## สารบาญ

|   | V   |
|---|-----|
| ห | น้า |

| 1  |
|----|
| จ  |
| ฉ  |
| IJ |
| IJ |
| 1  |
| 1  |
| 3  |
| 3  |
| 4  |
| 4  |
| 4  |
| 5  |
| 5  |
| 5  |
| 6  |
| 6  |
| 7  |
| 7  |
| 7  |
| 8  |
| 9  |
|    |

| 2.5.1 โครงสร้างและสมบัติพื้นฐานของท่อนาโนคาร์บอน (Carbon nanotubes)         | 9  |
|-----------------------------------------------------------------------------|----|
| 2.6 การสังเคราะห์อนุภาคนาโนโดยวิธีการสปาร์ก                                 | 11 |
| 2.7 สมบัติการเร่งปฏิกิริยาเชิงแสง (Photocatalytic property)                 | 13 |
| 2.7.1 หลักการของการเร่งปฏิกิริยาเชิงแสง                                     | 13 |
| 2.7.2 ชนิดของการเร่งปฏิกิริยาเชิงแสง                                        | 13 |
| 2.7.3 ชนิดของตัวเร่งปฏิกิริยา                                               | 14 |
| 2.7.4 กระบวนการเร่งปฏิกิริยาเชิงแสง                                         | 14 |
| 2.8 กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscope, SEM) | 16 |
| 2.8.1 ส่วนประกอบของกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด                      | 16 |
| 2.8.2 หลักการทำงานของของกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด                 | 19 |
| 2.9 เครื่องวิเคราะห์ผิววัสคุ (X-ray Photoelectron Spectroscopy, XPS)        | 19 |
| 2.9.1 หลักการของเครื่องวิเคราะห์ผิววัสดุ                                    | 20 |
| 2.9.2 ส่วนประกอบหลักของเครื่องวิเคราะห์ผิววัสดุ                             | 21 |
| 2.9.3 สเปกตรัม XPS และการวิเคราะห์                                          | 22 |
| 2.10 เครื่อง UV-Visible Spectroscopy                                        | 24 |
| 2.10.1 หลักการของเครื่อง UV-VIS Spectrophotometer                           | 24 |
| 2.10.2 ส่วนประกอบของเครื่อง UV-VIS Spectrophotometer                        | 26 |
| บทที่ 3 วัสดุ อุปกรณ์ วิธีการทดลอง                                          | 27 |
| 3.1 ขั้นตอนการเตรียมชิ้นงาน                                                 | 28 |
| 3.1.1 วัสดุ สารเคมี ที่ใช้ในการเตรียมชิ้นงานและในการทคลอง                   | 28 |
| 3.2 ขั้นตอนการสังเคราะห์ชิ้นงาน                                             | 32 |
| 3.2.1 การสังเคราะห์อนุภาคนาโนซิงก์ออกไซด์                                   | 32 |
| 3.2.2 การผสมอนุภาคนาโนซิงก์ออกไซด์กับท่อนาโนคาร์บอน                         |    |
| ชนิดผนังหลายชั้น                                                            | 32 |
| 3.2.3 ขั้นตอนการเตรียมชิ้นงาน                                               | 33 |
| 3.2.4 ขั้นตอนการขึ้นรูปชิ้นงาน                                              | 33 |
| 3.2.5 ขั้นตอนการอบชิ้นงาน                                                   | 33 |

| 3.3 ขั้นตอนการตรวจสอบชิ้นงาน                                           | 34 |
|------------------------------------------------------------------------|----|
| 3.3.1 การตรวจสอบสัณฐานวิทยาโคยใช้เครื่องกล้องจุลทรรศน์อิเล็กตรอนแบบ    |    |
| ส่องกราด (Scanning Electron Microscope, SEM)                           | 34 |
| 3.3.2 การตรวจสอบพันธะของสารประกอบโคยใช้เครื่องวิเคราะห์ผิววัสดุ        |    |
| (X-ray Photoelectron Spectroscopy, XPS)                                | 35 |
| 3.3.3 การตรวจสอบสมบัติเชิงแสงโดยใช้เครื่อง UV-Visible Spectroscopy     | 35 |
| 3.3.4 การตรวจสอบสมบัติการเร่งปฏิกิริยาเชิงแสง โดยใช้เครื่อง            |    |
| UV-Visible Spectroscopy                                                | 36 |
| บทที่ 4 ผลการทคลอง และการวิเคราะห์ผลการทคลอง                           | 37 |
| 4.1 ผลการตรวจสอบปริมาณอนุภาคนาโนซิงก์ออกไซค์จากวิธีการสปาร์ก           | 37 |
| 4.2 ผลการวิเคราะห์ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด              |    |
| (Scanning Electron Microscope, SEM)                                    | 38 |
| 4.3 ผลการวิเกราะห์พันธะของชิ้นงานด้วยเกรื่องวิเกราะห์ผิววัสดุ          |    |
| (X-ray Photoelectron Spectroscopy, XPS)                                | 45 |
| 4.4 ผลการวิเกราะห์ด้วยเครื่อง UV-Visible Spectroscopy                  | 49 |
| 4.5 ผลการวิเคราะห์สมบัติการเร่งปฏิกิริยาเชิงแสง                        | 52 |
| 4.5.1 ผลการวิเคราะห์การย่อยสลายของเมทิลีนบลู จากกระบวนการเร่งปฏิกิริยา |    |
| ด้วยแสงภายใต้แสงยูวีของชิ้นงาน ที่เวลาต่างๆ                            | 52 |
| 4.5.2 ผลการวิเคราะห์อัตราการย่อยสลายของเมทิลีนบลูจากกระบวนการเร่ง      |    |
| ปฏิกิริยาด้วยแสงภายใต้แสงยูวีของชิ้นงานที่ถูกอบ ณ อุณหภูมิต่างๆ ภายใต้ |    |
| บรรยากาศของอาร์กอน                                                     | 54 |
| มหชื่ 5 สรงในออารทอออ แอะม้อเสนอแนะ                                    | 50 |
| ทพพวยว้าพยมาวพผยองแยะออเยพอแพร                                         | 38 |
| 5.1 สรุปผลการทดลอง                                                     | 58 |
| 5.2 ข้อเสนอแนะ                                                         | 59 |
| บรรณานุกรม                                                             | 60 |
| ภาคผนวก                                                                | 65 |
| ภาคผนวก ก                                                              | 65 |



## ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved

80

85

## สารบาญตาราง

28 31



ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright<sup>©</sup> by Chiang Mai University All rights reserved

## สารบาญภาพ

| ภาพที่ 2.1  | โครงสร้างของวัสดุจากแนวคิดปรากฏการณ์การกักกันทางควอนตัม                    |    |
|-------------|----------------------------------------------------------------------------|----|
|             | (quantum confinement effect) (a) บัลค์ (b) ควอนตัมเวลล์ (c) ควอนตัมไวร์    |    |
|             | (d) ควอนตัมดอท                                                             | 5  |
| ภาพที่ 2.2  | ลักษณะของแถบช่องว่างพลังงานของวัสดุ (a) โลหะ (b) สารกึ่งโลหะ (c) ฉนวน      | 6  |
| ภาพที่ 2.3  | ลักษณะ โครงสร้างของซิงก์ออกไซค์                                            | 7  |
| ภาพที่ 2.4  | ลักษณะ โครงสร้างของท่อนาโนคาร์บอนชนิดผนังชั้นเดียวและผนังหลายชั้น          | 9  |
| ภาพที่ 2.5  | ลักษณะการจัดเรียงตัวของอะตอมการ์บอนบนท่อนาโนการ์บอน                        |    |
|             | (a) Armchair structure (b) Zig-zag structure (d) Chiral structure          | 10 |
| ภาพที่ 2.6  | รูปแบบการจัดเรียงตัวของอะตอมการ์บอนบนท่อนาโนการ์บอน                        | 10 |
| ภาพที่ 2.7  | แสดงหลักการทำงานของกระบวนการสปาร์ก เพื่อสังเคราะห์อนุภาคนาโน               |    |
|             | (a) การสังเคราะห์อนุภาคนาโนของโลหะออกไซด์เพื่อเตรียมเป็นฟิล์มบาง           |    |
|             | ขนาดนาโน (b) สังเคราะห์อนุภาคนาโนลงในสารละลาย                              | 11 |
| ภาพที่ 2.8  | กลไกการหลุดของอนุภาคโลหะบริเวณปลายเส้นลวดของกระบวนการสปาร์ก                | 12 |
| ภาพที่ 2.9  | กลไกของการเร่งปฏิกิริยาด้วยแสงของสารกึ่งตัวนำซิงก์ออกไซด์                  | 15 |
| ภาพที่ 2.10 | กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด                                        |    |
|             | (Scanning Electron Microscope, SEM)                                        | 16 |
| ภาพที่ 2.11 | ส่วนประกอบของกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด                           |    |
|             | (Scanning Electron Microscope, SEM)                                        | 16 |
| ภาพที่ 2.12 | แผนผังหลักการทำงานของกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด                   | 19 |
| ภาพที่ 2.13 | เครื่องวิเคราะห์ผิววัสดุ (X-ray Photoelectron Spectroscopy, XPS)           | 20 |
| ภาพที่ 2.14 | ส่วนประกอบหลักของเครื่องมือที่ใช้ในการศึกษาด้วยเทคนิค XPS                  | 21 |
| ภาพที่ 2.15 | สเปกตรัม XPS ของคาร์บอน จาก spin-cast and sheet polyethylene terephthalate |    |
|             | (PET)                                                                      | 22 |
| ภาพที่ 2.16 | เครื่อง UV-Visible Spectroscopy                                            | 24 |
| ภาพที่ 2.17 | แสดงการเปลี่ยนแปลงความเข้มของแสงเมื่อผ่านของเหลว                           | 25 |

