บทที่ 4

ผลการทดลองและวิเคราะห์ผลการทดลอง

ในบทนี้จะกล่าวถึงผลการสังเคราะห์ซิงก์ไทเทเนตเฟส Zn₂Ti₃O₈ โดยเทคนิคออกซิเดชันเชิง กวามร้อนเพื่อประยุกต์เป็นตัวตรวจจับก๊าซ ตามวิธีการทดลองในบทที่ 3 ได้ถูกนำมาศึกษาและ วิเคราะห์โครงสร้างทางกายภาพด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscope, SEM) และวิเคราะห์องค์ประกอบทางเคมีด้วยเครื่องสเปกโทรสโกปีพลังงานกระจาย (Energy Dispersive Spectroscopy, EDS) ศึกษาเฟสและองค์ประกอบด้วยเครื่อง X-ray ดิฟแฟรกโทรมิเตอร์และศึกษาสมบัติในการตรวจจับไอเอทานอล ซึ่งผลการทดลองและวิเคราะห์ผล การทดลองมีรายละเอียดดังต่อไปนี้เงื่อนไขต่าง ๆ ที่ใช้ในการสังเคราะห์โครงสร้างนาโนของ สารประกอบซิงก์ไทเทเนต ด้วยเทคนิกปฏิกิริยาออกซิเดชัน แสดงในตาราง 4.1 ดังนี้

		NY KA		The Co	A Y	11	-
สารตั้งต้น		อุณหภูมิ(°C)					
ZnO (mol%)	TiO ₂ (mol%)	600°C	650°C	700°C	750°C	800°C	850°C
40	60	Sample No.1	Sample No.2	Sample No.3	Sample No.4	Sample No.5	Sample No.6
30	70	Sample No.7	Sample No.8	Sample No.9	Sample No.10	Sample No.11	Sample No.12
20	80	Sample No.13	Sample No.14	Sample No.15	Sample No.16	Sample No.17	Sample No.18
10	90	Sample No.19	Sample No.20	Sample No.21	Sample No.22	Sample No.23	Sample No.24

ตารางที่ 4.1 แสดงเงื่อนไขต่าง ๆ ในการสังเคราะห์สารประกอบซิงก์ไทเทเนต ${
m Zn_2Ti_3O_8}$

4.1 ผลการวิเคราะห์โครงสร้างผลึกด้วย SEM

4.1.1 ผลของอุณหภูมิที่มีต่อขนาดผลึก

การวิเคราะห์โครงสร้างทางกายภาพด้วย SEM ของซิงก์ไททาเนต 60% โดยโมลไททาเนียม ใดออกไซด์ เผาที่ 600°C - 850°C พบว่ามีลักษณะเกาะกันเป็นก้อน มีรูปร่างไม่แน่นอนมีทั้งแบบกลม และแบบแท่ง มีขนาดเส้นผ่าศูนย์กลางอยู่ที่ประมาณ 150 – 320 nm พบว่าเมื่ออุณหภูมิสูงขึ้นอนุภาคมี ขนาดของเส้นผ่าศูนย์กลางมีขนาดมากขึ้นดังแสดงในรูปที่ 4.12 – 4.15 เมื่อทำการวัดด้วยโปรแกรม Image J สรุปความยาวของเส้นผ่าศูนย์กลางได้ดังตารางที่ 4.2

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

850°C รูปที่ 4.1 ภาพ SEM แสดงลักษณะทางกายภาพของสารที่เติมไททาเนียมไดออกไซด์ 60% โดยโมล เผาที่อุณหภูมิ 600°C – 850°C

15.0kV X20,0

15.0kV X20,000

ร**ูปที่ 4.2** ภาพ SEM แสดงลักษณะทางกายภาพของสารที่เติมไททาเนียมไดออกไซด์ 70% โดยโมล เผาที่อุณหภูมิ 600°C – 850°C

ร**ูปที่ 4.3** ภาพ SEM แสดงลักษณะทางกายภาพของสารที่เติมไททาเนียมไดออกไซด์ 80% โดยโมลเผา ที่อุณหภูมิ 600°C – 850°C

