สารบัญ

	ע	
ห	น้า	

กิตติกรรมประกาศ	ঀ
บทคัดย่อ	จ
ABSTRACT	Y
สารบัญ	ณ
สารบัญตาราง	IJ
สารบัญภาพ	ปู
บทที่ 1 บทนำ	1
บทที่ 2 ทฤษฎีที่เกี่ยวข้อง	
2.1 พลาสมาเย็นความดันบรรยากาศ	4
2.2 สเปกโทรสโกปีของอะตอมและโมเลกุล	7
2.3 กฎการดูดกลื่นของเบียร์-แลมเบิร์ท	19
2.4 อนุมูลไฮดรอกซิล	21
2.5 อนุมูลในตริกออกไซด์	22
2.6 อาร์กอน	23
บทที่ 3 การทดลอง	
3.1 สเปกโทรสโคปีแบบดูดกลื่นยูวี	25
3.2 สเปกโทรมิเตอร์	28
3.3 การวัดความหนาแน่นของอนุมูลไฮครอกซิลและในตริกออกไซด์ในพลาสมาจาก	
หัวเมดิพลาสมา	31

3.4 การวัดความหนาแน่นของอนุมูลไฮดรอกซิลและไนตริกออกไซด์ในพลาสมาเย็น	
ความคันบรรยากาศแบบการคิสชารัจข้ามฉนวน	34
3.5 การวัคความหนาแน่นของอนุมูลไฮครอกซิลและไนตริกออกไซค์ในเจ็ทพลาสมาเย็น	
ความคันบรรยากาศ	35
บทที่ 4 ผลการทคลองและอภิปรายผลการทคลอง	
4.1 ความหนาแน่นของอนุมูลไฮครอกซิลและในตริกออกไซค์ในพลาสมาจาก	
หัวเมดิพลาสมา	38
4.2 ความหนาแน่นของอนุมูลไฮครอกซิลและในตริกออกไซค์ในพลาสมาจาก	
การคิสชาร์จข้ามฉนวน	45
4.3 ความหนาแน่นของอนุมูลไฮครอกซิลและในตริกออกไซค์ในเจ็ทพลาสมา	
ความดันบรรยากาศ	52
บทที่ 5 สรุปผลการทดลอง	62
เอกสารอ้างอิง	65
ประวัติผู้เขียน	72
MALIDUWERS!	
4 UNIVE	
ลิสสิทธิ์แหาวิทยาลัยเชียงใหม่	
Copyright [®] by Chiang Mai University	
All rights reserved	

สารบัญตาราง

ตารางที่ 2.1	แสดงค่า และค่า ของแต่ละ พร้อมสัญลักษณ์ของแต่ละ	14
ตารางที่ 2.2	สัญลักษณ์ของแต่ละ	15

หน้า

ตารางที่ 2.3	ข้อมูลของสเปกตรัมที่เกิดจากการเปลี่ยนสถานะของอะตอม	
	อาร์กอนในสถานะกึ่งเสถียร	24
ตารางที่ 3.1	แสดงข้อมูลทางเทคนิคของสเปกโทรมิเตอร์ รุ่น AvaSpec-2048	30
ตารางที่ 4.1	แสดงค่าความหนาแน่นของอนุมูลไฮครอกซิลในพลาสมาความคัน	
	บรรยากาศของก๊าซอาร์กอนที่ทุดถอง โดยผู้วิจัยอื่น ๆ	61

