ภาคผนวก ก

2104.270

59.7% MARENON

ข้อมูลธรณี โครงสร้างภาพตัดขวาง (Geotechnical cross sections)

N 15 – N 30

รูปที่ ก.2 Geotechnical cross section N 16

Geotechnical cross section N16

รูปที่ ก.4 Geotechnical cross section N 18

รูปที่ ก.6 Geotechnical cross section N 20

รูปที่ ก.8 Geotechnical cross section N 22

รูปที่ ก.10 Geotechnical cross section N 24

รูปที่ ก.12 Geotechnical cross section N 26

รูปที่ ก.14 Geotechnical cross section N 28

รูปที่ ก.16 Geotechnical cross section N 30

ภาคผนวก ข

21524 23

ง กษยนดิ

ภาพถ่ายแท่งตัวอย่างบางช่วงความลึกจากบันทึกข้อมูลหลุมเจาะธรณีโครงสร้าง (Geotechnical bore log) แสดงลักษณะชั้นรอยเฉือนที่สำคัญ ในชั้นหิน Underburden (UB) ข.1 หลุมเจาะ LMG 951G (N 20) ข.2 หลุมเจาะ LMG 952G (N 24) ข.3 หลุมเจาะ LMG 948G (N 26)

ข.1 หลุมเจาะ LMG 951G

รูปที่ ข.1.1 หลุมเจาะ LMG 951G ประกอบการแปลความใน Cross section N 20

รูปที่ ข.1.2 แท่ง Core หลุมเจาะ LMG 951G ช่วงระยะ 105 – 110 เมตร

รูปที่ ข.1.3 แท่ง Core หลุมเจาะ LMG 951G ช่วงระยะ 110 – 115 เมตร

รูปที่ ข.1.4 แท่ง Core หลุมเจาะ LMG 951G ช่วงระยะ 150 – 155 เมตร

รูปที่ ข.1.4 แท่ง Core หลุมเจาะ LMG 951G ช่วงระยะ 160 – 165 เมตร

ข.2 หลุมเจาะ LMG 952G

รูปที่ ข.2.1 หลุมเจาะ LMG 952G ประกอบการแปลความใน Cross section N 24

รูปที่ ข.2.2 แท่ง Core หลุมเจาะ LMG 952G ช่วงระยะ 80 – 85 เมตร

รูปที่ ข.2.3 แท่ง Core หลุมเจาะ LMG 952G ช่วงระยะ 125 – 130 เมตร

รูปที่ ข.2.4 แท่ง Core หลุมเจาะ LMG 952G ช่วงระยะ 140 – 145 เมตร

ข.3 หลุมเจาะ LMG 948G

รูปที่ ข.3.1 หลุมเจาะ LMG 948G ประกอบการแปลความใน Cross section N 26

รูปที่ ข.3.2 แท่ง Core หลุมเจาะ LMG 948G ช่วงระยะ 40 – 45 เมตร

รูปที่ ข.3.3 แท่ง Core หลุมเจาะ LMG 948G ช่วงระยะ 45 – 50 เมตร

ภาคผนวก ค

1124 aj

จ กมยนด

ข้อมูลธรณีโครงสร้างจากงาน Pit mapping

(Pit mapping observation of bedding and joints orientations data)

THC MAI

รูปที่ ค.1 ตำแหน่งสำรวจข้อมูลธรณีโครงสร้างจากงาน Pit mapping

 All rights
 Image: Second state

 All rights
 reserved

No.	Strike	Dips	Main Panel No.	Grid Panel No.	Northin g_start	Northin g_end	Easting _start	Easting _end
1	85	12	1	4	2900	3000	-2300	-2400
2	40	12	1	4	2900	3000	-2300	-2400
3	110	8	1	5	2900	3000	-2400	-2500
4	85	9	111	5	2900	3000	-2400	-2500
5	62	10	1-	5	2900	3000	-2400	-2500
6	53	12	1	5	2900	3000	-2400	-2500
7	95	8	48	9	2800	2900	-2300	-2400
8	65	13	1	9	2800	2900	-2300	-2400
9	115	15	1	10	2800	2900	-2400	-2500
10	80	12	1	14	2700	2800	-2300	-2400
11	35	10	1	15	2700	2800	-2400	-2500
12	65	10	1	15	2700	2800	-2400	-2500
13	80	11	1ªI	15	2700	2800	-2400	-2500
14	80	10	1	19	2600	2700	-2300	-2400
15	65	115	Jnn	19	2600	2700	-2300	-2400
16	80	14	9 by	24	2500	2600	-2300	-2400
17	50	13	g1h	25	2500	2600	-2400	-2500
18	50	15	1	25	2500	2600	-2400	-2500
19	60	18	1	25	2500	2600	-2400	-2500
20	75	15	2	29	2400	2500	-2300	-2400
21	90	15	2	29	2400	2500	-2300	-2400
22	60	18	2	34	2300	2400	-2300	-2400
23	80	14	2	35	2300	2400	-2400	-2500