ร**ูปที่ 4.4** ภาพ SEM แสดงลักษณะทางกายภาพของสารที่เติมไททาเนียมไดออกไซด์ 90% โดยโมลเผา ที่อุณหภูมิ 600°C – 850°C

ন গ	เส้นผ่านศูนย์กลาง (nm)				
เงอน เข	60% โคยโมล	70% โคยโมล	80% โคยโมล	90% โคยโมล	
600°C	189 ± 0.062	165 ± 0.047	157 ± 0.022	151 ± 0.039	
650°C	193 ± 0.047	172 ± 0.039	162 ± 0.033	158 ± 0.083	
700°C	223 ± 0.06	186 ± 0.052	182 ± 0.054	178 ± 0.054	
750°C	306 ± 0.079	251 ± 0.061	219 ± 0.066	183 ± 0.046	
800°C	331 ± 0.092	284± 0.091	235 ± 0.075	227 ± 0.063	
850°C	366 ± 0.104	321±0.089	317 ± 0.036	257 ± 0.083	

ตารางที่ 4.2 แสดงเส้นผ่านศูนย์กลางของขนาดของ Zn₂Ti₃O₈ที่เติมไททาเนียมไดออกไซด์ 60,70,80 และ 90% โดยโมล ที่อุณหภูมิ 600°C – 850°C

4.1.2 ผลของปริมาณไทเทเนียมไดออกไซด์ที่มีต่อขนาดผลึก

จากการศึกษาผลของอุณหภูมิต่อขนาดและรูปร่างของซิงก์ไทเทเนต พบว่าสารตัวอย่างที่ สังเคราะห์ได้ด้วยปฏิกิริยาออกซิเดชันมีลักษณะเกาะกันเป็นก้อนมีรูปร่างไม่แน่นอน และพบว่าเมื่อ เพิ่มความเข้มข้นของไทเทเนียมไดออกไซด์เมื่อสังเกตด้วยตาเปล่าจะเห็นว่าขนาดของซิงก์ไทเทเนตมี ขนาดเล็กลง ดังแสดงในรูปที่ 4.6 เมื่อทำการวัดด้วยโปรแกรม Image J สรุปความยาวของ เส้นผ่าศูนย์กลางได้ดังตารางที่ 4.3

> ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

70 โมล%

80 โมล%

รูปที่ 4.5 ภาพ SEM แสดงลักษณะทางกายภาพของสารที่เติมไททาเนียมไดออกไซด์ที่ความเข้มข้น 60% - 90% โดยโมล เผาที่อุณหภูมิ 600°C Copyright Chiang Mai University

MAT

70 โมล%

80 โมล%

รูปที่ 4.6 ภาพ SEM แสดงลักษณะทางกายภาพของสารที่เติมไททาเนียมไคออกไซด์ที่ความเข้มข้น

MAT

70 โมล%

80 โมล%

ร**ูปที่ 4.7** ภาพ SEM แสดงลักษณะทางกายภาพของสารที่เติมไททาเนียมไดออกไซด์ที่ความเข้มข้น

MAT

60% - 90% โดยโมล เผาที่อุณหภูมิ 700°C Copyright[©] by Chiang Mai University A I I rights reserved

70 โมล%

80 โมล%

ร**ูปที่ 4.8** ภาพ SEM แสดงลักษณะทางกายภาพของสารที่เติมไททาเนียมไดออกไซด์ที่ความเข้มข้น

MAT

60% - 90% โดยโมล เผาที่อุณหภูมิ 750°C Copyright[©] by Chiang Mai University A I I rights reserved

70 โมล%

80 โมล%

ร**ูปที่ 4.9** ภาพ SEM แสดงลักษณะทางกายภาพของสารที่เติมไททาเนียมไดออกไซด์ที่ความเข้มข้น

MAT

60% - 90% โดยโมล เผา โดยโมล เผาที่อุณหภูมิ 800°C Copyright by Chiang Mai University All rights reserved

70 โมล%

80 โมล%

รูปที่ 4.10 ภาพ SEM แสดงลักษณะทางกายภาพของสารที่เติมไททาเนียมไดออกไซด์ที่ความเข้มข้น