MAI U ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

สารบัญภาพ

รูปที่ 2.1	อุปกรณ์สำหรับผลิตพลาสมาเย็นความคันบรรยากาศ	6
รูปที่ 2.2	แสดงการดูดกลื่นและปลดปล่อยพลังงาน โดยอะตอม	7
รูปที่ 2.3	แสดงตัวอย่างระคับพลังงานแบบละเอียดของอะตอม	10
รูปที่ 2.4	แสดงระดับชั้นพลังงานแบบละเอียดของ โมเลกุล	12
รูปที่ 2.5	แสดงเวกเตอร์และเลขควอนตัมต่าง ๆ ของโมเลกุลอะตอมกู่	13
รูปที่ 2.6	แสดง parity ของ โมเลกุลอะตอมกู่ธาตุเดี่ยวและ โมเลกุลเชิงเส้นแบบสมมาตร	15
รูปที่ 2.7	แสดงการสะท้อนของโมเลกุลอะตอมคู่บนระนาบสะท้อนที่อยู่บนแกน internuclear	16
รูปที่ 2.8	แสดงระดับพลังงานของ โมเลกุลอะตอมคู่	18
รูปที่ 2.9	แสดงปริมาตรของกลุ่มอนุภากที่ถูกแสงความเข้ม ตกกระทบ	20
รูปที่ 2.10	แสดงโปรไฟล์การคูคกลืนแสงยูวีของอนุมูลในตริกออกไซด์และอนุมูลไฮครอกซิล	21
รูปที่ 2.11	แสดงระดับชั้นพถังงานของโมเลกุลไฮครอกซิล	22
รูปที่ 2.12	แสดงระดับพลังงานแบบละเอียดของอะตอมอาร์กอน	23
รูปที่ 3.1	แสดงโครงสร้างการจัดเรียงอุปกรณ์ที่ใช้ในการวัดความหนาแน่นของอนุมูลในพลาสม	าา
	โดยสเปกโทนสโคปีแบบดูดกลื่นยูวี	25
รูปที่ 3.2	แสดงการจัดเรียงอุปกรณ์จริงสำหรับวัดกวามหนาแน่นของอนุมูลในพลาสมาโดยใช้	
	สเปกโทรสโคปีแบบดูดกลื่นยูวี	26
รูปที่ 3.3	micro stage XY table ชุดวงจรควบคุมและหน้าต่างโปรแกรม Stage Control XY	27
รูปที่ 3.4	สเปกโทรมิเตอร์รุ่น AvaSpec-2048 ของบริษัท Avantes	29
รูปที่ 3.5	แสคงตัวอย่างหน้าต่างแสคงผลของโปรแกรม AvaSoft 7.4	29

รูปที่ 3.6	แสดง (a) หัวเมดิพลาสมา (b) รูปวาคโครงสร้างของหัวเมดิพลาสมา (c) ภาคตัดขวาง	
	ของหัวเมดิพลาสมาและแกน radial axis (r-axis) ที่ใช้ในการทดลอง (d) สัญญาณไฟฟ้	1
	ที่ใช้ในการผลิตพลาสมาของหัวเมดิพลาสมา	31
รูปที่ 3.7	อุปกรณ์จ่ายไฟของระบบ Hybrid Jet-Floating electrode plasma system	32
รูปที่ 3.8	แสดงแหล่งกำเนิดพลาสมาแบบ DBD ที่ใช้ในการทคลอง	34
รูปที่ 3.9	แสดงอุปกรณ์สำหรับผลิตเจ็ทพลาสมาชนิด needle-typed ที่ใช้ในการทดลองและ	
	สัญญาณไฟฟ้าที่ใช้ในการผลิตพลาสมา	36
รูปที่ 3.10	แสดงการวัดกวามหนาแน่นของอนุมูลบนผิวน้ำที่ถูกยิงด้วยเจ็ทพลาสมาเย็นกวามคัน	
	บรรยากาศ	37
รูปที่ 4.1	โปรไฟล์การเปล่งแสงของพลาสมาเย็นความคันบรรยากาศที่ผลิตด้วยหัวเมดิพลาสมา	39
รูปที่ 4.2	แสดงโปรไฟล์การดูดกลืนแสงขูวีของอนุมูลไฮดรอกซิล	39
รูปที่ 4.3	แสดงภาพขยายโปรไฟล์การดูคกลื่นแสงยูวีของอนุมูลไฮครอกซิล	40
รูปที่ 4.4	ความเข้มแสงสัมพัทธ์ของอนุมูลไฮครอกซิลและอะตอมอาร์กอนกึ่งเสถียรที่เปล่ง	
	ออกมาจากพลาสมาเย็นที่ผลิตจากหัวเมดิพลาสมาในช่วงอัตราไหลของก๊าซอาร์กอน	
	2.0 l/min ถึง 8.0 l/min	42
รูปที่ 4.5	กราฟแสดงความเข้มแสงของอนุมูล ไฮครอกซิลและอาร์กอนกึ่งเสถียรเทียบกับ	
	อัตราการไหลของก๊าซอาร์กอนตั้งแต่ 2.0 l/min ถึง 8.0 l/min	43
รูปที่ 4.6	แสดงความหนาแน่นของอนุมูลไฮดรอกซิลบนผิวกระจกที่อัตราไหลของก๊าซ	
	อาร์กอนในช่วง 4.0 l/min ถึง 8.0 l/min	43
รูปที่ 4.7	แสดงความหนาแน่นของอนุมูลไฮครอกซิลที่ตำแหน่งต่าง ๆ บนผิวกระจกที่ถูก	
	ประยุกต์ด้วยพลาสมาเย็นของหัวเมดิพลาสมาโดยใช้ก๊าซที่มีอัตราไหล 8.0 l/min	44
รูปที่ 4.8	โปรไฟล์การเปล่งแสงของพลาสมาความคันบรรยากาศจากการคิสชาร์จข้ามฉนวน	46
รูปที่ 4.9	โปรไฟล์การเปล่งแสงของพลาสมาจากการดิสชาร์จข้ามฉนวนที่อัตราไหลของก๊าซ	
	อาร์กอน 2.0 1/min ถึง 6.0 1/min	47
รูปที่ 4.10	ความเข้มแสงสัมพัทธ์ของอนุมูลไฮครอกซิลและอะตอมอาร์กอนกึ่งเสถียรที่เปล่งออกม	มา
	จากพลาสมาเย็น DBD ในช่วงอัตราไหลของก๊าซอาร์กอน 2.0 l/min ถึง 6.0 l/min	48

