract
HPLC	high performance liquid chromatography
HLB	hydrophilic-lipophilic balance
HBTA	5-hydroxy-1, 4-benzothiazinylalanine
ICAQ	indole-2-carboxylic acid-5, 6-quinone
ICH	international conference on harmonization
kg	kilogram
LRT	light room temperature
L-DOPA	L-3, 4-dihydroxyphenylalanine
Hex.	hexane
Ι	inhibitor
LC_{50}	lethal concentration fifty
MSH	melanocyte stimulation hormone
MeOH	methanol
μg	microgram
MITF	microphthalmia-associated transcription factor
mg	milligram
ml	milliliter
mm C	millimeter by Chiang Mai University
mV A	millivolt rights reserved
М	molarity
nm	nanometer
NLC	nanostructured lipid carrier
o/w	oil in water
o/w/o	oil in water in oil
ppm	part per million
PCS	photocorrelation spectroscopy

PdI	polydispesity index
PEG	polyethylene glycol
pН	positive potential of the hydrogen ion
Р	product
rpm	revolutions per minute
RE	rutin equivalent
SEM	scanning electron microscope
SDE	simultaneous distillation extraction
SLN	solid lipid nanoparticle
cm ²	square centimeter
SD	standard deviation
S	substrate
TEM	transmission electron microscope
TYR	tyrosinase
UV	ultraviolet
VCC	vacuum column chromatography
v/v	volume by volume
w/w	weight by weight
WHO	world health organization

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

สัญลักษณ์

α	alpha
β	beta
0	degree sign
¥	gamma
<	less than
>	more than
0	ortho
±	plus-minus sign
R	registered trademark symbol
×	multiplication sign
	ALL MAI UNIVERSITI
	ลิสสิทธิ์แหงจิทยงลัยเหียงให

ลิขสิทธิมหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

1