_ 60% - 90% โคยโมล เผาที่อุณหภูมิ 850°C ລີປ งเหม เหาวทยาลย Copyright[©] by Chiang Mai University All rights reserved

เงื่อนไข% โดยโมล TiO ₂	เส้นผ่านศูนย์กลาง (nm)
60 %	306 ± 0.079
70 %	251 ± 0.061
80 %	219 ± 0.066
90 %	183 ± 0.046

ตารางที่ 4.3 แสดงเส้นผ่านศูนย์กลางของขนาดของซิงก์ไทเทเนต $\mathrm{Zn}_{2}\mathrm{Ti}_{3}\mathrm{O}_{8}$ ที่เผาที่ อุณหภูมิ 750°C

4.2 ผลการวิเคราะห์องค์ประกอบทางเคมีด้วยเครื่อง EDS

หลังจากทำการวิเคราะห์ลักษณะโครงสร้างทางกายภาพของซิงก์ไทเทเนต ด้วยกล้อง จุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscope, SEM) แล้ว จึงวิเคราะห์ องค์ประกอบทางเคมีของซิงก์ไทเทเนตที่สังเคราะห์ได้ว่ามีองค์ประกอบทางเคมีอะไรบ้าง ด้วยเครื่อง สเปกโทรสโกปีพลังงานกระจาย (Energy Dispersive Spectroscopy, EDS) เพื่อยืนยันว่า ตัวอย่างสารที่ สังเคราะห์ได้คือซิงก์ไทเทเนตจริงหรือไม่ ซึ่งผลการทดลองที่ได้จะแสดงตัวอย่างของสารที่สังเคราะห์ บางตัวอย่าง ดังนี้

ร**ูปที่ 4.11** แสดงตำแหน่งที่ทำการวิเคราะห์องค์ประกอบทางเคมีด้วย EDS ของซิงก์ไทเทเนตที่ เติมไททาเนียมไดออกไซด์ 60% โดยโมล เผาที่อุณหภูมิ 750°C

ร**ูปที่ 4.12** แสดงสเปกตรัมการวิเคราะห์องค์ประกอบทางเคมีของเส้นนาโนซิงก์ไทเทเนตด้วย EDS ของซิงก์ไทเทเนตที่เติมไททาเนียมไดออกไซด์ 60 %โดยโมล ที่อุณหภูมิ 750°C

 Element
 Weight
 Atomic %

 O K
 38.56
 67.97

 Ti K
 35.16
 20.70

 Zn K
 26.28
 11.34

 total
 100

ตารางที่ 4.4 แสดงปริมาณขององค์ประกอบทางเคมีของเส้นนาโนซิงก์ไทเทเนต

ดังแสดงในรูปที่ 4.22 ในการวิเคราะห์ด้วย EDS ถำอิเล็กตรอนถูกยิงไปตรงส่วนของซิงก์ไท เทเนตที่สังเคราะห์ รูปที่ 4.23 แสดงสเปกตรัมขององค์ประกอบทางเคมี 3 ธาตุ คือ ซิงก์ (Zn), ไททา เนียม (Ti) และ ออกซิเจน (O) ซึ่งแสดงว่าไทเทเนียมไดออกไซด์และซิงก์ออกไซด์ได้ฟอร์มตัวขึ้นเป็น สารประกอบซิงก์ไทเทเนต ซึ่งเมื่อดูตามเฟสไดอะแกรมในบทที่ 2 จะมีอยู่ด้วยกัน 3 เฟส คือ Zn₂TiO₄, ZnTiO₃ และ Zn₂Ti₃O₈ จากผลของ EDS ถึงแม้จะบอกได้ว่าสารซิงก์ไทเทเนตที่สังเคราะห์ได้มี องก์ประกอบของธาตุทั้ง 3 และเมื่อทำการวิเคราะห์เฟสของสารที่สังเคราะห์ได้โดยอาศัยเครื่อง XRD ดิฟแฟรกโทรมิเตอร์ ตามข้อ 4.1 สามารถยืนยันว่าสารที่ได้เป็นสารประกอบซิงก์ไทเทเนตเฟส Zn₂Ti₃O₈ จริง

