หัวข้อวิทยานิพนธ์ การพัฒนาสื่อการสอนสำหรับทัศนศาสตร์เชิงกายภาพบน

พื้นฐานการเรียนรู้เชิงรุก

ผู้เขียน นางสาวนันท์กาญ แสงเรือน

ปริญญา วิทยาศาสตรมหาบัณฑิต (สาขาการสอนฟิสิกส์)

อาจารย์ที่ปรึกษา ผู้ช่วยศาสตราจารย์ คร.พรรัตน์ วัฒนกสิวิชช์

บทคัดย่อ

งานวิจัยนี้มีวัตถุประสงค์แรกเพื่อพัฒนาสื่อการสอนสำหรับทัศนศาสตร์เชิงกายภาพบนพื้นฐานการ เรียนรู้เชิงรุก ผลจากวิจัยทำให้ได้ 4 กิจกรรม สำหรับการเรียนรู้เชิงรุกทั้งในการบรรยายและในการทำ ปฏิบัติการ วัตถุประสงค์ข้อที่สองเพื่อศึกษาผลการใช้สื่อการสอนที่พัฒนาขึ้นที่มีผลต่อความเข้าใจแสง เชิงกายภาพของนักเรียน กลุ่มตัวอย่างคือนักเรียนระดับชั้นมัธยมศึกษาปีที่ 5 โรงเรียนแห่งหนึ่งใน ้จังหวัดเชียงใหม่ การวิจัยมีลักษณะงานวิจัยกึ่งทดลองโดยแบ่งกลุ่มตัวอย่างออกเป็น กลุ่มควบคุมและ กลุ่มทดลอง กลุ่มควบคุมจำนวน 75 คน ได้รับการสอนแบบปกติที่มีทั้งการบรรยายและทำการทดลอง กลุ่มทดลองจำนวน 86 คน ที่สอนโดยใช้สื่อสาธิตและทำการทดลองตามแนวทางการจัดการเรียนรู้เชิง รุก ข้อมูลได้มาจากคำตอบของนักเรียนทั้งสองกลุ่มในการทำแบบทดสอบก่อนเรียนและหลังเรียนที่ เรียกว่า Light Diffraction and Interference Conceptual Survey (LDICS) เป็นแบบทคลอบปรนัยสอง ชั้น ที่มีข้อคำถามจำนวน11 ข้อ ผลการสอบก่อนเรียนนำมาวิเคราะห์โดยใช้ Independent sample t-test พบว่าก่อนเรียนนักเรียนทั้งสองกลุ่มตัวอย่างมีความเข้าใจเนื้อหา เรื่องแสงเชิงกายภาพไม่ต่างกัน ส่วน คะแนนหลังเรียนนำมาวิเคราะห์ Paired sample t-test พบว่าทั้งสองกลุ่มมีความเข้าใจเนื้อหาต่างกัน อย่างมีนัยสำคัญ (p < 0.0001) เมื่อวิเคราะห์ค่า Averaged normalized gain (<g>) ของกลุ่มทดลองทำ แบบทดสอบหลังเรียนได้ดีกว่าด้วยค่า <g>=0.29 เมื่อเทียบกับกลุ่มควบคุมที่มี <g>=0.11 แสดงว่า นักเรียนที่ผ่านการเรียนการสอนโดยใช้สื่อการสอนที่ถูกพัฒนาขึ้นสำหรับทัศนศาสตร์เชิงกายภาพบน พื้นฐานการเรียนรู้เชิงรุก ทำให้ผู้เรียนมีความเข้าใจในค้านเนื้อหาได้ดีกว่าการเรียนการสอนตาม หลักสูตรปกติอย่างมีนัยสำคัญ

Thesis Title Development of Teaching Materials for Physical Optics Based on

Active Learning Approach

Author Miss Nuntakan Sangrien

Degree Master of Science (Teaching Physics)

Advisor Asst. Prof Dr. Pornrat Wattanakasiwich

ABSTRACT

This study had the first objective to build teaching materials based on active learning approach for physical optics. As results, four activities were designed and created for active-learning approach both in lectures and in laboratory sessions. The second objective was to study results of the teaching materials in terms of student understanding. Participants were Grade 11 students in one of high school in Chiang Mai province. The study was quasi-experiment consisting of a control and a treatment group.

The control group consisted of 75 students taught by a normal approach lectures and laboratory. The treatment group consisted of 86 students taught by demonstrating and conducting interactive laboratory based on active-learning approach. Data were collected from students' responses on both pre-test and post-test on Light Diffraction and Interference Conceptual Survey (LDICS), which is a two-tier diagnostic test with 11 questions. The pre-test responses were analyzed using an independent sample t-test. The analysis revealed that there was no significant difference between both groups before an instruction. The post-test responses were analyzed using a pair-sample t-test. The analysis revealed a significant difference between both groups (p < 0.0001). Analysis with an averaged normalized gain (q), the treatment group did better on the post-test with q = 0.29 in compared with the control group with q = 0.11. These results indicated that students learned with these teaching materials based on active-learning approach did understand physical optics significantly better than the students learned with a normal approach.