ตาราง ค.1 บันทึกข้อมูลทิศทางการวางตัวและการเอียงเทของธรณีโครงสร้างชั้นดิน ชั้นหิน พื้นที่ C1 West-wall จากงาน Pit mapping

No.	Strike	Dips	Main Panel No.	Grid Panel No.	Northin g_start	Northin g_end	Easting _start	Easting _end
24	70	14	2	35	2300	2400	-2400	-2500
25	80	15	2	35	2300	2400	-2400	-2500
26	80	18	2	35	2300	2400	-2400	-2500
27	60	15	2	39	2200	2300	-2300	-2400
28	40	20	2	39	2200	2300	-2300	-2400
29	55	10	2	40	2200	2300	-2400	-2500
30	70	14	2	40	2200	2300	-2400	-2500
31	45	17	2	40	2200	2300	-2400	-2500
32	70	17	2	40	2200	2300	-2400	-2500
33	47	22	2	44	2100	2200	-2300	-2400
34	75	25	2	44	2100	2200	-2300	-2400
35	35	14	2	45	2100	2200	-2400	-2500
36	75	15	2	45	2100	2200	-2400	-2500
37	20	15	2	45	2100	2200	-2400	-2500
38	57	18	2	49	2000	2100	-2300	-2400
39	40	25	2 2 ₀ y	50	2000	2100	-2400	-2500
40	120	10	g4 n	61	2900	3000	-2500	-2600
41	165	15	4	61	2900	3000	-2500	-2600
42	120	10	4	62	2900	3000	-2600	-2700
43	200	12	4	62	2900	3000	-2600	-2700
44	150	15	4	62	2900	3000	-2600	-2700
45	170	15	4	62	2900	3000	-2600	-2700
46	165	16	4	62	2900	3000	-2600	-2700

No.	Strike	Dips	Main Panel No.	Grid Panel No.	Northin g_start	Northin g_end	Easting _start	Easting _end
47	175	19	4	62	2900	3000	-2600	-2700
48	180	12	4	63	2900	3000	-2700	-2800
49	170	14	4	63	2900	3000	-2700	-2800
50	150	15	4	63	2900	3000	-2700	-2800
51	150	20	4	63	2900	3000	-2700	-2800
52	165	21	4	63	2900	3000	-2700	-2800
53	195	25	-4	63	2900	3000	-2700	-2800
54	160	10	4	64	2900	3000	-2800	-2900
55	245	14	4	65	2900	3000	-2900	-3000
56	115	8	4	66	2800	2900	-2500	-2600
57	120	16	4	66	2800	2900	-2500	-2600
58	180	10	4	67	2800	2900	-2600	-2700
59	180	10	4	67	2800	2900	-2600	-2700
60	180	10	4	67	2800	2900	-2600	-2700
61	140	12	4	67	2800	2900	-2600	-2700
62	180	14	9 4 _{0 Y}	67	2800	2900	-2600	-2700
63	143	14	g ⁴ h	67	2800	2900	-2600	-2700
64	150	8	4	68	2800	2900	-2700	-2800
65	200	14	4	68	2800	2900	-2700	-2800
66	180	4	4	69	2800	2900	-2800	-2900
67	210	8	4	69	2800	2900	-2800	-2900
68	145	10	4	69	2800	2900	-2800	-2900
69	135	10	4	71	2700	2800	-2500	-2600