4.3 ผลการศึกษาสมบัติผลการวิเคราะห์โครงสร้างผลึกด้วย XRD

รูปที่ 4.14 แสดงการเลี้ยวเบนของรังสีเอกซ์ของสารตัวอย่าง 60% โดย โมลของ TiO₂ เผาที่อุณหภูมิ 750°C เทียบกับ ZnO , TiO₂ และ ค่ามาตรฐาน JCPDF Files ของ Zn₂Ti₃O₈

จากรูปที่ 4.1 แสดงผลการวิเคราะห์ XRD สเปกตรัมของสารตัวอย่าง 60% โดยโมลของ TiO₂ เผาที่อุณหภูมิ 750°C พบว่าสารที่สังเคราะห์ได้จะเป็นสารที่มีหลายเฟสรวมกันอยู่ มีทั้งเฟสของ สารที่เป็นสารตั้งต้นคือ ซิงก์ออกไซด์และไทเทเนียมไดออกไซด์ที่เป็นอนาเทส (anatase) และเมื่อ นำไปเปรียบกับก่ามาตรฐาน JCPDF files no.87178 พบว่าเฟสของสารที่เป็นสารใหม่ คือซิงก์ไทเท เนตเฟส Zn₂Ti₃O₈ ที่มีโครงสร้างแบบ Cubic โดยมุมสอดกล้องคือที่มุม 20 เท่ากับ 23.688, 30.095, 35.448, 53.446, 56.973 และ62.563 ซึ่งมีระนาบคือ ระนาบ (2 1 0),(2 2 0),(3 1 1),(4 2 2),(5 1 1) และ (4 4 0) ตามลำดับ ดังแสดงในรูป 4.2 และเฟสทั้งหมดที่เกิดขึ้นสรุปไว้ดังตารางที่ 4.5

Peak	Exper	iment	AD 000	2	Standard		% error of
No.	2 θ	d	Phases	hkl	2 θ	d	d
1	23.71	3.75	$Zn_2Ti_3O_8$ - Cubic	210	23.69	3.75	0.0831
2	26.04	3.42	$Zn_2Ti_3O_8$ - Cubic	211	25.99	3.42	01887
3	30.12	2.96	$Zn_2Ti_3O_8$ - Cubic	220	30.10	2.97	0.0649
4	32.01	2.79	ZnO - Hexagonal	100	32.00	2.79	0.0304
5	32.83	2.72	ZnTiO ₃ - Rhombohedral	104	32.80	2.73	0.0889
6	35.50	2.53	$Zn_2Ti_3O_8$ - Cubic	311	35.45	2.53	0.1363
7	43.10	2.10	$Zn_2Ti_3O_8$ - Cubic	400	43.08	2.10	0.0442
8	49.77	1.83	ZnTiO ₃ - Rhombohedral	024	49.01	1.86	1.4320
9	53.51	P1.71	Zn ₂ Ti ₃ O ₈ - Cubic	422	53.45	1.71	0.1039
10	56.98	1.61	$Zn_2Ti_3O_8$ - Cubic	511	56.97	1.61	0.0161
11	62.58	1.48	$Zn_2Ti_3O_8$ - Cubic	440	62.56	1.48	0.0287
12	70.97	1.33	$Zn_2Ti_3O_8$ - Cubic	620	70.98	1.33	0.0122
13	74.01	1.28	$Zn_2Ti_3O_8$ - Cubic	533	74.01	1.28	0.0000

ตารางที่ 4.5 แสดงเฟสและค่าต่างๆของสารที่สังเคราะห์ได้

โดยพบปริมาณของซิงก์ไทเทเนตที่ได้ขึ้นอยู่กับอุณหภูมิและความเข้มข้นของไทเทเนียมได ออกไซด์ดังนี้

4.3.1 ผลของปริมาณไทเทเนียมไดออกไซด์ต่อการฟอร์มตัวของสารประกอบซิงก์ไทเท เนตเฟส Zn₂Ti₃O₈

