หัวข้อวิทยานิพนธ์ การวิเคราะห์ความเสียหายของล้อเครื่องตักถ่านลิกในต์

ที่เหมืองแม่เมาะ

ผู้เขียน นายสมบัติ ศิริภัณฑ์

ปริญญา วิศวกรรมศาสตรมหาบัณฑิต (วิศวกรรมเครื่องกล)

อาจารย์ที่ปรึกษา ดร. เวชยันต์ รางศรี

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์เพื่อวิเคราะห์ลักษณะการเสียหายและประเมินสาเหตุของการ ้เสียหายของล้อเครื่องตักถ่านลิกในต์ของเหมืองแม่เมาะ โดยคัดเลือกลักษณะความเสียหายที่มี ความถี่สูงที่สุดมาทำการศึกษา โดยใช้การทดสอบสมบัติทางกลของวัสดุที่ใช้ทำล้อ ตรวจสอบ คุณสมบัติทางเคมี ตรวจสอบโครงสร้างจุลภาค วิเคราะห์ลักษณะของรอยแตกร้าวด้วยกล้อง จุลทรรศน์แบบสะท้อนแสงและกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราค และได้วิเคราะห์ความ ้ เค้น โดยการจำลองด้วยระเบียบวิธีไฟในต์เอลิ-เมนต์ เพื่อเปรียบเทียบความเค้นสูงสุดที่เกิดภายในล้อ กับผลจากการคำนวณตามทฤษฎีกลศาสตร์การสัมผัสและการล้ำ ร่วมกับลักษณะของการเสียหาย จริง ผลที่ได้จากการศึกษาแสดงให้เห็นว่าล้อทำจากโลหะในกลุ่มเหล็กกล้าผสมคาร์บอนปานกลาง ตามมาตรฐาน ASTM เกรค AISI 4140 มีค่าความแข็ง 280 HV ความแข็งแรงคึง 642 MPa และมี โครงสร้างเป็น Temper Bainite การพิจารณาลักษณะรอยร้าวพบว่าเกิดจากการล้าที่ผิว ผลการ คำนวณตามทฤษฎีการสัมผัสของ Hertzโดยใช้สมบัติข้างต้นพบว่าความเค้นกดสูงสุดเกิดขึ้นที่ ผิวสัมผัส เมื่อไม่กิดผลจากแรงเสียดทานและคิดผลจากแรงเสียดทานมีค่าเท่ากับ 494 MPa และ 691.5 MPa ตามลำคับ เมื่อนำข้อมูล ไปทำการจำลองค้วยระเบียบวิธี ไฟ ในต์เอลิเมนต์ทั้งกรณี การจำลองแบบสองมิติและสามมิติ พบว่าความเค้นกคสูงสุดเกิดขึ้นที่ผิวสัมผัส กรณีไม่คิดผลจาก แรงเสียดทานและคิดผลจากแรงเสียดทานมีค่าเท่ากับ 531 MPa และ 691.5 MPa ตามลำดับ ซึ่ง ให้ผลสอดคล้องกับการคำนวณตามทฤษฎี และเมื่อนำผลที่ได้พิจารณาร่วมกับขีดจำกัดการล้าผิว สามารถหาได้ว่าล้อที่นำมาศึกษามีอายุการใช้งาน $0.451 \mathrm{x} 10^{8}$ รอบ วิธีการยืดอายุการใช้งานของล้อ สามารถทำได้โดยการเพิ่มขีดจำกัดการถ้าที่ผิว ซึ่งทำได้โดยกรรมวิธีเพิ่มความแข็งผิวของล้อ ทั้งนี้ ค่าความแข็งผิวที่เหมาะสมจากการคำนวณตามทฤษฎีคือ 380 HB

Thesis Title Failure Analysis of Wheels of Lignite Reclaimers

at Mae Moh Mine

Author Mr. Sombat Siriphan

Degree Master of Engineering (Mechanical Engineering)

Advisor Dr. Wetchayan Rangsri

Abstract

The purpose of research is to analyze the characteristics of fracture and evaluate the cause of the damage of Reclaimer's wheels at Mae Moh Mine. The most frequent type of fracture was selected to study by performing the mechanical property testing of the wheel material such as the chemical composition, microstructure analysis, crack analysis with Reflection Electron Microscope (REM) and Scanning Electron Microscope (SEM). The stress analysis within wheels was performed by finite elements simulation. The results from the simulation were validated with those of the analytical calculation using Hert'z contact mechanics and surface fatigue theory. The experimentals show that the wheels were made from medium carbon low alloy steel (AISI 4140) with temper bainite microstructure, 280 HV hardness and 642 MPa ultimate tensile strength. The most frequent type of fracture found was fissure failure caused by surface fatigue. The result of the calculation using of Hertz's contact theory with the properties from the experimentals show that the maximum compressive stress that occurred at contact point of the wheel and rail without and with friction were: 494 MPa and 691 MPa, respectively. The finite elements simulation in both cases of two dimension and three dimension show that the maximum compressive stress with and without friction located at the contact surface and were: 531 MPa and with 691 MPa, respectively. These results conformed to those of the with surface fatigue of rounds The wheel's life can be extended by increasing the surface fatigue endurance limit that has to increase

hardness of wheel surface. The versatile process for increasing surface hardness is heat treatment process. The suitable surface hardness from theory calculation is 380 HB.

