สารบัญ

	หน้า
กิตติกรรมประกาศ	ค
บทลัดย่อภาษาไทย	1
บทกัดย่ออังกฤษ	จ
สารบัญตาราง	ណ
สารบัญรูปภาพ	ល្ង
บทที่ 1 บทนำ	1
1.1 ความสำคัญและที่มาของงานวิจัย	1
1.2 ความเป็นมาของซิงก์ไทเทเนต	2
1.3 วัตถุประสงค์ของการศึกษา	7
1.4 ประโยชน์ที่จะได้รับจากการศึกษาเชิงทฤษฎีและ/หรือเชิงประยุกต์	7
บทที่ 2 เอกสารและงานวิจัยที่เกี่ยวข้อง	8
2.1 สารกึ่งตัวนำ (Semiconductor)	8
2.2 คุณสมบัติของซิงก์ออกไซด์ (ZnO)	9
2.3 คุณสมบัติของไทเทเนียมไดออกไซด์	10
2.4 สารประกอบซิงก์ไทเทเนต (Zinc titanate compound)	12
2.5 สมบัติการตรวจวัดก๊าซของสารประกอบโลหะออกไซด์	12
2.6 สภาพไว(Sensitivity, S)	15
2.7 เวลาการตอบสนอง (Response time, $ au_{90}^-$)	16

หน้า

	2.8 เวลาการกินตัว(Recovery time, $ au_{90}^+$)	17
	2.9 ปริมาณการตอบสนองของเซนเซอร์ก๊าซ(Response %)	17
	2.10 การวิเคราะห์โครงสร้างผลึกโดยใช้การเลี้ยวเบนรังสีเอกซ์	
	X-ray Diffractometer,XRD	18
	2.11 กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด	
	(Scanning Electron Microscope, SEM)	19
	2.12 เครื่องสเปกโทรสโกปีพลังงานกระจาย	
	(Energy Dispersive Spectroscopy, EDS)	21
บทที่ 3	วัสดุอุปกรณ์ทดลองและวิธีการทดลอง	23
	3.1 วัสดุอุปกรณ์ที่ใช้ในการเตรียมสาร	25
	3.2 การวิเคราะห์สารตัวอย่างด้วยกล้องSEM และ EDS	28
	3.3 การวิเคราะห์สารตัวอย่างด้วยเครื่อง XRD	29
	3.4 การเตรียมเอทานอลเซนเซอร์จาก Zn ₂ Ti ₃ O ₈	30
	3.5 การศึกษาสมบัติในการตรวจจับไอเอทานอลของเอทานอลเซนเซอร์	31
บทที่ 4	เ ผลการทคลองและวิเคราะห์ผลการทคลอง	34
	4.1 ผลการวิเคราะห์โครงสร้างผลึกด้วยSEM	35
	4.1.1 ผลของอุณหภูมิที่มีต่อขนาดผลึก	35
	4.1.2 ผลของปริมาณไทเทเนียมไดออกไซด์ที่มีต่อขนาดผลึก	40
	4.2 ผลการวิเคราะห์องค์ประกอบทางเคมีด้วยเครื่องEDS	47
	4.3 ผลการวิเคราะห์โครงสร้างผลึกด้วยXRD	49
	4.3.1 ผลของไทเทเนียมไดออกไซด์ต่อปริมาณของสารประกอบ	
	ซิงก์ไทเทเนต $Zn_2Ti_3O_8$	51
	4.3.2 ผลของอุณหภูมิต่อการเปลี่ยนเฟส	54

4.4 การตรวจจับก๊าซต่อไอเอทานอล 57	7
4.4.1 ผลการทคสอบใอเอทานอลของเซนเซอร์เอทานอล 57	7
4.4.2 ผลการทดสอบไอเอทานอลที่อุณหภูมิและความเข้มข้นต่างๆกัน	1
บทที่ 5 สรุป วิจารณ์ผลการทคลองและข้อเสนอแนะ)
เอกสารอ้างอิง 75	5
ллынира	
ภาคผนวก ก 78	3
ภาคผนวก ข 81	l
ประวัติผู้เขียน	;
UNIVE	
ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright [©] by Chiang Mai University All rights reserved	