ผลการวิเคราะห์ XRD ของซิงก์ไทเทเนตที่มีปริมาณโมล % ของไทเทเนียมไดออกไซด์เป็น 60 70 80 และ 90 % โดยโมล เมื่อเผาที่อุณหภูมิแตกต่างกันในช่วง 600 – 850°C แสดงดังรูปที่ 4.3 – 4.8 เมื่อพิจารณาความเข้มของแต่ละพืก พบว่าเมื่อเติมปริมาณไทเทเนียมไดออกไซด์เพิ่มขึ้น ความเข้ม พีคของไทเทเนียมไดออกไซด์จะเพิ่มขึ้นตาม ส่วนความเข้มพีกของซิงก์ออกไซด์จะลดลงตามปริมาณ การเติมแสดงว่าเกิดปฏิกิริยาออกซิเดชันขึ้นกับสารตั้งค้น นอกจากนี้พบว่าความเข้มพีกของซิงก์ไทเท เนตมีความชัดเจนที่สุดที่ปริมาณการเติม 60 % โดยโมลไทเทเนียมไดออกไซด์

ร**ูปที่ 4.15** แสดงการเลี้ยวเบนของรังสีเอกซ์ของสารตัวอย่างที่เติมไททาเนียมไดออกไซด์ 60% - 90% โดยโมลเผาที่อุณหภูมิ 600°C

ร**ูปที่ 4.17** แสดงการเลี้ยวเบนของรังสีเอกซ์ของสารตัวอย่างที่เติมไททาเนียมไดออกไซด์ 60% - 90% โดยโมลเผาที่อุณหภูมิ 700°C

ร**ูปที่ 4.19** แสดงการเลี้ยวเบนของรังสีเอกซ์ของสารตัวอย่างที่เติมไททาเนียมไดออกไซด์ 60% - 90% โมลเผาที่อุณหภูมิ 800°C

ร**ูปที่ 4.20** แสดงการเลี้ยวเบนของรังสีเอกซ์ของสารตัวอย่างที่เติมไททาเนียมไดออกไซด์ 60% - 90% โดยโมลเผาที่อุณหภูมิ 850°C

4.3.2 ผลของอุณหภูมิต่อการฟอร์มตัวของสารประกอบซิงก์ไทเทเนตเฟส $m Zn_2Ti_3O_8$

จากข้อ 4.1.1 พบว่าเมื่อซิงก์ไทเทเนตที่มีปริมาณความเข้มข้น 60 % โดยโมลไทเทเนียมได ออกไซด์ มีความเข้มพีดของ Zn₂Ti₃O₈ ชัดเจนที่สุด จึงนำ ZnO ผสม TiO₂ ที่ 60 mol% ความเข้มข้นนี้ มาเผาที่อุณหภูมิต่างๆ ตั้งแต่ 600 – 850 °C แล้วนำไปวิเคราะห์ XRD ได้ผลของการเลี้ยวเบนรังสีเอกซ์ ดังแสดงในรูปที่ 4.9 - 4.12 พบว่าที่อุณหภูมิสูงขึ้นความเข้มของพีกไทเทเนียมไดออกไซด์และพีกซิงก์ ออกไซด์ลดลง ส่วนความเข้มของพีก Zn₂Ti₃O₈ ความเข้มของพีกชัดเจนขึ้น และสังเกตได้ว่ามีความเข้ม ของพีกชัดเจนที่สุดที่อุณหภูมิการเผา 750°C

> Copyright[©] by Chiang Mai University All rights reserved

ร**ูปที่ 4.22** แสดงการเลี้ยวเบนของรังสีเอกซ์ของสารที่เติมไททาเนียมไดออกไซด์ 70% โดยโมล เผาที่อุณหภูมิ 600°C - 850°C

ร**ูปที่ 4.23** แสดงการเลี้ยวเบนของรังสีเอกซ์ของสารที่เติมไททาเนียมไคออกไซด์ 80% โดยโมล

ร**ูปที่ 4.24** แสดงการเลี้ยวเบนของรังสีเอกซ์ของสารที่เติมไททาเนียมไดออกไซด์ 90% โดยโมล เผาที่อุณหภูมิ 600°C - 850°C