| ภาพที่ 3.1 | แผนผังแสดงวิธีการทดลองในการสังเคราะห์อนุภาคนาโนซิงก์ออกไซด์               |    |
|------------|---------------------------------------------------------------------------|----|
|            | เพื่อนำไปผสมกับท่อนาโนการ์บอนชนิดผนังหลายชั้น และขั้นตอน                  |    |
|            | การตรวจสอบชิ้นงานตัวอย่าง                                                 | 27 |
| ภาพที่ 3.2 | กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (Scanning Electron Microscope, SEM)   | 34 |
| ภาพที่ 3.3 | เครื่องวิเคราะห์ผิววัสคุ (X-ray Photoelectron Spectroscopy, XPS)          | 35 |
| ภาพที่ 3.4 | เครื่อง UV-Visible Spectroscopy                                           | 35 |
| ภาพที่ 3.5 | ภาพแสดงลักษณะการวางตัวชิ้นงานในสารละลายเมทิลีนบลู ที่บรรจุในคิวเวทท์      | 36 |
| ภาพที่ 4.1 | ผลการตรวจสอบหาปริมาณอนุภาคนาโนซิงก์ออกไซด์ที่สังเคราะห์ขึ้นได้จาก         |    |
|            | วิธีการสปาร์ก ณ เวลาต่างๆ                                                 | 37 |
| ภาพที่ 4.2 | ผลการวิเคราะห์ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่านของชิ้นงานที่อบ      |    |
|            | ณ อุณหภูมิ 400 องศาเซลเซียส ภายใต้บรรยากาศอาร์กอน ที่กำลังขยาย 10000 เท่า |    |
|            | (a) อนุภาคนาโนซิงก์ออกไซด์ (ZnO),                                         |    |
|            | (b) อนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิดผนังหลายชั้น                 |    |
|            | 1 มิถลิกรัม (ZnO/MWCNTs 4/1),                                             |    |
|            | (c) อนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิดผนังหลายชั้น                 |    |
|            | 4 มิถลิกรัม (ZnO/MWCNTs 4/4),                                             |    |
|            | (d) อนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิดผนังหลายชั้น                 |    |
|            | 12 มิถลิกรัม (ZnO/MWCNTs 4/12)                                            | 38 |
| ภาพที่ 4.3 | ผลการวิเคราะห์ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่านของชิ้นงานที่อบ      |    |
|            | ณ อุณหภูมิ 500 องศาเซลเซียส ภายใต้บรรยากาศอาร์กอน ที่กำลังขยาย 10000 เท่า |    |
|            | (a) อนุภาคนาโนซิงก์ออกไซด์ (ZnO),                                         |    |
|            | (b) อนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิดผนังหลายชั้น                 |    |
|            | 1 มิถลิกรัม (ZnO/MWCNTs 4/1),                                             |    |
|            | (c) อนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิดผนังหลายชั้น                 |    |
|            | 4 มิถลิกรัม (ZnO/MWCNTs 4/4),                                             |    |
|            | (d) อนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิดผนังหลายชั้น                 |    |
|            | 12 มิถลิกรัม (ZnO/MWCNTs 4/12)                                            | 39 |

| ภาพที่ 4.4 | ผลการวิเคราะห์ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่านของชิ้นงานที่อบ      |    |
|------------|---------------------------------------------------------------------------|----|
|            | ณ อุณหภูมิ 600 องศาเซลเซียส ภายใต้บรรยากาศอาร์กอน ที่กำลังขยาย 10000 เท่า |    |
|            | (a) อนุภาคนาโนซิงก์ออกไซค์ (ZnO),                                         |    |
|            | (b) อนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิคผนังหลายชั้น                 |    |
|            | 1 มิลลิกรัม (ZnO/MWCNTs 4/1),                                             |    |
|            | (c) อนุภาคนาโนซิงก์ออกไซค์/ท่อนาโนคาร์บอนชนิคผนังหลายชั้น                 |    |
|            | 4 มิลลิกรัม (ZnO/MWCNTs 4/4),                                             |    |
|            | (d) อนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิคผนังหลายชั้น                 |    |
|            | 12 มิลลิกรัม (ZnO/MWCNTs 4/12)                                            | 40 |
| ภาพที่ 4.5 | ผลการวิเคราะห์ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่านของชิ้นงานที่อบ      |    |
|            | ณ อุณหภูมิ 400 องศาเซลเซียส ภายใต้บรรยากาศอาร์กอน ที่กำลังขยาย 50000 เท่า |    |
|            | (a) อนุภาคนาโนซิงก์ออกไซด์ (ZnO),                                         |    |
|            | (b) อนุภาคนาโนซิงก์ออกไซค์/ท่อนาโนคาร์บอนชนิคผนังหลายชั้น                 |    |
|            | 1 มิลลิกรัม (ZnO/MWCNTs 4/1),                                             |    |
|            | (c) อนุภากนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิดผนังหลายชั้น                 |    |
|            | 4 มิถลิกรัม (ZnO/MWCNTs 4/4),                                             |    |
|            | (d) อนุภาคนาโนซิงก์ออกไซค์/ท่อนาโนคาร์บอนชนิคผนังหลายชั้น                 |    |
|            | 12 มิลลิกรัม (ZnO/MWCNTs 4/12)                                            | 41 |
| ภาพที่ 4.6 | ผลการวิเคราะห์ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่านของชิ้นงานที่อบ      |    |
|            | ณ อุณหภูมิ 500 องศาเซลเซียส ภายใต้บรรยากาศอาร์กอน ที่กำลังขยาย 50000 เท่า |    |
|            | (a) อนุภาคนาโนซิงก์ออกไซค์ (ZnO),                                         |    |
|            | (b) อนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิคผนังหลายชั้น                 |    |
|            | 1 มิลลิกรัม (ZnO/MWCNTs 4/1),                                             |    |
|            | (c) อนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิคผนังหลายชั้น                 |    |
|            | 4 มิลลิกรัม (ZnO/MWCNTs 4/4),                                             |    |
|            | (d) อนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิคผนังหลายชั้น                 |    |
|            | 12 มิลลิกรัม (ZnO/MWCNTs 4/12)                                            | 42 |