สารบัญตาราง

ตาราง	หน้า
2.1 แสดงสมบัติกายภาพบางประการของสารไทเทเนียมไดออกไซด์	11
3.1 อัตราส่วนการเตรียมสารประกอบ ZnO และ TiO2และอุณหภูมิที่เผา	24
4.1 แสดงเงื่อนไขต่าง ๆ ในการสังเคราะห์สารประกอบซิงก์ไทเทเนตZn $_2 { m Ti}_3 { m O}_8$	34
4.2 แสดงเส้นผ่านศูนย์กลางของขนาดของซิงก์ไททาเนต ${ m Zn_2Ti_3O_8}$ ที่เติมไททาเนียมไดออก	
ไซค์ 60% โคยโมสที่อุณหภูมิ 600 °C– 850 °C	40
4.3 แสดงเส้นผ่านศูนย์กลางของขนาดของซิงก์ไททาเนต ${ m Zn_2Ti_3O_8}$ ที่เผาที่อุณหภูมิ 750 °C \sim	47
4.4 แสดงปริมาณขององค์ประกอบทางเคมีของเส้นนาโนซิงก์ไทเทเนต	48
4.5 แสดงเฟสและค่าต่างๆของสารที่สังเคราะห์ได้	50
4.6 แสดงก่ากวามไว(Sensitivity) ซึ่งก์ไทเทเนต เมื่อนำไปทดสอบกับไอของเอทานอลที่กวาม	
เข้มข้นต่างๆ ณ อุณหภูมิทคสอบต่างๆ	60
4.7 แสดงก่าการตอบสนอง ($ au_{ar{0.9}}$)ของซิงก์ไทเทเนต เมื่อนำไปทคสอบกับไอของเอทานอล	
ที่ความเข้มข้นต่างๆ ณ อุณหภูมิทคสอบต่างๆ	62
4.8 แสดงก่าการตอบสนอง ($ au_{0.9}^+$)ของซิงก์ไทเทเนต เมื่อนำไปทคสอบกับไอของเอทานอล	
ที่ความเข้มข้นต่างๆ ณ อุณหภูมิทคสอบต่างๆ	63
4.9 แสดงอุณหภูมิที่ให้ค่าความไวต่อการตอบสนองสูงที่สุด ,เวลาการตอบสนอง และ	
เวลาลืนตัว ที่ความเข้มของไอเอทานอล 50 , 100 , 500 และ 1000 ตามลำคับ	65
4.10 ค่า b ของเอทานอลเซนเซอร์เมื่อนำสารตัวอย่างมาทคสอบที่อุณหภูมิต่างๆ	67
All rights reserved	

สารบัญรูปภาพ

รูป	หน้า
1.1 แสดงเฟสไดอะแกรมที่ได้จากการทดลองของDulinและRase [4]	3
1.2 แสดงเฟสไดอะแกรมที่ได้จากการทดลองของYangและคณะ[5]	4
1.3 (a) และ (b)แสดงสารประกอบซิงก์ไทเทเนตที่ได้จากการทดลองของ	
Changและคณะ[6]	5
1.4 (a)-(d)แสดงสารประกอบซิงก์ไทเทเนตที่ได้จากการทดลองของ	
Zhu และคณะ[7]	5
2.1 แสดงโครงสร้างWurtzite Hexagonalของ ZnO	9
2.2 แสดงโครงสร้างรูไทล์(Rutile)ของไทเทเนียมไดออกไซด์	11
2.3 แสดงโครงสร้างอนาเทส(Anatase)ของไทเทเนียมไดออกไซด์	11
2.4 แสดงลักษณะของกำแพงศักย์บริเวณ Grain boundary และพื้นผิว	
เมื่อเกิดการยึดติดของออกซิเจน และหลังจากที่ก๊าซเข้ามาทำปฏิกิริยา	
กับออกซิเจนอิออนแล้ว	13
2.5 แสดงการหาค่าเวลาการตอบสนอง	17
2.6 การสะท้อนของรังสีเอ็กซ์จากระนาบผลึกที่ขนานกับและระยะห่าง	
ของระนาบเท่ากับป	19
2.7 แสดงองค์ประกอบภายในกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด	20
2.8 แสคงโพรบอิเล็กตรอนเคลื่อนในแนวแกนนอนและแกนตั้งบนระนาบ	
ของตัวอย่าง	21
2.9 แสดงองค์ประกอบของเครื่องเอกซเรย์แบบกระจายพลังงาน	22
2.10 แสดงการเปลี่ยนระดับชั้นพลังงานของอิเล็กตรอนภายในอะตอม	
ส่งผลให้เกิดรังสีเอ็กซ์	22
3.1 แผนภาพแสดงขั้นตอนการเตรียมสารประกอบซิงก์ไทเทเนตด้วยเทคบิค	
ออกซิเคชันเชิงความร้อน	29