4.4 การตรวจจับก๊าซต่อไอเอทานอล

จากการสังเคราะห์ซิงก์ไทเทเนตตามวิธีการบทที่ 3 ทำให้ได้ซิงก์ไทเทเนตเฟส Zn₂Ti₃O₈ ตาม ผลการทดลองข้อ 4.1 ซึ่งพบว่าเกิด Zn₂Ti₃O₈ ชัดเจนที่สุดในเงื่อนไขเติม 60%โดยโมลไททาเนียมได ออกไซด์ เผาที่อุณหภูมิ 750°C ดังนั้นจึงได้นำมาทดสอบการตรวจจับไอเอทานอลที่ความเข้มข้น 50, 100, 500 และ 1000 ppm ที่อุณหภูมิทดสอบตั้งแต่ 340 °C – 500 °C โดยใช้เวลาในการปล่อยไอเอทา นอล 200 วินาที ผลการทดลองแสดงดังรูปที่ 4.24 – 4.27 พบว่าที่อุณหภูมิทดสอบสูงขึ้นจะได้ก่าความ ด้านทานลดลง และสามารถกำนวณก่าสภาพไวได้ตามตาราง 4.6

ร**ูปที่ 4.25** กราฟแสดงความสัมพันธ์ระหว่างความค้านทานที่อุณหภูมิทดสอบต่าง ๆ เมื่อนำไป ทดสอบกับไอของเอทานอลที่ความเข้มข้น 50 ppm

ร**ูปที่ 4.27** กราฟแสดงความสัมพันธ์ระหว่างความด้านทานที่อุณหภูมิทดสอบต่าง ๆ เมื่อนำไป ทดสอบกับไอของเอทานอลที่ความเข้มข้น 500 ppm

ร**ูปที่ 4.28** กราฟแสดงความสัมพันธ์ระหว่างความด้านทานที่อุณหภูมิทดสอบต่าง ๆ เมื่อนำไป ทดสอบกับไอของเอทานอลที่ความเข้มข้น 1000 ppm

จากกราฟดังรูปที่ 4.25-4.28 จะเห็นว่าเมื่ออุณหภูมิของการตรวจวัดไอเอทานอลมากขึ้น ความ ด้านทานของเซนเซอร์จะมีค่าลดลงและเมื่อความเข้มข้นของไอเอทานอลมีก่ามากขึ้นทำให้ความ ด้านทานของเซนเซอร์มีก่ามากขึ้น เมื่อเปรียบเทียบก่าความต้านทานเซนเซอร์ที่ใช้สารที่สังเคราะห์ได้ กับซิงก์ออกไซด์พบว่าก่าความด้านทานของเซนเซอร์ที่ใช้สารที่สังเคราะห์นี้มีก่าสูงถึงระดับจิกะ โอห์มเมื่อเทียบกับเซนเซอร์ที่ใช้ Zn

ค่าความไว (sensor response) เวลาการตอบสนอง ($au_{0.9}^-$)และเวลาการคืนตัว ($au_{0.9}^+$) แสดง ไว้ตามตาราง 4.6 – 4.8 ดังนี้

อุณหภูมิทคสอบ	ค่าความไวที่ความเข้มข้า		่นของ ไอเอทานอลต่	างๆ
(°C)	50(ppm)	100(ppm)	500(ppm)	1000(ppm)
340	1.70	1.72	1.76	2.09
360	1.80	1.90	2.08	2.63
380	2.24	2.69	4.07	4.27
400	2.49	2.69	3.60	5.43
420	2.33	2.62	3.12	4.48
440	2.20	2.40	2.50	3.73
460	2.05	2.20	2.30	2.94
480	1.99	2.10	2.20	2.59
500	1.90	2.01	2.21	2.60

ตารางที่ 4.6 แสดงค่า ความไว (sensor response) ซึ่งก์ไทเทเนต เมื่อนำไปทดสอบกับไอของเอทานอล ที่ความเข้มข้นต่าง ๆ ณ อุณหภูมิทคสอบในช่วง 340 °C – 500 °C