| ภาพที่ 4.7  | ผลการวิเคราะห์ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่านของชิ้นงานที่อบ         |    |
|-------------|------------------------------------------------------------------------------|----|
|             | ณ อุณหภูมิ 600 องศาเซลเซียส ภายใต้บรรยากาศอาร์กอน ที่กำลังขยาย 50000 เท่า    |    |
|             | (a) อนุภาคนาโนซิงก์ออกไซด์ (ZnO),                                            |    |
|             | (b) อนุภาคนาโนซิงก์ออกไซค์/ท่อนาโนคาร์บอนชนิคผนังหลายชั้น                    |    |
|             | 1 มิลลิกรัม (ZnO/MWCNTs 4/1),                                                |    |
|             | (c) อนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิดผนังหลายชั้น                    |    |
|             | 4 มิลลิกรัม (ZnO/MWCNTs 4/4),                                                |    |
|             | (d) อนุภาคนาโนซิงก์ออกไซค์/ท่อนาโนคาร์บอนชนิคผนังหลายชั้น                    |    |
|             | 12 มิลลิกรัม (ZnO/MWCNTs 4/12)                                               | 43 |
| ภาพที่ 4.8  | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเกราะห์ผิววัสดุ ของธาตุสังกะสี  |    |
|             | ในเงื่อนไข อนุภาคนาโนซิงก์ออกไซด์ (ZnO) ถูกอบที่ 400 องศาเซลเซียส            |    |
|             | ภายใต้บรรยากาศอาร์กอน                                                        | 45 |
| ภาพที่ 4.9  | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุออกซิเจน |    |
|             | ในเงื่อนไข อนุภาคนาโนซิงก์ออกไซด์ (ZnO) ถูกอบที่ 400 องศาเซลเซียส            |    |
|             | ภายใต้บรรยากาศอาร์กอน                                                        | 46 |
| ภาพที่ 4.10 | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุสังกะสี  |    |
|             | ในเงื่อนไข อนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิดผนังหลายชั้น             |    |
|             | 1 มิถลิกรัม(ZnO/MWCNTs 4/1) ถูกอบที่ 400 องศาเซลเซียส                        |    |
|             | ภายใต้บรรยากาศอาร์กอน                                                        | 47 |
| ภาพที่ 4.11 | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุออกซิเจน |    |
|             | ในเงื่อนไข อนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิดผนังหลายชั้น             |    |
|             | 1 มิลลิกรัม (ZnO/MWCNTs 4/1) ถูกอบที่ 400 องศาเซลเซียส                       |    |
|             | ภายใต้บรรยากาศอาร์กอน                                                        | 47 |
| ภาพที่ 4.12 | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเกราะห์ผิววัสดุ ของธาตุการ์บอน  |    |
|             | ในเงื่อนไข อนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิดผนังหลายชั้น             |    |
|             | 1 มิลลิกรัม (ZnO/MWCNTs 4/1) ถูกอบที่ 400 องศาเซลเซียส                       |    |
|             | ภายใต้บรรยากาศอาร์กอน                                                        | 48 |
| ภาพที่ 4.13 | ผลการวิเคราะห์การดูดกลืนแสงของชิ้นงานตัวอย่างระหว่าง ซิงก์ออกไซด์ กับ        |    |
|             | ซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิคผนังหลายชั้น ณ อุณหภูมิการอบ 400              |    |
|             | องศาเซลเซียส ภายใต้บรรยากาศอาร์กอน                                           | 49 |

