หัวข้อวิทยานิพนธ์ ความหลากหลายชนิดพันธุ์พืชและศักยภาพการกักเก็บการ์บอนและน้ำใน

ป่าชุมชนชนิคต่างๆ ของตำบลแม่ทา อำเภอแม่ออน จังหวัดเชียงใหม่

ผู้เขียน นาย เตือนใจ พงศ์กำพัน

ปริญญา วิทยาศาสตรมหาบัณฑิต (ปฐพีศาสตร์และการจัดการทรัพยากรธรรมชาติ)

คณะกรรมการที่ปรึกษา รศ. คร. สุนทร คำยอง อาจารย์ที่ปรึกษาหลัก

ผศ. ดร. ถาวร อ่อนประไพ อาจารย์ที่ปรึกษาร่วม

บทคัดย่อ

ศึกษาประเมินความหลากหลายชนิดพันธุ์พืชและศักยภาพการกักเก็บการ์บอนและน้ำในป่าชุมชนของ ตำบลแม่ทา อำเภอแม่ออน จังหวัดเชียงใหม่ สำรวจรูปแบบการจัดการป่าชุมชนโดยการการสังเกตโดยตรง และสัมภาษณ์แบบกึ่งโครงสร้าง สำรวจพรรณไม้ในป่าโดยใช้แปลงสุ่มตัวอย่างขนาด 40 x 40 เมตร วางให้ กระจายไปตามพื้นที่ในป่าเต็งรังและป่าเบญจพรรณ ชนิดป่าละ 15 แปลง เก็บข้อมูลพรรณไม้ในแต่ละแปลงโดยวัดเส้นรอบวงลำต้นที่ 1.3 เมตร จากพื้นดินและความสูงต้นไม้ทุกต้นที่สูงมากกว่า 1.5 เมตร คำนวณ ความหลากชนิดพันธุ์ไม้ ปริมาณมวลชีวภาพ การ์บอน ธาตุอาหารและน้ำในมวลชีวภาพพืช เก็บตัวอย่างดิน ในป่าชนิดละ 1 หลุม ซึ่งมีความกว้าง 1.5 เมตรและลึกลงไปตามความลึกของดิน ศึกษาลักษณะชั้นดินและ ชนิดดิน เก็บตัวอย่างดินที่ความลึก 0-5, 5-10, 10-20, 20-30, 30-40, 40-60, 60-80, 80-100, 100-120, 120-140 และ 140-160 เซนติเมตร แล้วนำตัวอย่างดินไปวิเคราะห์สมบัติดินในห้องปฏิบัติการ

พบว่า ชุมชนตำบลแม่ทามีการจัดการป่าชุมชนอย่างเข้มแข็งและมีประสิทธิภาพสูง ป่าเต็งรังแบ่ง ออกเป็น 5 สังคมพืชย่อย แยกตามชนิดพันธุ์ไม้เด่น คือ เต็ง รัง เหียง พลวงและสนสองใบ พบพันธุ์ไม้ทั้งหมด 83 ชนิด 71 สกุล 38 วงศ์ ความหนาแน่นเท่ากับ 363 ต้น/ไร่ ดัชนีความหลากชนิดพันธุ์ไม้ (SWI) และ ดัชนี บ่งชี้สภาพป่า (FCI) เท่ากับ 3.35 และ 4.53 ตามลำดับ ป่าเบญจพรรณมีจำนวนชนิดพันธุ์ไม้ 103 ชนิด 93 สกุล 37 วงศ์ ความหนาแน่นเท่ากับ 184 ต้น/ไร่ ดัชนีความหลากชนิดพันธุ์ไม้ (SWI) และ (FCI) เท่ากับ 3.80 และ 12.46 ตามลำดับ

ป่าเต็งรัง มีปริมาณมวลชีวภาพที่สะสมในพันธุ์ไม้ทั้งหมดเฉลี่ย 20,078 kg/rai โดยมีปริมาณการกัก เก็บคาร์บอนในระบบนิเวศป่าไม้ทั้งหมดเท่ากับ 25,639 kg/rai แยกเป็นการกักเก็บในมวลชีวภาพ 11,548 kg/rai และในคิน 14,091 kg/rai มีปริมาณในโตรเจนเท่ากับ 1,637.63 kg/rai สะสมในมวลชีวภาพ 105 kg/rai และในคิน 1,532.63 kg/rai ส่วนฟอสฟอรัส โพแทสเซียม แคลเซียมและ แมกนีเซียมที่สะสมในระบบนิเวศ ป่าใม้มีค่าเท่ากับ 62.17, 395.26, 504.50 และ 408.89 kg/rai ตามลำคับ แยกเป็นสะสมในมวลชีวภาพของ พันธุ์ไม้ เท่ากับ 13, 52, 208 และ 31 kg/rai ตามลำคับ และสะสมในดิน (รูปที่สามารถสกัดได้) เท่ากับ 49.17, 343.26, 296.50 และ 377.89 kg/rai ตามลำคับ