No.	Strike	Dips	Main Panel No.	Grid Panel No.	Northin g_start	Northin g_end	Easting _start	Easting _end
70	150	12	4	72	2700	2800	-2600	-2700
71	155	13	4	72	2700	2800	-2600	-2700
72	165	8	4	73	2700	2800	-2700	-2800
73	120	8	4	73	2700	2800	-2700	-2800
74	150	15	4	73	2700	2800	-2700	-2800
75	45	5	4	76	2600	2700	-2500	-2600
76	60	5	-48	76	2600	2700	-2500	-2600
77	75	11	4	77	2600	2700	-2600	-2700
78	110	12	4	77	2600	2700	-2600	-2700
79	50	13	4	77	2600	2700	-2600	-2700
80	175	8	4	78	2600	2700	-2700	-2800
81	160	10	4	78	2600	2700	-2700	-2800
82	80	9	411	81	2500	2600	-2500	-2600
83	80	10	4	82	2500	2600	-2600	-2700
84	100	10	4	82	2500	2600	-2600	-2700
85	85	14	9 4 <u>0</u> y	82	2500	2600	-2600	-2700
86	90	9	g ⁵ h	86	2400	2500	-2500	-2600
87	95	12	5	86	2400	2500	-2500	-2600
88	65	15	5	86	2400	2500	-2500	-2600
89	100	6	5	87	2400	2500	-2600	-2700
90	80	10	5	87	2400	2500	-2600	-2700
91	70	10	5	91	2300	2400	-2500	-2600
92	55	10	5	91	2300	2400	-2500	-2600

No.	Strike	Dips	Main Panel No.	Grid Panel No.	Northin g_start	Northin g_end	Easting _start	Easting _end
93	65	13	5	91	2300	2400	-2500	-2600
94	50	14	5	91	2300	2400	-2500	-2600
95	65	15	5	91	2300	2400	-2500	-2600
96	100	10	5	92	2300	2400	-2600	-2700
97	55	11	5	92	2300	2400	-2600	-2700
98	70	13	5	92	2300	2400	-2600	-2700
99	70	6	-5	96	2200	2300	-2500	-2600
100	60	10	5	96	2200	2300	-2500	-2600
101	15	13	5	96	2200	2300	-2500	-2600
102	70	18	5	96	2200	2300	-2500	-2600
103	45	15	5	97	2200	2300	-2600	-2700
104	35	8	5	101	2100	2200	-2500	-2600
105	55	10	5	102	2100	2200	-2600	-2700
106	45	22	5	102	2100	2200	-2600	-2700
107	33	24	5	102	2100	2200	-2600	-2700
108	32	20	5 5 Y	106	2000	2100	-2500	-2600
109	30	20	g ⁵ h	106	2000	2100	-2500	-2600
110	35	22	5	106	2000	2100	-2500	-2600
111	45	22	5	106	2000	2100	-2500	-2600
112	28	27	5	106	2000	2100	-2500	-2600
113	70	7	5	107	2000	2100	-2600	-2700
114	20	10	5	107	2000	2100	-2600	-2700
115	50	12	5	107	2000	2100	-2600	-2700

No.	Strike	Dips	Main Panel No.	Grid Panel No.	Northin g_start	Northin g_end	Easting _start	Easting _end
116	10	19	5	107	2000	2100	-2600	-2700

ตาราง ค.2 บันทึกข้อมูลทิศทางการวางตัวของธรณีโครงสร้างแนวรอยแยก (Joints) พื้นที่ C1 West-wall จากงาน Pit mapping

No.	Strike	Dips	Main Panel No.	Grid Panel No.	Northin g_start	Northin g_end	Easting _start	Easting _end
1	25	65	2	30	2400	2500	-2400	-2500
2	15	52	2	30	2400	2500	-2400	-2500
3	240	65	2	34	2300	2400	-2300	-2400
4	165	65	2	35	2300	2400	-2400	-2500
5	20	58	2	40	2200	2300	-2400	-2500
6	10	42	24	40	2200	2300	-2400	-2500
7	41	63	2	40	2200	2300	-2400	-2500
8	80	75	2	40	2200	2300	-2400	-2500
9	50	45	2	40	2200	2300	-2400	-2500
10	105	35	2	40	2200	2300	-2400	-2500
11	80	45	2	40	2200	2300	-2400	-2500
12	160	40	2	40	2200	2300	-2400	-2500
13	50	50	2	45	2100	2200	-2400	-2500
14	55	50	2	45	2100	2200	-2400	-2500
15	55	50	2	45	2100	2200	-2400	-2500
16	195	67	2	50	2000	2100	-2400	-2500