| ภาพที่ 4.14 | ผลการวิเคราะห์การดูดกลืนแสงของชิ้นงานตัวอย่างระหว่าง ซิงก์ออกไซด์ กับ |      |
|-------------|-----------------------------------------------------------------------|------|
|             | ซิงก์ออกไซค์/ท่อนาโนการ์บอนชนิคผนังหลายชั้น ณ อุณหภูมิการอบ 500       |      |
|             | องศาเซลเซียส ภายใต้บรรยากาศอาร์กอน                                    | 50   |
| ภาพที่ 4.15 | ผลการวิเคราะห์การดูดกลืนแสงของชิ้นงานตัวอย่างระหว่าง ซิงก์ออกไซด์ กับ |      |
|             | ซิงก์ออกไซด์/ท่อนาโนการ์บอนชนิดผนังหลายชั้น ณ อุณหภูมิการอบ 600       |      |
|             | องศาเซลเซียส ภายใต้บรรยากาศอาร์กอน                                    | 50   |
| ภาพที่ 4.16 | ผลการวิเคราะห์ค่าช่องว่างแถบพลังงานของชิ้นงานตัวอย่างซิงก์ออกไซด์     | 51   |
| ภาพที่ 4.17 | ผลการวิเคราะห์ค่าช่องว่างแถบพลังงานของชิ้นงานตัวอย่างซิงก์ออกไซด์     | 51   |
| ภาพที่ 4.18 | ตัวแทนของผลการตรวจสอบการย่อยสลายของเมทิลีนบลูจากกระบวนการเร่งปฏิกิ    | ริยา |
|             | ด้วยแสงภายใต้แสงยูวีของอนุภาคนาโนซิงก์ออกไซด์ที่ถูกอบ ณ อุณหภูมิ 400  |      |
|             | องศาเซลเซียส ภายใต้บรรยากาศของอาร์กอน ที่เวลาต่างๆ                    | 52   |
| ภาพที่ 4.19 | ตัวแทนของผลการตรวจสอบการย่อยสลายของเมทิลีนบลูจากกระบวนการเร่ง         |      |
|             | ปฏิกิริยาด้วยแสงภายใต้แสงยูวีของอนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอน |      |
|             | ชนิคผนังหลายชั้น 1 มิลลิกรัม (ZnO/MWCNTs 4/1) ที่ถูกอบ ณ อุณหภูมิ     |      |
|             | 400 องศาเซลเซียส ภายใต้บรรยากาศของอาร์กอน ที่เวลาต่างๆ                | 52   |
| ภาพที่ 4.20 | ตัวแทนของผลการตรวจสอบการย่อยสลายของเมทิลีนบลูจากกระบวนการเร่ง         |      |
|             | ปฏิกิริยาด้วยแสงภายใต้แสงยูวีของอนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอน |      |
|             | ชนิดผนังหลายชั้น 4 มิลลิกรัม (ZnO/MWCNTs 4/4) ที่ถูกอบ ณ อุณหภูมิ     |      |
|             | 400 องศาเซลเซียส ภายใต้บรรยากาศของอาร์กอน ที่เวลาต่างๆ                | 53   |
| ภาพที่ 4.21 | ตัวแทนของผลการตรวจสอบการย่อยสลายของเมทิลีนบลูจากกระบวนการเร่ง         |      |
|             | ปฏิกิริยาด้วยแสงภายใต้แสงยูวีของอนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอน |      |
|             | ชนิดผนังหลายชั้น 12 มิลลิกรัม (ZnO/MWCNTs 4/12) ที่ถูกอบ ณ อุณหภูมิ   |      |
|             | 400 องศาเซลเซียส ภายใต้บรรยากาศของอาร์กอน ที่เวลาต่างๆ                | 53   |
| ภาพที่ 4.22 | ตัวแทนของผลการวิเคราะห์อัตราการย่อยสลายของเมทิลีนบลูจากกระบวนการเร่ง  |      |
|             | ปฏิกิริยาด้วยแสงภายใต้แสงยูวีของชิ้นงานที่ถูกอบ ณ อุณหภูมิ            |      |
|             | 400 องศาเซลเซียส ภายใต้บรรยากาศของอาร์กอน                             | 54   |
| ภาพที่ 4.23 | ตัวแทนของผลการวิเคราะห์อัตราการย่อยสลายของเมทิลีนบลูจากกระบวน         |      |
|             | การเร่งปฏิกิริยาด้วยแสงภายใต้แสงยูวีของชิ้นงานที่ถูกอบ ณ อุณหภูมิ     |      |
|             | 500 องศาเซลเซียสภายใต้บรรยากาศ ของอาร์กอน                             | 55   |