	ע		
ห	น	J	

3.2 แสดงสารซิงก์ออกไซค์(ZincOxide: ZnO)ที่มีความบริสุทธิ์ 99.9%	25
3.3 แสดงครกบคสารแบบบคมือและช้อนตักสาร	25
3.4 แสดงสารไทเทเนียมไดออกไซด์(Titanium Oxide: TiO2)	
ที่มีความบริสุทธิ์ 99.8%	26
3.5 แสดงเครื่องชั่งไฟฟ้าความละเอียด 4 ตำแหน่ง	26
3.6 แสดงถ้วยอะลูมินา	27
3.7 แสดงเตาเผา	27
3.8 แสดงสารตัวอย่างที่ติดบนstub	28
3.9 แสดงกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด	29
3.10 แสดงเครื่องเอ็กซ์เรย์ดิฟแฟรกโทรมิเตอร์	30
3.11 Polyethlene Glycol 4000 บริษัท ศรีจันทร์สหโอสถจำกัด	31
3.12 แสดงชุดเครื่องมือการทดลองการตอบสนองต่อไอเอทานอล	32
3.13 แสดงแผนผังของชุดทดสอบไอเอทานอล	32
3.14 แสดงเครื่องแอลกอฮอล์ซิมมูเลเตอร์	33
4.1 ภาพSEM แสดงลักษณะทางกายภาพของสารที่เติมไททาเนียมไดออกไซด์	
60% โคย โมลที่อุณหภูมิ 600 °C – 850 °C	36
4.2 ภาพSEM แสดงถักษณะทางกายภาพของสารที่เติมไททาเนียมไดออกไซด์	
70%โคยโมลที่อุณหภูมิ 600 °C – 850 °C	37
4.3 ภาพSEM แสดงถักษณะทางกายภาพของสารที่เติมไททาเนียมไดออกไซด์	
80% โดย โมลที่อุณหภูมิ 600 °C – 850 °C	38
4.4 ภาพSEM แสดงถักษณะทางกายภาพของสารที่เติมไททาเนียมไดออกไซด์	
90% โดยโมลที่อุณหภูมิ 600 °C – 850 °C	39
4.5 ภาพSEM แสดงลักษณะทางกายภาพของสารที่เติมไททาเนียมไดออกไซด์	
ที่ความเข้มข้น 60%-90% ที่อุณหภูมิ 600 °C	41
4.6 ภาพSEM แสดงลักษณะทางกายภาพของสารที่เติมไททาเนียมไดออกไซด์	
ที่ความเข้มข้น 60%-90% ที่อุณหภูมิ 650 °C	42

4.7 ภาพSEM แสดงถักษณะทางกายภาพของสารที่เติมไททาเนียมไดออกไซด์	
ที่ความเข้มข้น 60%-90% ที่อุณหภูมิ 700 °C	43
4.8 ภาพSEM แสดงถักษณะทางกายภาพของสารที่เติมไททาเนียมไดออกไซด์	
ที่ความเข้มข้น 60%-90% ที่อุณหภูมิ 750 °C	44
4.9 ภาพSEM แสดงลักษณะทางกายภาพของสารที่เติมไททาเนียมไดออกไซด์	
ที่ความเข้มข้น 60%-90% ที่อุณหภูมิ 800 °C	45
4.10 ภาพ SEM แสดงถักษณะทางกายภาพของสารที่เติมไททาเนียมไดออกไซด์	
ที่ความเข้มข้น 60%-90% ที่อุณหภูมิ 850 °C	46
4.11 แสดงตำแหน่งที่ทำการวิเคราะห้องก์ประกอบทางเกมีด้วย EDS ของสาร	
ที่เติมไททาเนียมไดออกไซด์ 60% ที่อุณหภูมิ 750 °C	47
4.12 แสดงสเปกตรัมการวิเคราะห์องค์ประกอบทางเคมีของเส้นนาโนซิงก์ไทเทเนต	
ด้วย EDS ของสารที่เติมไททาเนียมไดออกไซด์ 60% ที่อุณหภูมิ 750 °C	48
4.13 แสดงการเลี้ยวเบนของรังสีเอกซ์ของสารตัวอย่าง(ZnO + TiO2)	
เผาที่อุณหภูมิ 750 °C	49
4.14 แสดงการเลี้ยวเบนของรังสีเอกซ์ของสารตัวอย่าง(${ m ZnO}+{ m TiO}_2$)	
เผาที่อุณหภูมิ 750 °C เทียบกับ ZnO, TiO2และค่ามาตรฐาน JCPDs Files	
ของ $Zn_2Ti_3O_8$	49
4.15 แสดงการเลี้ยวเบนของรังสีเอกซ์ของสารตัวอย่างที่เติม	
ใททาเนียมใคออกไซค์ 60%,70%, 80% และ 90%ที่อุณหภูมิ 600 °C	51
4.16 แสดงการเลี้ยวเบนของรังสีเอกซ์ของสารตัวอย่างที่เติม	
ใททาเนียมใดออกไซค์ 60%,70%, 80% และ 90%ที่อุณหภูมิ 650 ^o C	52
4.17 แสดงการเลี้ยวเบนของรังสีเอกซ์ของสารตัวอย่างที่เติม	
ใททาเนียมใคออกไซค์ 60%,70%, 80% และ 90%ที่อุณหภูมิ 700 °C	52
4.18 แสดงการเลี้ยวเบนของรังสีเอกซ์ของสารตัวอย่างที่เติม	
ไททาเนียมไคออกไซค์ 60%,70%, 80% และ 90%ที่อุณหภูมิ 750 [°] C	53
4.19 แสดงการเลี้ยวเบนของรังสีเอกซ์ของสารตัวอย่างที่เติม	
ไททาเนียมไคออกไซค์ 60%,70%, 80% และ 90%ที่อุณหภูมิ 800 [°] C	53

