สารบัญ

	ע	
ห	น้า	

กิตติกรรมประกาศ	ค
บทคัดย่อภาษาไทย	ঀ
ABSTRACT	ฉ
สารบัญตาราง	ຎ
สารบัญภาพ	ภ
	જન
บทที่ 1 บทนำ	1
1.1 บทนำและที่มาความสำคัญ	1
1.2 สรุปสาระสำคัญจากเอกสารที่เกี่ยวข้อง	2
1.3 วัตถุประสงค์ของการศึกษา	7
1.4 ประโยชน์ที่คาคว่าจะได้รับ	8
1.5 ขอบเขตการศึกษา	8
บทที่ 2 หลักการและทฤษฎี	10
2.1 ปูนซีเมนต์	10
2.2 ปฏิกิริยาไฮเครชัน	16
2.3 วัสดุปอซโซลาน (Pozzolanic Materials)	22
2.4 เถ้าลอยชีวมวล	26
2.5 คอนกรีต (Concrete)	29
2.6 การทดสอบการวิเคราะห์รูปร่างและผลึกของเถ้าลอยชีวมวล	38
2.7 การศึกษาองค์ประกอบทางเคมี โดยวิธี X - ray Fluorescence (XRF)	41
2.8 การวิเคราะห์การถดถอยด้วยโปรแกรม SPSS	42
บทที่ 3 วิธีการวิจัย	46
3.1 การทคสอบสมบัติทางกายภาพเถ้าลอยชีวมวล	46
3.2 การทดสอบองค์ประกอบทางเคมี โดยวิธี X-rav Fluorescence (XRF)	51
3.3 การทคสอบกำลังอัคมอร์ตาร์	53
3.4 การทคสอบกำลังอัดคอนกรีต	57

สารบัญ (ต่อ)

	หน้า
3.5 การวิเคราะห์กำลังอัดของมอร์ตาร์ด้วยโปรแกรม SPSS	67
บทที่ 4 ผลงานวิจัยและการวิเคราะห์ผลการทคลอง	69
4.1 อัตราส่วนชีวมวล	69
4.2 ขนาดคละและความถ่วงจำเพาะ	73
4.3 ผลการทดสอบ Scanning Electron Microscope (SEM)	74
4.4 การทดสอบความเป็นผลึก โดยวิธี X – Ray Diffraction (XRD)	78
4.5 การทดสอบองค์ประกอบทางเกมี โดยวิธี X-ray fluorescence (XRF)	79
4.6 ผลทดสอบของมอร์ตาร์	80
4.7 ผลการทดสอบคอนกรีต	87
4.8 ผลการวิเคราะห์ทางสถิติของมอร์ตาร์ผสมเล้าลอยชีวมวลโดยโปรแกรม SPSS	94
บทที่ 5 สรุปผลการทคลองและข้อเสนอแนะ	107
5.1 สรุปผลการทดลอง	107
5.2 ข้อเสนอแนะ	108
บรรณานุกรม	109
ภาคผนวก	112
ภาคผนวก ก ข้อมูลคุณสมบัติวัสดุ	113
ภาคผนวก ข ข้อมูลผลการทดสอบคอนกรีต	155
ภาคผนวก ค ข้อมูลคุณสมบัติวัสดุ	241
ประวัติผู้เขียน	255
"All rights reserved	

สารบัญตาราง

		หน้า
ตารางที่ 2.1	องค์ประกอบทางเคมีของปูนซีเมนต์ปอร์ตแลนค์	13
ตารางที่ 2.2	สารประกอบที่สำคัญของปูนซีเมนต์ปอร์ตแลนด์	14
ตารางที่ 4.1	ชื่อตัวอย่างเถ้าลอยชีวมวลและอัตราส่วนของชีวมวลที่ใช้ในการทคลอง	71
ตารางที่ 4.2	ปริมาณการเกิดเถ้าชีวมวลที่เผาในห้องทดลอง	72
ตารางที่ 4.3	องค์ประกอบทางเคมีของเถ้าลอยชีวมวล	81
ตารางที่ 4.4	อัตราส่วนผสมของคอนกรีตที่ใช้ทุดลอง	87
ตารางที่ 4.5	ค่าสัมประสิทธิ์ตัวคูณ (B) จากการวิเคราะห์ด้วยโปรแกรม SPSS	96
ตารางที่ 4.6	ข้อมูลชีวมวลของตัวอย่างเถ้าลอยชีวมวลชนิค BMA6	97