| ภาพที่ 4.24 | ตัวแทนของผลการวิเคราะห์อัตราการย่อยสลายของเมทิลีนบลูจากกระบวน                |    |
|-------------|------------------------------------------------------------------------------|----|
|             | การเร่งปฏิกิริยาด้วยแสงภายใต้แสงยูวีของชิ้นงานที่ถูกอบ ณ อุณหภูมิ            |    |
|             | 600 องศาเซลเซียสภายใต้บรรยากาศ ของอาร์กอน                                    | 56 |
| ภาพที่ ก1   | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุสังกะสี  |    |
|             | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซด์ (ZnO) ถูกอบที่ 500 องศาเซลเซียส             |    |
|             | ภายใต้บรรยากาศอาร์กอน                                                        | 65 |
| ภาพที่ ก2   | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุออกซิเจน |    |
|             | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซค์ (ZnO) ถูกอบที่ 500 องศาเซลเซียส             |    |
|             | ภายใต้บรรยากาศอาร์กอน                                                        | 66 |
| ภาพที่ ก3   | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุสังกะสี  |    |
|             | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซค์ (ZnO) ถูกอบที่ 600 องศาเซลเซียส             |    |
|             | ภายใต้บรรยากาศอาร์กอน                                                        | 66 |
| ภาพที่ ก4   | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุออกซิเจน |    |
|             | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซค์ (ZnO) ถูกอบที่ 600 องศาเซลเซียส             |    |
|             | ภายใต้บรรยากาศอาร์กอน                                                        | 67 |
| ภาพที่ ก5   | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุสังกะสี  |    |
|             | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนการ์บอนชนิดผนังหลายชั้น              |    |
|             | 1 มิลลิกรัม (ZnO/MWCNTs 4/1) ถูกอบที่ 500 องศาเซลเซียส                       |    |
|             | ภายใต้บรรยากาศอาร์กอน                                                        | 67 |
| ภาพที่ ก6   | ผลการวิเกราะห์ชิ้นงานตัวอย่างด้วยเกรื่องมือวิเกราะห์ผิววัสดุ ของธาตุออกซิเจน |    |
|             | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนการ์บอนชนิดผนังหลายชั้น              |    |
|             | 1 มิลลิกรัม (ZnO/MWCNTs 4/1) ถูกอบที่ 500 องศาเซลเซียส                       |    |
|             | ภายใต้บรรยากาศอาร์กอน                                                        | 68 |
| ภาพที่ ก7   | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเกราะห์ผิววัสดุ ของธาตุการ์บอน  |    |
|             | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซค์/ท่อนาโนคาร์บอนชนิคผนังหลายชั้น              |    |
|             | 1 มิลลิกรัม (ZnO/MWCNTs 4/1) ถูกอบที่ 500 องศาเซลเซียส                       |    |
|             | ภายใต้บรรยากาศอาร์กอน                                                        | 68 |

| ภาพที่ ก8  | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุสังกะสี  |    |
|------------|------------------------------------------------------------------------------|----|
|            | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิดผนังหลายชั้น              |    |
|            | 1 มิลลิกรัม (ZnO/MWCNTs 4/1) ถูกอบที่ 600 องศาเซลเซียส                       |    |
|            | ภายใต้บรรยากาศอาร์กอน                                                        | 69 |
| ภาพที่ ก9  | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุออกซิเจน |    |
|            | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนการ์บอนชนิดผนังหลายชั้น              |    |
|            | 1 มิลลิกรัม (ZnO/MWCNTs 4/1) ถูกอบที่ 600 องศาเซลเซียส                       |    |
|            | ภายใต้บรรยากาศอาร์กอน                                                        | 69 |
| ภาพที่ ก10 | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเกรื่องมือวิเคราะห์ผิววัสดุ ของธาตุการ์บอน  |    |
|            | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิดผนังหลายชั้น              |    |
|            | 1 มิลลิกรัม (ZnO/MWCNTs 4/1) ถูกอบที่ 600 องศาเซลเซียส                       |    |
|            | ภายใต้บรรยากาศอาร์กอน                                                        | 70 |
| ภาพที่ ก11 | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุสังกะสี  |    |
|            | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซค์/ท่อนาโนคาร์บอนชนิดผนังหลายชั้น              |    |
|            | 4 มิถลิกรัม (ZnO/MWCNTs 4/4) ถูกอบที่ 400 องศาเซลเซียส                       |    |
|            | ภายใต้บรรยากาศอาร์กอน                                                        | 70 |
| ภาพที่ ก12 | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุออกซิเจน |    |
|            | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิดผนังหลายชั้น              |    |
|            | 4 มิถลิกรัม (ZnO/MWCNTs 4/4) ถูกอบที่ 400 องศาเซลเซียส                       |    |
|            | ภายใต้บรรยากาศอาร์กอน                                                        | 71 |
| ภาพที่ ก13 | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุการ์บอน  |    |
|            | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิดผนังหลายชั้น              |    |
|            | 4 มิลลิกรัม (ZnO/MWCNTs 4/4) ถูกอบที่ 400 องศาเซลเซียส                       |    |
|            | ภายใต้บรรยากาศอาร์กอน                                                        | 71 |
| ภาพที่ ก14 | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุสังกะสี  |    |
|            | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิคผนังหลายชั้น              |    |
|            | 4 มิลลิกรัม (ZnO/MWCNTs 4/4) ถูกอบที่ 500 องศาเซลเซียส                       |    |
|            | ภายใต้บรรยากาศอาร์กอน                                                        | 72 |