	2	,
ห	Ú	1
		-

4.20 แสดงการเลี้ยวเบนของรังสีเอกซ์ของสารตัวอย่างที่เติม	
ไททาเนียมไคออกไซค์ 60%,70%, 80% และ 90%ที่อุณหภูมิ 850 °C	54
4.21 แสดงการเลี้ยวเบนของรังสีเอกซ์ของสารที่เติม	
ไททาเนียมไคออกไซค์ 60%,ที่อุณหภูมิ 600°C – 850 °C	55
4.22 แสดงการเลี้ยวเบนของรังสีเอกซ์ของสารที่เติม	
ไททาเนียมไคออกไซค์ 70%,ที่อุณหภูมิ 600°C – 850 °C	55
4.23 แสดงการเลี้ยวเบนของรังสีเอกซ์ของสารที่เติม	
ไททาเนียมไคออกไซค์ 80%,ที่อุณหภูมิ 600°C – 850 °C	56
4.24 แสดงการเลี้ยวเบนของรังสีเอกซ์ของสารที่เติม	
ไททาเนียมไดออกไซด์ 90%,ที่อุณหภูมิ 600°C – 850 °C	56
4.25 กราฟแสดงความสัมพันธ์ระหว่างความต้านทานกับอุณหภูมิต่างๆ	
เมื่อนำไปทคสอบกับไอของเอทานอลที่ความเข้มข้น 50 ppm	57
4.26 กราฟแสดงความสัมพันธ์ระหว่างความต้านทานกับอุณหภูมิต่างๆ	
เมื่อนำไปทคสอบกับไอของเอทานอลที่ความเข้มข้น 100 ppm	58
4.27 กราฟแสดงความสัมพันธ์ระหว่างความต้านทานกับอุณหภูมิต่างๆ	
เมื่อนำไปทคสอบกับไอของเอทานอลที่ความเข้มข้น 500 ppm	58
4.28 กราฟแสดงความสัมพันธ์ระหว่างความต้านทานกับอุณหภูมิต่างๆ	
เมื่อนำไปทดสอบกับไอของเอทานอลที่ความเข้มข้น 1000 ppm	59
4.29 กราฟแสดงความสัมพันธ์ระหว่างก่ากวามไวของซิงก์ไทเทเนตกับก่าอุณหภูมิ	
ทคสอบที่ความเข้มข้นของไอเอทานอลต่างๆ	61
4.30 กราฟแสดงความสัมพันธ์ระหว่างค่าความไวของซิงค์ไทเทเนตกับค่าอุณหภูมิ 🧲 🔿	
ทคสอบที่ความเข้มข้นของไอเอทานอล 50 ppm , 100 ppm , 500 ppm	
ແລະ 1000 ppm	64
4.31 แสดงความสัมพันธ์ระหว่างค่าความไว (sensor response) กับค่าความเข้มข้น	
ของไอของเอทานอล ที่อุณหภูมิทคสอบต่าง ๆ (ก) 340 °C (ข) 360 °C	
(a) $380 \degree C(3) 400 \degree C(3) 420 \degree C(3) 440 \degree C(3) 460 \degree C(3) 480 \degree C(3) 500 \degree C(3)$	66