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

หน้า

รูปที่ 2.1	การพัฒนากำลังอัดของ C3S C2S C3A และ C4AF	14
รูปที่ 2.2	ขบวนการหน่วงปฏิกิริยาไฮเครชั่นของ C3A	18
รูปที่ 2.3	แผนภาพแสดงการเกิดปฏิกิริยาไฮเครชันและการพัฒนาโครงสร้างของซึเมนต์	22
	เพสต์	
รูปที่ 2.4	อัตราการเกิดปฏิกิริยาไฮเครชัน	23
รูปที่ 2.5	กำลังอัคของคอนกรีตรูปลูกบาศก์ที่ใช้ขนาคต่าง ๆ กัน	33
รูปที่ 2.6	กำลังอัคของคอนกรีตรูปทรงกระบอกที่ใช้ขนาดต่าง ๆ กัน	34
รูปที่ 2.7	การแตกของก้อนตัวอย่างทรงกระบอก	34
รูปที่ 2.8	การแตกของก้อนตัวอย่างรูปทรงลูกบาศก์ที่ถูกต้อง	35
รูปที่ 2.9	ความสัมพันธ์ระหว่าง W/C ratio และกำลังอัด	35
รูปที่ 2.10	การล็อกจับระหว่างอนุภาคของมวลรวมที่มีรูปทรง (ก) เหลี่ยมมุมและ (ข) กลม	37
รูปที่ 2.11	ความสามารถในการชะลอการเคลื่อนที่ของรอยร้าวของมวลรวมที่มีรูปร่าง	37
	ต่างกัน	
รูปที่ 2.12	รูปร่างเถ้าแกลบ-เปลืองไม้จากโรงไฟฟ้า	39
รูปที่ 2.13	ผลทคสอบ XRD ของเถ้าแกลบที่อุณหภูมิที่แตกต่างกัน	40
รูปที่ 2.14	กระบวนการทดสอบองค์ประกอบของธาตุด้วยวิธีX-ray fluorescence (XRF)	42
รูปที่ 3.1	ลักษณะการป้ายยาทาเล็บลงบน Stub	47
รูปที่ 3.2	การ โรยตัวอย่างด้วยไม้พันสำลี	47
รูปที่ 3.3	แท่ง Stub ที่โรยผงเถ้าลอยชีวมวล	48
รูปที่ 3.4	ภาพระหว่างการฉายรังสีลงบนแผ่นตัวอย่าง	49
รูปที่ 3. <i>5</i>	เครื่องทดสอบ Scanning Electron Microscope (SEM)	49
รูปที่ 3.6	หลักการทำงานของเครื่อง SEM	50
รูปที่ 3.7	เพลทใส่ผงเถ้าลอยชีวมวลเตรียมนำเข้าเครื่อง Diffractometer	51
รูปที่ 3.8	เครื่องทดสอบ Diffractometer	51
รูปที่ 3.9	ตัวอย่างเถ้าลอยชีวมวลที่ใช้ทดสอบ X-ray Fluorescence (XRF)	52
รูปที่ 3.10	เครื่องทดสอบ X-ray Fluorescence (XRF)	52
รูปที่ 3.11	เครื่องผสมมอร์ตาร์ที่ใช้ในการทคสอบ	53