| ภาพที่ ก15 | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุออกซิเจน |    |
|------------|------------------------------------------------------------------------------|----|
|            | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซค์/ท่อนาโนการ์บอนชนิคผนังหลายชั้น              |    |
|            | 4 มิลลิกรัม (ZnO/MWCNTs 4/4) ถูกอบที่ 500 องศาเซลเซียส                       |    |
|            | ภายใต้บรรยากาศอาร์กอน                                                        | 72 |
| ภาพที่ ก16 | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุการ์บอน  |    |
|            | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิดผนังหลายชั้น              |    |
|            | 4 มิลลิกรัม (ZnO/MWCNTs 4/4) ถูกอบที่ 500 องศาเซลเซียส                       |    |
|            | ภายใต้บรรยากาศอาร์กอน                                                        | 73 |
| ภาพที่ ก17 | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุสังกะสี  |    |
|            | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซค์/ท่อนาโนการ์บอนชนิดผนังหลายชั้น              |    |
|            | 4 มิลลิกรัม (ZnO/MWCNTs 4/4) ถูกอบที่ 600 องศาเซลเซียส                       |    |
|            | ภายใต้บรรยากาศอาร์กอน                                                        | 73 |
| ภาพที่ ก18 | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุออกซิเจน |    |
|            | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิดผนังหลายชั้น              |    |
|            | 4 มิลลิกรัม (ZnO/MWCNTs 4/4) ถูกอบที่ 600 องศาเซลเซียส                       |    |
|            | ภายใต้บรรยากาศอาร์กอน                                                        | 74 |
| ภาพที่ ก19 | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุการ์บอน  |    |
|            | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนการ์บอนชนิดผนังหลายชั้น              |    |
|            | 4 มิลลิกรัม (ZnO/MWCNTs 4/4) ถูกอบที่ 600 องศาเซลเซียส                       |    |
|            | ภายใต้บรรยากาศอาร์กอน                                                        | 74 |
| ภาพที่ ก20 | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุสังกะสี  |    |
|            | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิดผนังหลายชั้น              |    |
|            | 12 มิลลิกรัม (ZnO/MWCNTs 4/12) ถูกอบที่ 400 องศาเซลเซียส                     |    |
|            | ภายใต้บรรยากาศอาร์กอน                                                        | 75 |
| ภาพที่ ก21 | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุออกซิเจน |    |
|            | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซค์/ท่อนาโนคาร์บอนชนิดผนังหลายชั้น              |    |
|            | 12 มิลลิกรัม (ZnO/MWCNTs 4/12) ถูกอบที่ 400 องศาเซลเซียส                     |    |
|            | ภายใต้บรรยากาศอาร์กอน                                                        | 75 |

ຄ

| ภาพที่ ก22 | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุการ์บอน  |    |
|------------|------------------------------------------------------------------------------|----|
|            | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซค์/ท่อนาโนคาร์บอนชนิดผนังหลายชั้น              |    |
|            | 12 มิถลิกรัม (ZnO/MWCNTs 4/12) ถูกอบที่ 400 องศาเซลเซียส                     |    |
|            | ภายใต้บรรยากาศอาร์กอน                                                        | 76 |
| ภาพที่ ก23 | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุสังกะสี  |    |
|            | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิดผนังหลายชั้น              |    |
|            | 12 มิถลิกรัม (ZnO/MWCNTs 4/12) ถูกอบที่ 500 องศาเซลเซียส                     |    |
|            | ภายใต้บรรยากาศอาร์กอน                                                        | 76 |
| ภาพที่ ก24 | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุออกซิเจน |    |
|            | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนการ์บอนชนิดผนังหลายชั้น              |    |
|            | 12 มิถลิกรัม (ZnO/MWCNTs 4/12) ถูกอบที่ 500 องศาเซลเซียส                     |    |
|            | ภายใต้บรรยากาศอาร์กอน                                                        | 77 |
| ภาพที่ ก25 | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุการ์บอน  |    |
|            | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนคาร์บอนชนิคผนังหลายชั้น              |    |
|            | 12 มิถลิกรัม (ZnO/MWCNTs 4/12) ถูกอบที่ 500 องศาเซลเซียส                     |    |
|            | ภายใต้บรรยากาศอาร์กอน                                                        | 77 |
| ภาพที่ ก26 | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุสังกะสี  |    |
|            | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนการ์บอนชนิดผนังหลายชั้น              |    |
|            | 12 มิถลิกรัม (ZnO/MWCNTs 4/12) ถูกอบที่ 600 องศาเซลเซียส                     |    |
|            | ภายใต้บรรยากาศอาร์กอน                                                        | 78 |
| ภาพที่ ก27 | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุออกซิเจน |    |
|            | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนการ์บอนชนิดผนังหลายชั้น              |    |
|            | 12 มิถลิกรัม (ZnO/MWCNTs 4/12) ถูกอบที่ 600 องศาเซลเซียส                     |    |
|            | ภายใต้บรรยากาศอาร์กอน                                                        | 78 |
| ภาพที่ ก28 | ผลการวิเคราะห์ชิ้นงานตัวอย่างด้วยเครื่องมือวิเคราะห์ผิววัสดุ ของธาตุการ์บอน  |    |
|            | ในเงื่อนไขอนุภาคนาโนซิงก์ออกไซด์/ท่อนาโนการ์บอนชนิดผนังหลายชั้น              |    |
|            | 12 มิถลิกรัม (ZnO/MWCNTs 4/12) ถูกอบที่ 600 องศาเซลเซียส                     |    |
|            | ภายใต้บรรยากาศอาร์กอน                                                        | 79 |