ป่าเบญจพรรณ มีปริมาณมวลชีวภาพของพันธุ์ไม้ทั้งหมดเฉลี่ยเท่ากับ 34,557 kg/rai โดยมีปริมาณ การกักเก็บคาร์บอนในระบบนิเวศป่าไม้เท่ากับ 36,707 kg/rai แยกเป็นกักเก็บในมวลชีวภาพของพืช 21,993 kg/rai และในคิน 14,714 kg/rai มีปริมาณการสะสมในโตรเจนทั้งหมดในระบบนิเวศป่าไม้เท่ากับ 1,669 kg/rai แยกเป็นกักเก็บในมวลชีวภาพของพืช 207.62 kg/rai และในคิน 1,461.39 kg/rai ส่วนฟอสฟอรัส โพแทสเซียม แคลเซียมและแมกนีเซียมที่สะสมในระบบนิเวศป่าไม้เท่ากับ 88.15, 373.31, 1,846.05 และ 1,116.17 kg/rai ตามลำดับ โดยแยกเป็นสะสมในมวลชีวภาพของพันไม้ เท่ากับ 25.55, 103.83, 411.48 และ 65.96 kg/rai ตามลำดับ และสะสมในคิน เท่ากับ 62.60, 269.68, 1,434.57 และ 1,050.21 kg/rai ตามลำดับ

ระบบนิเวศป่าเต็งรังมีปริมาณการกักเก็บน้ำสูงสุดเท่ากับ 5,005.36 m³/ha แบ่งออกเป็นการกักเก็บใน มวลชีวภาพพืช 126 m³/ha และในดิน 4,879.36 m³/ha ขณะที่ระบบนิเวศป่าเบญจพรรณมีศักยภาพการกักเก็บ น้ำสูงสุดเท่ากับ 4,981.57 m³/ha โดยมีการกักเก็บในมวลชีวภาพพืช 227.58 m³/ha และในดิน 4,753.99 m³/ha

ป่าเต็งรังมีดินลึกถึง 1.40 เมตร จัดอยู่ในอันดับ Ultisols และมีหน้าตัดดินแบบ A-BA-Bt1-Bt2-Bt3-Bt4 คินในป่าเบญจพรรณดินลึก 1.60 เมตร ในอันดับ Ultisols เช่นกันและมีหน้าตัดดินแบบ A1-A2-BA-Bt1-Bt2-Bt3 ความหนาแน่นรวมของคินทั้งสองชนิดมีค่าค่อนข้างต่ำในดินบนและสูงขึ้นในดินลึกลงไป ป่าเต็งรัง มีความหนาแน่นรวมของดินสูงกว่าป่าเบญจพรรณ ดินบนในป่าเต็งรังเป็นดินเนื้อหยาบถึงละเอียดปานกลาง แบบดินทรายปนร่วน (loamy sand) ดินล่างเป็นดินเนื้อละเอียดแบบดินเหนียว (clay) ดินบนในป่าเบญจ พรรณเป็นดินเนื้อละเอียดปานกลางแบบดินร่วนปนทราย (sandy loam) ดินล่างเป็นดินเนื้อละเอียดแบบดิน ร่วนปนเหนียว (clay loam) ดินบนในป่าเต็งรังเป็นกรดจัดถึงปานกลางและดินล่างเป็นกรดปานกลาง ดินบน ในป่าเบญจพรรณเป็นกรดปานกลางและดินล่างเป็นกรดจัดถึงปานกลาง ดินบนของป่าสองชนิดมีปริมาณ การสะสมอินทรียวัตถุสูงและมีค่าลดลงตามความลึก ปริมานการกักเก็บการ์บอนในดินของป่าทั้งสองชนิดมี แนวโน้มเหมือนกันกับปริมาณของอินทรียวัตถุ ดินบนในป่าเต็งรังมีปริมาณในโตรเจนปานกลางถึงต่ำและ ต่ำมากในดินล่าง ดินบนในป่าเบญจพรรณมีปริมาณในโตรเจนค่อนข้างต่ำและต่ำมากในดินชั้นล่าง

Thesis Title Plant Species Diversity and Potentials of Carbon and Water Storages in

Various Community Forests of Mae Tha Sub-district, Mae On District,

Chiang Mai Province

Author Mr. Teuanchay Phongkhamphanh

Degree Master of Science (Soil Science and Natural Resource Management)