		หน้า
รูปที่ 3.12	แบบหล่อมอร์ตาร์ที่ใช้ในการทคสอบ	54
รูปที่ 3.13	มอร์ตาร์ที่บ่มและอายุ 28 วัน ก่อนนำไปทคสอบกำลังอัค	54
รูปที่ 3.14	โต๊ะทคสอบการใหลแผ่มอร์ตาร์	55
รูปที่ 3.15	เครื่องทดสอบ Universal Testing Machine	57
รูปที่ 3.16	แผนภาพออกแบบสัคส่วนผสมของคอนกรีตตามมาตรฐานอเมริกา	61
รูปที่ 3.17	ส่วนผสมของคอนกรีตที่ชั่งตวงเตรียมไว้	62
รูปที่ 3.18	เครื่องโม่ผสมคอนกรีต	62
รูปที่ 3.19	คอนกรีตที่ผสมเสร็จเรียบร้อยแล้ว	62
รูปที่ 3.20	อุปกรณ์ทคสอบค่ายุบตัวของคอนกรีต	64
รูปที่ 3.21	การวัดก่ายุบตัวของกอนกรีต	64
รูปที่ 3.22	แบบหล่อขนาดเส้นผ่าศูนย์กลาง 10 cm สูง 20 cm ที่ใช้	65
รูปที่ 3.23	คอนกรีตที่เต็มแบบหล่อทรงกระบอกเรียบร้อยแล้ว	65
รูปที่ 3.24	กอนกรีตทรงกระบอกที่แขึ่งตัวแล้ <i>ว</i>	65
รูปที่ 3.25	เครื่องทคสอบกำลังอัคก้อนคอนกรีต	66
รูปที่ 3.26	ทคสอบก้อนกตัวอย่างคอนกรีตค้วยเครื่องทคสอบกำลังอัค	67
รูปที่ 3.27	ขั้นตอนการวิเคราะห์ข้อมูลกำลังอัคด้วยโปรแกรม SPSS	68
รูปที่ 4.1	ไม้สับที่ใช้เผาในห้องทดลอง	69
รูปที่ 4.2	แกลบใช้เผาในห้องทดลอง	70
รูปที่ 4.3	ซังข้าวโพดใช้เผาในห้องทดลอง	70
รูปที่ 4.4	การเผาชีวมวลในห้องทดลอง	70
รูปที่ 4.5	เถ้าลอยชีวมวลชนิดที่ BMA (ก) และเถ้าลอยชีวมวลชนิดที่ WRHC (บ)	71
รูปที่ 4.6	ขนาดกละของเถ้าลอยชีวมวล BMA	73
รูปที่ 4.7	ขนาดกละของเถ้าลอยชีวมวล WRHC	74
รูปที่ 4.8	SEM ของเถ้าลอยชีวมวลจากโรงไฟฟ้าชีวมวล (BMA)	74
รูปที่ 4.9	ผล EDX ของเถ้าลอยชีวมวล BMA	75
รูปที่ 4.10	SEM ของเถ้าถอยชีวมวลที่เผาในห้องทคลอง (WRHC)	76
รูปที่ 4.11	ผล EDX ของเถ้าลอยชีวมวล WRHC	76