| ภาพที่ ข1 | ตัวแทนของผลการตรวจสอบการย่อยสลายของเมทิลีนบลูจากกระบวนการ            |     |
|-----------|----------------------------------------------------------------------|-----|
|           | เร่งปฏิกิริยาด้วยแสงภายใต้แสงยูวีของอนุภากนาโนซิงก์ออกไซด์ที่ถูกอบ   |     |
|           | ณ อุณหภูมิ 500 องศาเซลเซียส ภายใต้บรรยากาศของอาร์กอน ที่เวลาต่างๆ    | 80  |
| ภาพที่ ข2 | ตัวแทนของผลการตรวจสอบการย่อยสลายของเมทิลีนบลูจากกระบวนการ            |     |
|           | เร่งปฏิกิริยาด้วยแสงภายใต้แสงยูวีของอนุภาคนาโนซิงก์ออกไซด์/          |     |
|           | ท่อนาโนคาร์บอนชนิดผนังหลายชั้น 1 มิลลิกรัม (ZnO/MWCNTs 4/1)          |     |
|           | ที่ถูกอบ ณ อุณหภูมิ 500 องศาเซลเซียส ภายใต้บรรยากาศของอาร์กอน        |     |
|           | ที่เวลาต่างๆ                                                         | 81  |
| ภาพที่ ข3 | ตัวแทนของผลการตรวจสอบการย่อยสลายของเมทิลีนบลูจากกระบวนการ            |     |
|           | เร่งปฏิกิริยาด้วยแสงภายใต้แสงยูวีของอนุภาคนาโนซิงก์ออกไซด์/          |     |
|           | ท่อนาโนคาร์บอนชนิดผนังหลายชั้น 4 มิลลิกรัม (ZnO/MWCNTs 4/4)          |     |
|           | ที่ถูกอบ ณ อุณหภูมิ 500 องศาเซลเซียส ภายใต้บรรยากาศของอาร์กอน        |     |
|           | ที่เวลาต่างๆ                                                         | 81  |
| ภาพที่ ข4 | ตัวแทนของผลการตรวจสอบการย่อยสลายของเมทิลีนบลูจากกระบวนการ            |     |
|           | เร่งปฏิกิริยาด้วยแสงภายใต้แสงยูวีของอนุภาคนาโนซิงก์ออกไซด์/          |     |
|           | ท่อนาโนการ์บอนชนิดผนังหลายชั้น 12 มิลลิกรัม (ZnO/MWCNTs 4/12)        |     |
|           | ที่ถูกอบ ณ อุณหภูมิ 500 องศาเซลเซียส ภายใต้บรรยากาศของอาร์กอน        |     |
|           | ที่เวลาต่างๆ                                                         | 82  |
| ภาพที่ ข5 | ตัวแทนของผลการตรวจสอบการย่อยสลายของเมทิลีนบลูจากกระบวน               |     |
|           | การเร่งปฏิกิริยาด้วยแสงภายใต้แสงยูวีของอนุภาคนาโนซิงก์ออกไซด์        |     |
|           | ที่ถูกอบ ณ อุณหภูมิ 600 องศาเซลเซียส ภายใต้บรรยากาศของอาร์กอน        |     |
|           | ที่เวลาต่างๆ                                                         | 82. |
| ภาพที่ ข6 | ตัวแทนของผลการตรวจสอบการย่อยสลายของเมทิลีนบลูจากกระบวน               |     |
|           | การเร่งปฏิกิริยาด้วยแสงภายใต้แสงยูวีของอนุภาคนาโนซิงก์ออกไซด์/       |     |
|           | ท่อนาโนคาร์บอนชนิดผนังหลายชั้น 1 มิลลิกรัม (ZnO/MWCNTs 4/1) ที่ถูกอบ |     |
|           | ณ อุณหภูมิ 600 องศาเซลเซียส ภายใต้บรรยากาศของอาร์กอน ที่เวลาต่างๆ    | 83  |
|           |                                                                      |     |

Б

- ภาพที่ ข7 ตัวแทนของผลการตรวจสอบการย่อยสลายของเมทิลีนบลูจากกระบวน การเร่งปฏิกิริยาด้วยแสงภายใต้แสงยูวีของอนุภาคนาโนซิงก์ออกไซด์/ ท่อนาโนคาร์บอนชนิดผนังหลายชั้น 4 มิลลิกรัม (ZnO/MWCNTs 4/4) ที่ถูกอบ ณ อุณหภูมิ 600 องศาเซลเซียส ภายใต้บรรยากาศของอาร์กอน ที่เวลาต่างๆ
- ภาพที่ ข8

ตัวแทนของผลการตรวจสอบการย่อยสลายของเมทิลีนบลูจากกระบวน การเร่งปฏิกิริยาด้วยแสงภายใต้แสงยูวีของอนุภาคนาโนซิงก์ออกไซด์/ ท่อนาโนการ์บอนชนิดผนังหลายชั้น 12 มิลลิกรัม (ZnO/MWCNTs 4/12) ที่ถูกอบ ณ อุณหภูมิ 600 องศาเซลเซียส ภายใต้บรรยากาศของอาร์กอน ที่เวลาต่างๆ



ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright<sup>©</sup> by Chiang Mai University All rights reserved

83