จากตารางที่ 4.6 พบว่าเมื่ออุณหภูมิเพิ่มขึ้น ค่าความไวจะมีแนวโน้มที่เพิ่มขึ้น และเมื่อ อุณหภูมิเพิ่มจนถึงระดับหนึ่งค่าความไวจะเริ่มลดลง ซึ่งค่าความไวที่ได้อาจจะไม่แตกต่างอย่างมี นัยสำคัญ แต่ก็แสดงให้เห็นว่ามีอุณหภูมิที่เหมาะสมค่าหนึ่งที่ทำให้เอทานอลเซนเซอร์มีการ ตอบสนองได้ดีที่สุด ซึ่งจากผลการทคลองก่าความไวต่อการตอบสนองสูงสุดของแต่ละความเข้มข้นมี ก่าอยู่ที่ 380 °C และ 400 °C ดังแสดงในรูปที่ 4.29

All rights reserved

รูปที่ 4.29 กราฟแสดงความสัมพันธ์ระหว่างค่าความไวของซิงก์ไทเทเนตกับค่าอุณหภูมิทดสอบที่ ความเข้มข้นของไอทานอลต่างๆ

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

อุณหภูมิทคสอบ	เวลาในการตอบสนองที่ความเข้มข้นของไอของเอทานอลต่างๆ(s)				
(°C)	50(ppm)	100(ppm)	500(ppm)	1000(ppm)	
340	52.93	50.83	34.95	58.5	
360	20.3	47.67	49.35	43.46	
380	28.72	34.89	40.08	44.51	
400	37.14	26.32	40.08	34.14	
420	38.35	36.99	34.95	32.78	
440	38.35	33.83	50.35	33.98	
460	38.35	28.57	30.81	44.36	
480	35.94	23.16	26.68	38.65	
500	32.33	26.32	34.95	33.98	

ตารางที่ 4.7 แสดงค่า เวลาการตอบสนอง ($au_{0.9}^-$) ของซิงก์ไทเทเนต เมื่อนำไปทดสอบกับไอของเอทา นอลที่ความเข้มข้นต่าง ๆ ที่อุณหภูมิทดสอบต่าง ๆ

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

อุณหภูมิทคสอบ	เวลาในการคืนตัวที่ความเข้มข้นของไอเอทานอลต่างๆ (s)				
(°C)	50(ppm)	100(ppm)	500(ppm)	1000(ppm)	
340	47.07	36.54	32.97	47.37	
360	33.68	40.9	40.24	47.22	
380	24.06	44.06	54.64	80.75	
400	44.51	46.17	54.64	64.51	
420	44.51	40.9	47.07	60.9	
440	46.92	39.85	61.91	51.73	
460	36.09	39.85	41.24	62.1	
480	40.9	39.85	45.38	51.72	
500	40.9	40.9	46.52	49.47	

ตารางที่ 4.8 แสดงค่า เวลาการคืนตัว ($au_{0.9}^+$) ของซิงก์ไทเทเนต เมื่อนำไปทดสอบกับไอของเอทานอล ที่ความเข้มข้นต่าง ๆ ที่อุณหภูมิทดสอบต่าง ๆ

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

4.4.2 ผลการทดสอบไอเอทานอลที่อุณหภูมิและความเข้มข้นต่างๆกัน

เมื่อนำค่า ความไว (sensor response) กับค่าอุณหภูมิทคสอบ ณ ความเข้มข้นต่าง ๆ มาแสดง เป็นกราฟ เพื่อให้เห็นความสัมพันธ์ เพื่อหาอุณหภูมิที่เหมาะสมที่สุดในแต่ละค่าความเข้มข้นของ ไอเอทานอล จะได้กราฟดังรูป

ร**ูปที่ 4.30** กราฟแสดงความสัมพันธ์ระหว่างค่าความไวของซิงก์ไทเทเนตกับค่าอุณหภูมิทคสอบที่ ความเข้มข้นของไอทานอลต่างๆ

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved จากผลการทคลองค่าความไวต่อการตอบสนองสูงสุดของแต่ละความเข้มข้นได้ค่าอุณหภูมิที่ ให้ค่าความไวต่อการตอบสนองสูงที่สุด , เวลาการตอบสนอง และเวลากืนตัว ที่ความเข้มข้นของ ไอเอทานอล 50 , 100 , 500 และ 1000 ppm ดังตารางที่ 4.9