Advisory Committee Assoc. Prof. Dr. Soontorn Khamyong Advisor

Asst. Prof. Dr. Thaworn Onpraphai Co-advisor

ABSTRACT

Plant species diversity and potentials of carbon and water storages in two community forests of Mae Tha sub-district, Mae On district, Chiang Mai province were studied. The management of forest community was taken by direct observation in the field and semi-structured interview. The fifteen sampling plots, each of size 40 x 40 m, were used for vegetation survey and arranged randomly over the dry dipterocarp forest (DDF) and mixed deciduous forest (MDF). The plant data in these plots were collected by measuring stem girths at 1.3 m above ground and tree heights, and then calculated plant species diversity, biomass amount, carbon and water storage in the biomass. One soil pit was made in one plot of each forest type, each of size 1.5 m width, and the depth depended on soil depth. Soil development and soil type were then studied. Soil samples were collected using a corer from the depth of 0-5, 5-10, 10-20, 20-30, 30-40, 40-60, 60-80, 80-100, 100-120, 120-140 and 140-160 centimeters. The samples were later analyzed for soil properties in the laboratory.

The Mae Tha sub-district community forest had managed strengthenly with the higher efficiency. The DDF could be divided into five subtype communities based on dominant tree species: Teng (*Shorea obtusa*), Rang (*S. siamensis*), Hiang (*Dipterocarpus obtusifolius*), Pluang (*D. tuberculatus*), and two-needle pine (*Pinus merkusii*, P-DDF). A total of 83 plant species (71 genera, 38 families) with an average tree density of 363 trees/rai was found. Species diversity index (SWI) and forest condition index (FCI) were calculated to be 3.35 and 4.53, respectively. The species richness of 103 species, 93 genera, 37 families and tree density of 184 trees/rai were found. The SWI and FCI were calculated to be 3.80 and 12.46, respectively.

The DDF: Plant biomass was calculated to be 20,078 kg/rai. In the DDF ecosystem, the total amount of carbon storage were 25,639 kg/rai, separated to plant biomass at 11,548 kg/rai and 14,091 kg/rai in soil. Total amount of nitrogen storage was 1,637.63 kg/rai: plant biomass; 105 kg/rai, and soil; 1,532.63 kg/rai. The total amount of P, K, Ca and Mg were 62.17, 395.26, 504.50 and 408.89 kg/rai, respectively: plant biomass; 13, 52, 208 and 31 kg/rai, and soil; 49.17, 343.26, 296.50 and 377.89 kg/rai.

The MDF: Plant biomass was calculated to be 34,557 kg/rai. In the MDF ecosystem, the total amount of carbon storage was 36,707 kg/rai, separated to plant biomass at 21,993 kg/rai, and 14,714 kg/rai in soil. Total amount of nitrogen storage was 1,669 kg/rai: plant biomass; 207.62 kg/rai and soil: 1,461.39 kg/rai. The total amount of P, K, Ca and Mg were 88.15, 373.31, 1,846.05 and 1,116.17 kg/rai, respectively: plant biomass; 25.55, 103.83, 411.48 and 65.96 kg/rai and soil; 62.60, 269.68, 1,434.57 and 1,050.21 kg/rai.

The maximum amount of water storage in the DDF ecosystem was estimated at 5,005.36 m³/ha, separated to plant biomass at 126.0 m³/ha and 4,879.36 m³/ha in soil. In the MDF ecosystem, it was estimated at 4,981.57 m³/ha, divided in to plant biomass at 227.58 m³/ha and 4,753.99 m³/ha in soil.

Soil depth in the DDF was 1.40 m, and classified into Order Ultisols. The soil profile was A-BA-Bt1-Bt2-Bt3-Bt4. In the MDF, soil depth was 1.60 m and classified into Order Ultisols. The soil profile was A1-A2-BA-Bt1-Bt2-Bt3. Soil bulk densities in both forests were moderately low in the surface soil layer and increased in the subsoil. The densities in DDF soil were higher than MDF soil. In the DDF, texture of surface soil had moderate coarse to medium fine and fine in subsoil. The MDF surface soil had medium fine and fine in subsoil. Soil reaction in surface soil of the DDF was strongly to moderately acid, while subsoil had moderately acid. In the MDF, the surface soil had very strongly acid whereas subsoil had strongly to moderately acid. Contents of organic matter in soils under two forests were high in surface soil and low in subsoil. The contents in surface soil of the DDF varied from moderately high to high, whereas those in the MDF were high. Organic carbon contents varied in the similar trend as organic matter. Nitrogen contents in the surface soil of DDF were medium to low, while those in subsoil were very low. The surface soil in the MDF contained the low contents whereas those in subsoil were very low.