		หน้า
รูปที่ 4.12	SEM ของเถ้าซังข้าวโพคที่เผาในห้องทคลอง	77
รูปที่ 4.13	จุด (g) ผล EDX ของเถ้าเข้าโพค	77
รูปที่ 4.14	ผล XRD ของเถ้าลอยชีวมวลชนิด BMA	78
รูปที่ 4.15	ผล XRD ของเถ้าลอยชีวมวลชนิด WRHC	79
รูปที่ 4.16	ความสัมพันธ์ระหว่างอัตราส่วนเถ้าลอยชีวมวล (BMA) แทนที่ปูนซีเมนต์กับ	81
	อัตราส่วนน้ำต่อวัสดุประสาน	
รูปที่ 4.17	ความสัมพันธ์ระหว่างอัตราส่วนเถ้าลอยชีวมวล WRHC แทนที่ปุ่นซีเมนต์กับ	82
	อัตราส่วนน้ำต่อวัสคุประสาน	
รูปที่ 4.18	ความสัมพันธ์ระหว่างอัตราส่วนเถ้าลอยชีวมวลแทนที่ปูนซีเมนต์ของเถ้าไม้ เถ้า	83
	แกลบและเถ้าซังข้าวโพค ที่อายุ 28 วัน กับกำลังอัคมอร์ตาร์	
รูปที่ 4.19	ความสัมพันธ์ระหว่างอัตราส่วนเถ้าลอยชีวมวลแทนที่ปูนซีเมนต์ของเถ้าชนิด	84
	BMA กับกำลังอัดมอร์ตาร์	
รูปที่ 4.20	ความสัมพันธ์ระหว่างอัตราส่วนเถ้าลอยชีวมวลแทนที่ปูนซีเมนต์ของเถ้าชนิด	85
	WRHC กับกำลังอัดมอร์ตาร์	
รูปที่ 4.21	ความสัมพันธ์ระหว่างอัตราส่วนเถ้าลอยชีวมวลแทนที่ปูนซีเมนต์ของเถ้าชนิด	85
	BMA6 กับ WRHC3-WRHC6 กับกำลังอัคมอร์ตาร์	
รูปที่ 4.22	ความสัมพันธ์ระหว่างอายุมอร์ตาร์ของเถ้าชนิด BMA6 กับกำลังอัดมอร์ตาร์	86
รูปที่ 4.23	ความสัมพันธ์ระหว่างอาขุมอร์ตาร์ของเถ้าชนิด WRHC6 กับกำลังอัดมอร์ตาร์	86
รูปที่ 4.24	ความสัมพันธ์อัตราส่วนเถ้าลอยชีวมวลแทนที่ปูนซีเมนต์ กับค่าการยุบตัวของ	88
	คอนกรีต ที่กำลังอัดออกแบบ 200 ksc	
รูปที่ 4.25	ความสัมพันธ์ระหว่างอัตราส่วนเถ้าลอยชีวมวลแทนที่ปูนซีเมนต์ กับกำลังอัด	89
	คอนกรีต ที่กำลังอัดคอนกรีตออกแบบ 200 ksc ที่อายุ 28 วัน	
รูปที่ 4.26	ความสัมพันธ์ระหว่างอัตราส่วนเถ้าลอยชีวมวลแทนที่ปูนซีเมนต์ กับกำลังอัด	90
	คอนกรีต ที่กำลังอัคคอนกรีตออกแบบ 250 ksc ที่อายุ 28 วัน	
รูปที่ 4.27	ความสัมพันธ์ระหว่างอัตราส่วนเถ้าถอยชีวมวลแทนที่ปูนซีเมนต์ กับกำลังอัด	90
	คอนกรีต ที่กำลังอัคคอนกรีตออกแบบ 300 ksc ที่อายุ 28 วัน	