ตารางที่ 4.9 ตารางแสดงอุณหภูมิที่ให้ค่าความไวต่อการตอบสนองสูงที่สุด , เวลาการตอบสนอง และ เวลากืนตัว ที่ความเข้มข้นของไอเอทานอล 50 , 100 , 500 และ 1000 ppm ตามลำคับ

ความเข้มข้นของ ไอเอทานอล	อุณหภูมิที่ให้ค่า ความไวต่อการ ตอบสนองสง	ความไว (sensor response)	เวลาการ ตอบสนอง	เวลาการคืนตัว ($ au_{0.9}^{+}$)
(ppm)	ที่สุด (°C)	D.D.D.D.	$(\tau_{0.9})$	
50	400	2.49	37.14	44.51
100	400	2.69	26.32	46.17
500	380	4.07	40.08	54.64
1000	400	5.48	34.14	64.51

จากตารางที่ 4.9 และนำความสัมพันธ์ระหว่างค่าความไว (sensor response) กับค่าความ เข้มข้นของไอของเอทานอล มาเขียนกราฟแสดงความสัมพันธ์ ดังรูปที่ 4.29 พบว่า อุณหภูมิที่ให้ค่า ความไวต่อการตอบสนองสูงที่สุดคือ 380 °C และ 400 °C โดยพบว่าเมื่อความเข้มข้นของไอเอทา นอลสูงขึ้นค่าความไวมีค่าสูงขึ้น ส่วนเวลาการตอบสนองและเวลาการคืนตัวมีค่าค่อนข้างสูง เวลาการ ตอบสนองไม่แตกต่างกันมาก และเวลาการคืนตัวมีค่ามากขึ้นตามความเข้มข้นของไอเอทานอลมีค่า มากขึ้น

> Copyright[©] by Chiang Mai University All rights reserved

(ค)

(ຊ)

รูปที่ 4.31 แสดงความสัมพันธ์ระหว่างค่าความไว (sensor response) กับค่าความเข้มข้นของ ไอของเอทานอล ที่อุณหภูมิทคสอบต่าง ๆ (ก) 340 °C (ข) 360 °C (ค) 380 °C (ง) 400 °C (จ) 420 °C (ฉ) 440 °C (ช) 460 °C (ซ) 480 °C (ฌ) 500 °C

จากการศึกษาผลการตรวจจับไอเอทานอลของเอทานอลเซนเซอร์ที่อุณหภูมิและความเข้มข้น ใอเอทานอลต่างๆ เมื่อนำมาเขียนกราฟระหว่างก่าสภาพไวลบหนึ่ง และความเข้มข้นของไอเอทานอล ที่ความเข้มข้นต่างๆกัน เพื่อกำนวณหาก่า b ตามสมการ 2.15 ถ้า b มีก่าเท่ากับ 0.5 แสดงว่าออกซิเจน ที่เกาะบนพื้นผิวของโครงสร้างซิงก์ไทเทเนตมีประจุเป็น O²⁻ และถ้า b มีก่าเท่ากับ 1 แสดงว่า ออกซิเจนที่เกาะบนพื้นผิวของโครงสร้างซิงก์ไทเทเนตมีประจุเป็น O⁻ จากการทดลองหาก่า b ที่ อุณหภูมิทดสอบต่างๆกัน ของเอทานอลเซนเซอร์ดังแสดงในรูปที่ 4.29 พบว่าออกซิเจนที่เกาะบน พื้นผิวของโครงสร้างซิงก์ไทเทเนตมีประจุเป็น O²⁻ ดังแสดงก่า b ตามตารางที่ 4.9

Operating temperature (^o C)		Oxygen species
340	0.057	131
360	0.1117	-322
380	0.225	704
400	0.243	5
420	0.194	O ²⁻
440	0.142	
460	0.100	
6480 an S1	0.075	ชียงใหม่
(500 pyright)	0.094	University
All ri	ghts res	erved

ตารางที่ 4.10 ค่า b ของเอทานอลเซนเซอร์เมื่อนำสารตัวอย่างมาทคสอบที่อุณหภูมิต่าง ๆ