บันทึกข้อมูลทิศทางการวางตัวของธรณี โครงสร้างแนวรอยแยก (Joints) พื้นที่ ตาราง ค.2 (ต่อ) C1 West-wall จากงาน Pit mapping

No.	Strike	Dips	Main Panel No.	Grid Panel No.	Northin g_start	Northin g_end	Easting _start	Easting _end
17	25	22	4	78	2600	2700	-2700	-2800
18	40	85	5	93	2300	2400	-2800	-2900
19	65	40	5	96	2200	2300	-2500	-2600

รูปที่ ข.3.4 แท่ง Core หลุมเจาะ LMG 948G ช่วงระยะ 90 – 95 เมตร

รูปที่ ข.3.5 แท่ง Core หลุมเจาะ LMG 948G ช่วงระยะ 105 – 110 เมตร

ภาคผนวก ง

2104 23

จะ งายยนดิ

Joint Analysis by Photogrammetry Technique โดนคณะทำงานภาควิชาวิศวกรรมเหมืองแร่ มหาวิยาลัยเชียงใหม่ ระหว่างวันที่ 15 – 18 ธันวาคม 2558

ตามหลักการ ธรณีโครงสร้างของเหมืองแม่เมาะมีลักษณะเป็นชั้นหินเรียงซ้อนกัน (Bedding) เมื่อเกิด การเปลี่ยนแปลงทางธรณี ชั้นหินจะเกิดชุดแนวรอยแยก (Joint sets) มีลักษณะแสดงดังรูปที่ ค.1

S1, S2 และ S3 คือ ผลต่างของมุม เปรียบเทียบตามแนว Strike ของโครงสร้างแต่ละคู่ ได้แก่ Bedding กับ Joint sets

D1, D2 และ D3 คือ ผลต่างของมุม Dip ของ โครงสร้างแต่ละคู่

หากการเกิด Joint sets เป็นผลจากการเปลี่ยนแปลงทางธรณีที่เกิดขึ้นเป็นระบบ ค่าผลต่างมุมทั้งสอง ชุดดังกล่าว จากข้อมูลของแต่ละหน้างานในหน่วยหินเดียวกันจะต้องมีก่าใกล้เกียงกัน

รูปที่ ง.2 ตำแหน่งสำรวจข้อมูลธรฉีโครงสร้างด้วยเทคนิค Photogrammetry

 Al UNIVERSIT

 Al UNIVERSIT

 Al ONIVERSIT

 Al ONIVERSIT

 Al ONIVERSIT

 Copyright[©] by Chiang Mai University

 Al I rights reserved

						Beddi	ng 0	
No	Northing	Facting	Elevation	SLODE EACE	Frequency	Mean	SD	Max.
100.	Norming	Easting	Elevation	SLOFE_FACE	1/m	spacing	spacing	spacing
1	2609.46	-2946.92	206.06		2.31	0.43	0.36	1.60
	2609.46	-2946.92	206.06	0812124	3.17	0.32	0.31	1.96
2	2617.76	-2942.11	204.17	200	5.58	0.18	0.17	0.66
3	2847.34	-2716.86	163.27		5.52	0.18	0.26	1.30
4	2755.90	-2570.16	139.26	A	13.30	0.08	0.07	0.33
	2755.90	-2570.16	139.26	В	5.50	0.18	0.27	1.30
	2755.90	-2570.16	139.26	C	6.83	0.15	0.12	0.48
5	2707.63	-2542.74	138.36	N'	7.60	0.13	0.19	1.18
6	2676.45	-2524.78	138.00	MA	9.57	0.10	0.90	0.35
7	1995.87	-2859.56	195.43		10.35	0.06	0.08	0.51
8	1998.28	-2842.11	194.72	ALIN	11.18	0.09	0.10	0.52
				Average	7.36	0.17	0.26	0.93

ตารางที่ ง.1 Joint analysis โครงสร้าง Bedding จากการสำรวจด้วย Phogrammetry พื้นที่ C1 Westwall

						Joint	Set 1	
No	Northing	Fasting	Floyation	SLOPE EACE	Frequency	Mean	SD	Max.
10.	Norming	Easting	Elevation	SLOI E_FACE	1/m	spacing	spacing	spacing
1	2609.46	-2946.92	206.06	1	1.86	0.54	0.78	2.81
	2609.46	-2946.92	206.06	2	1.36	0.72	0.79	2.44
2	2617.76	-2942.11	204.17	20	3.50	0.29	0.28	1.04
3	2847.34	-2716.86	163.27		4.03	0.25	0.22	0.56
4	2755.90	-2570.16	139.26	A	5.27	0.19	0.15	0.40
	2755.90	-2570.16	139.26	В	13.99	0.07	0.07	0.28
	2755.90	-2570.16	139.26	C	5.27	0.12	0.07	0.36
5	2707.63	-2542.74	138.36	NX	4.49	0.22	0.20	0.71
6	2676.45	-2524.78	138.00	MA	4.20	0.24	0.33	1.24
7	1995.87	-2859.56	195.43		0.83	1.20	0.00	1.20
8	1998.28	-2842.11	194.72	47 UNITS	0.92	1.06	0.23	1.28
				Average	4.16	0.45	0.28	1.12

ตารางที่ ง.2 Joint analysis โครงสร้าง Joint Set 1 จากการสำรวจด้วย Phogrammetry พื้นที่ C1 Westwall

						Joint	Set 2	
No	Northing	Fasting	Elmation	SLODE EACE	Frequency	Mean	SD	Max.
NO.	Northing	Easting	Elevation	SLOFE_FACE	1/m	spacing	spacing	spacing
1	2609.46	-2946.92	206.06	1	3.07	0.33	0.36	0.91
	2609.46	-2946.92	206.06	2	1.72	0.58	0.66	2.08
2	2617.76	-2942.11	204.17	000	1.76	0.29	0.28	1.04
3	2847.34	-2716.86	163.27		4.78	0.21	0.00	0.21
4	2755.90	-2570.16	139.26	A	0.96	0.06	0.02	1.12
	2755.90	-2570.16	139.26	В	4.09	0.24	0.32	0.75
	2755.90	-2570.16	139.26	C	6.96	0.14	0.19	0.71
5	2707.63	-2542.74	138.36	NZ	211.91	0.00	0.00	0.01
6	2676.45	-2524.78	138.00	MA	2.08	0.48	0.60	1.59
7	1995.87	-2859.56	195.43		1.31	0.76	0.85	1.20
8	1998.28	-2842.11	194.72	47 UNITS	1.74	0.58	0.50	1.20
				Average	21.85	0.33	0.34	0.98

ตารางที่ ง.3 Joint analysis โครงสร้าง Joint Set 2 จากการสำรวจด้วย Phogrammetry พื้นที่ C1 Westwall

ประวัติผู้เขียน

ชื่อ-นามสกุล	นาย อภิปัตย์ ไชยวรรณ
วัน เดือน ปี เกิด	17 กันยายน พ.ศ. 2520
ประวัติการศึกษา	ปีการศึกษา 2543 วิศวกรรมศาสตรบัณฑิต สาขาวิชาวิศวกรรมโยธา มหาวิทยาลัยเชียงใหม่
ทุนการศึกษา	ระหว่างปีการศึกษา 2555 ถึง 2557 ได้รับทุนการศึกษาระดับบัณฑิตศึกษาจากการ ไฟฟ้าฝ่ายผลิตแห่งประเทศไทย ในโครงการกวามร่วมมือทางวิชาการระหว่าง การไฟฟ้าฝ่ายผลิตแห่งประเทศไทย กับ มหาวิทยาลัยเชียงใหม่ (โครงการ ฯ กฟผมช.)
ผลงานตีพิมพ์	Chaiwan, A. and Leelasukseree, C., "Large scale three-dimensional pit slope stability analysis of the structurally controlled mechanism in Mae Moh coal mine," First Asia Pacific Slope Stability in Mining Conference, Brisbane, 6-8 September 2016, pp.601-610.
ประสบการณ์ ลิป	วิศวกร รับผิดชอบงานวิเคราะห์เสถียรภาพความลาด กองวิศวกรรมธรณี ฝ่ายวางแผนและบริหารเหมืองแม่เมาะ การไฟฟ้าฝ่ายผลิตแห่งประเทศไทย

ht[©] by Chiang Mai University rights reserved