ຈົງ

รูปที่ 4.11	ความหนาแน่นของอนุมูลไฮครอกซิลในพลาสมาจากการคิสชาร์จข้ามฉนวน	48
รูปที่ 4.12	โปรไฟล์การดูดกลืนแสงของอะตอมอาร์กอนกึ่งเสถียรที่ความยาวกลื่น 811.53 nm	49
รูปที่ 4.13	แสดงโปรไฟล์ของแสงจากหลอคฮาโลเจนที่ใช้ในการทคลอง	50
รูปที่ 4.14	การดูดกลืนแสงที่ความยาวคลื่น 811.53 nm ของอะตอมอาร์กอนกึ่งเสถียรใน พลาสมาจากการดิสชาร์จข้ามฉนวนในช่วงการไหลก๊าซอาร์กอนในช่วง 2.0 l/min ถึง 6.0 l/min	50
รูปที่ 4.15	ค่าการดูดกลืนแสงกึ่งเสถียรที่ความยาวคลื่น 811.53 nm ของอะตอมอาร์กอน	
	เมื่อเก็บค่าข้อมูลความเข้มแสงค้วยสเปกโทรมิเตอร์โคยใช้ integration time ต่างกัน	51
รูปที่ 4.16	โปรไฟล์การเปล่งแสงของเจ็ทพลาสมาความดันบรรยากาศ	52
รูปที่ 4.17	ความเข้มแสงของอนุมูลไฮครอกซิลในเจ็ทพลาสมาที่บริเวณปลายท่อแก้ว ที่อัตราไหลก๊าซอาร์กอนในช่วง 2.0 I/min ถึง 6.0 I/min	53
รูปที่ 4.18	ความหนาแน่นของอนุมูลไฮครอกซิลในเจ็ทพลาสมาที่บริเวณปลายท่อแก้วที่อัตรา การไหลก๊าซอาร์กอนในช่วง 2.0 1/min ถึง 6.0 1/min	53
รูปที่ 4.19	ความหนาแน่นของอนุมูลไฮครอกซิลที่ตำแหน่งต่าง ๆ บนผิวกระจกที่ถูกประยุกต์ด้วย เจ็ทพลาสมาที่อัตราไหลก๊าซอาร์กอน 3.5 l/min	55
รูปที่ 4.20	สเปกตรัมของแสงที่เปล่งออกมาจากพลาสมาที่อยู่บริเวณเหนือผิวน้ำที่ถูกประยุกต์ ด้วยเจ็ทพลาสมาความคันบรรยากาศ	56
รูปที่ 4.21	โปรไฟล์การเปล่งแสงของพลาสมาที่อยู่บริเวณเหนือผิวน้ำที่ถูกประยุกต์ด้วย เจ็ทพลาสมาความดันบรรยากาศของอาร์กอนที่อัตราไหลของก๊าซอาร์กอน 6.0 l/min เมื่อความสูงของปลายท่อแก้วอิเล็กโทรดอยู่สูงจากผิวน้ำที่ระดับต่าง ๆ	58
รูปที่ 4.22	ความหนาแน่นของอนุมูลไฮครอกซิลที่บริเวณเหนือผิวน้ำที่ถูกประยุกต์ด้วย เจ็ทพลาสมาความคันบรรยากาศของอาร์กอนที่อัตราไหลของก๊าซอาร์กอน 6.0 l/min เมื่อความสูงของปลายท่อแก้วอิเล็กโทรคอยู่สูงจากผิวน้ำที่ระดับต่าง ๆ	59
รูปที่ 4.23	ค่าการดูดกลืนแสงที่ความยาวคลื่นแสง 811.53 nm ของกลุ่มอะตอมอาร์กอนกึ่งเสถียร ที่อยู่บนผิวน้ำที่ถูกประยุกต์ด้วยเจ็ทพลาสมา เมื่อความสูงของปลายท่อแก้วอยู่สูง	
	จากผวนามคาอยู่ในชวง 0.5 cm ถง 3.0 cm	60