		หน้า
รูปที่ 4.28	ความสัมพันธ์ระหว่างอัตราส่วนเถ้าลอยชีวมวลแทนที่ปูนซีเมนต์ กับกำลังอัด	91
	คอนกรีต ที่กำลังอัคคอนกรีตออกแบบ 350 ksc ที่อายุ 28 วัน	
รูปที่ 4.29	ความสัมพันธ์ระหว่างอาขุของคอนกรีตผสมเถ้าลอยชีวมวลร้อยละ 10 กับกำลัง	91
	อัคคอนกรีต ที่กำลังอัคคอนกรีตออกแบบ 200 ksc ที่อายุ 28 วัน	
รูปที่ 4.30	ความสัมพันธ์ระหว่างอายุของคอนกรีตผสมเถ้าลอยชีวมวลร้อยละ 10 กับกำลัง	92
	อัคคอนกรีต ที่กำลังอัคคอนกรีตออกแบบ 250 ksc ที่อายุ 28 วัน	
รูปที่ 4.31	ความสัมพันธ์ระหว่างอายุของคอนกรีตผสมเถ้าลอยชีวมวลร้อยละ 10 กับกำลัง	92
	อัคคอนกรีต ที่กำลังอัคคอนกรีตออกแบบ 300 ksc ที่อายุ 28 วัน	
รูปที่ 4.32	ความสัมพันธ์ระหว่างอาขุของคอนกรีตผสมเถ้าลอยชีวมวลร้อยละ 10 กับกำลัง	93
	อัคคอนกรีต ที่กำลังอัคคอนกรีตออกแบบ 350 ksc ที่อายุ 28 วัน	
รูปที่ 4.33	ความสัมพันธ์ระหว่างอัตราส่วนเถ้าชนิค BMA1 แทนที่ปูนซีเมนต์กับกำลังอัค	99
	มอร์ตาร์ที่ได้จากการทดสอบและคำนวณจากสมการทำนายกำลังอัดที่อายุ 28 วัน	
รูปที่ 4.34	ความสัมพันธ์ระหว่างอัตราส่วนเถ้าชนิค BMA2 แทนที่ปูนซึเมนต์กับกำลังอัค	100
	มอร์ตาร์ที่ได้จากการทคสอบและคำนวณจากสมการทำนายกำลังอัคที่อายุ 28 วัน	
รูปที่ 4.35	ความสัมพันธ์ระหว่างอัตราส่วนเถ้าชนิค BMA3 แทนที่ปุ่นซีเมนต์กับกำลังอัค	100
	มอร์ตาร์ที่ได้จากการทดสอบและคำนวณจากสมการทำนายกำลังอัดที่อายุ 28 วัน	
รูปที่ 4.36	ความสัมพันธ์ระหว่างอัตราส่วนเถ้าชนิค BMA4 แทนที่ปุ่นซีเมนต์กับกำลังอัด	101
	มอร์ตาร์ที่ได้จากการทดสอบและคำนวณจากสมการทำนายกำลังอัดที่อายุ 28 วัน	
รูปที่ 4.37	ความสัมพันธ์ระหว่างอัตราส่วนเถ้าชนิค BMA5 แทนที่ปูนซีเมนต์กับกำลังอัค	101
	มอร์ตาร์ที่ได้จากการทดสอบและคำนวณจากสมการทำนายกำลังอัดที่อายุ 28 วัน	
รูปที่ 4.38	ความสัมพันธ์ระหว่างอัตราส่วนเถ้าชนิค BMA6 แทนที่ปุ่นซีเมนต์กับกำลังอัด	102
	มอร์ตาร์ที่ได้จากการทดสอบและคำนวณจากสมการทำนายกำลังอัดที่อายุ 28 วัน	
รูปที่ 4.39	ความสัมพันธ์ระหว่างอัตราส่วนเถ้าชนิด WRHC1 แทนที่ปูนซีเมนต์กับกำลังอัด	102
	มอร์ตาร์ที่ได้จากการทดสอบและคำนวณจากสมการทำนายกำลังอัดที่อายุ 28 วัน	
รูปที่ 4.40	ความสัมพันธ์ระหว่างอัตราส่วนเถ้าชนิด WRHC2 แทนที่ปูนซีเมนต์กับกำลังอัด	103
	มอร์ตาร์ที่ได้จากการทคสอบและคำนวณจากสมการทำนายกำลังอัดที่อายุ 28 วัน	

v

		หน้า
รูปที่ 4.41	ความสัมพันธ์ระหว่างอัตราส่วนเถ้าชนิด WRHC3 แทนที่ปูนซีเมนต์กับกำลังอัด	103
	มอร์ตาร์ที่ได้จากการทดสอบและคำนวณจากสมการทำนายกำลังอัดที่อายุ 28 วัน	
รูปที่ 4.42	ความสัมพันธ์ระหว่างอัตราส่วนเถ้าชนิด WRHC4 แทนที่ปูนซีเมนต์กับกำลังอัด	104
	มอร์ตาร์ที่ได้จากการทดสอบและคำนวณจากสมการทำนายกำลังอัดที่อายุ 28 วัน	
รูปที่ 4.43	ความสัมพันธ์ระหว่างอัตราส่วนเถ้าชนิด WRHC5 แทนที่ปูนซีเมนต์กับกำลังอัด	104
	มอร์ตาร์ที่ได้จากการทดสอบและกำนวณจากสมการทำนายกำลังอัดที่อายุ 28 วัน	
รูปที่ 4.44	ความสัมพันธ์ระหว่างอัตราส่วนเถ้าชนิด WRHC6 แทนที่ปูนซีเมนต์กับกำลังอัด	105
	มอร์ตาร์ที่ได้จากการทดสอบและกำนวณจากสมการทำนายกำลังอัดที่อายุ 28 วัน	
รูปที่ 4.45	ความสัมพันธ์ระหว่างกำลังอัคของมอร์ตาร์จริงและกำลังที่กำนวณจากสมการ	105
	ของตัวอย่างเถ้าลอยชีวมวลชนิด BMA	
รูปที่ 4.46	ความสัมพันธ์ระหว่างกำลังอัดของมอร์ตาร์จริงและกำลังที่กำนวณจากสมการ	106
	ของตัวอย่างเถ้าลอยชีวมวลชนิด WRHC	
	The MAI UNIVERSITY	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved