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Abstract 

We report the response of graphene and N- doped graphene to ethanol vapor as 

gas sensors with varying the concentration of ethanol and temperature of graphene. 

Graphene was synthesized by chemical vapor deposition on copper foils and then was 

transferred to a glass slide by chemical etching.  N- doped graphene was produced by 

annealing graphene in ammonia atmosphere.  Results showed the response of both 

graphene and N-doped graphene are at low level up to 2.4%. The response of graphene 

increases with temperature up to 1. 15% , but that of N- doped graphene decreases from 

down to 0.30%.  We proposed the absorbed oxygen and nitrogen detachment are the key 

factors for the temperature dependence of the response of graphene and N- doped 

graphene, respectively. 

 

1. Introduction 

The metal oxide semiconductors were used widely for gas sensing because of their 

high response to numerous gas species with low production costs.  Nanostructures of the 

narrow band gap metal oxide semiconductors were employed to enhance detection 

performance of sensors, for examples, CuO [1]  and ZnO nanowires [2]. However, their 

drawbacks are selectivity and stability [ 3] .  Graphene has many properties exceeding 

metal oxide semiconductor- based gas sensing, such as high surface area, high 

conductance, a high signal- to- noise ratio at low- level changing of local charge 

concentration [3]. Here, we investigate the response of graphene and N-doped graphene 

for varying concentrations of ethanol vapors and temperatures.  N- doped graphene and 

graphene were prepared by chemical vapor deposition using acetylene as a carbon source. 

The response of sensors to ethanol was measured and derived for each condition.  To 

investigate effects of sensor measurement, Raman spectroscopy and X-ray photoemission 

spectroscopy were utilized for characterization of samples before and after sensor 

measurement of ethanol vapors.  
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2. Experimental details 

2.1 Graphene synthesis and nitrogen doping of graphene 

Graphene was synthesized by chemical vapor deposition (CVD) on 1 cm x 1 cm 

of copper foils using acetylene. Details of CVD were described in our previous report [4]. 

Multilayer graphene was obtained on the both sides of the copper substrates.  Then, 

graphene was transferred onto a glass substrate by chemical etching.  This transferring 

procedure involves two-step etching method using nitric acid (NHO3) and iron (III) nitrate 

(Fe(NO3) 3) .  Graphene can be doped with nitrogen atoms by annealing graphene at 400 

˚C for 45 min under ammonia atmosphere [5].  

 

2.2 Characterization and gas sensor measurement 

As- grown graphene and N- doped graphene were characterized by Raman 

spectroscopy with an excitation wavelength of 532 nm by an HORIBA Jobin- Yvon 

T64000 Raman spectrometer and an AXIS ULTRADLD X-ray photoelectron spectroscopy 

( XPS)  from Kratos analytical, UK.  For sensor measurement, two electrodes were 

fabricated on samples by gold sputtering with SPI- Module Sputter Coater in the low 

vacuum for 120 seconds.  Measurement of ethanol vapor was operated by applying 

voltage via the electrodes on the samples with Agilent 34970A and measure electrical 

current across the electrodes with Keithley196.  The ethanol gas sensing was examined 

on graphene and N- doped graphene samples by ethanol vapor concentrations of 25, 50, 

100 and 200 ppm for working time of 60 seconds at varying temperatures at 25, 100 and 

150 °C. 

 

3. Results and discussion 

3.1 Characterization results 

 Raman spectrum of graphene sample before measuring ethanol vapor displayed 

in figure 1( A)  ( red) .  It contains three peaks at 1333, 1575 and 2654 cm-1, which are 

assigned to D, G, and 2D respectively.  Raman spectrum of graphene after measuring 

ethanol vapor ( blue)  at a concentration of 200 ppm at 150 ˚C have prominent peaks at 

1335, 1584 and 2665 cm- 1, respectively.  The Raman spectrum of graphene after 

measuring exhibits blue shift.  The blue shift is attributed from compressive stress on 

graphene from annealing during graphene was heated [ 6 ] .  For Raman spectrum of N-

doped graphene in figure 1(B) , the red shift of the sample after measuring comparing to 

one before measuring was observed.  This effect is attributed from a strain in graphene 

from nitrogen doping into graphene [7]. 
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Figure.1 Raman spectra of (A) graphene and (B) N-doped graphene. Blue spectra 

are the sample before sensor operations and red spectra are after sensor operations. 

 

Graphene and N- doped graphene were analyzed by XPS to investigate the 

evolution of element composition of the samples before and after measuring ethanol for 

concentration of 200 ppm at 150 °C. Figure 2(A) shows XPS of N 1s for graphene before 

sensor examination.  Two component peaks were given at 400. 2 and 401. 2 eV 

corresponding to pyrrolic-N and quaternary-N, respectively. These component bondings 

disappear after ethanol vapors measurement. We suggest chemical etching in transferring 

process was attributed to nitrogen doping into graphene and heating samples during 

ethanol vapor measurement would make desorption of nitrogen from graphene.  Figure 

2( B)  displays devolution peaks of N- doped graphene in before measuring ethanol at 

398. 3, 399. 3, 400. 2 eV corresponding to pyrrolic- N bonds and at 401, 401. 9 eV 

corresponding to quaternary- N bonds [ 4 , 8 - 1 1 ] .  Less component nitrogen peaks and 

quantity of nitrogen after measurement than before gas measurement was found. Fig.2(C) 

and (D) show O1s spectra of graphene and N-doped graphene. Quantity of oxygen after 

ethanol vapor measurement increases for graphene and N- doped graphene.  It was 

explained by oxygen in ambient atmosphere and oxygen component in ethanol molecules 

at elevated temperature interacts and makes bonding with defect sites and nitrogen in 

graphene and N-doped graphene.   
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Figure. 2 The XPS of N1s core level of (A) graphene and (B) N-doped graphene 

of N1s and XPS of O1s core level of (C) graphene and (D) N-doped graphene before and 

after measuring ethanol vapor. 

 

3.2 Gas sensor measurement 

The response to ethanol vapor was calculated by the ratio of the resistance of 

samples under an air atmosphere ( Ra)  to ethanol atmosphere ( Rg) .  Results from the 

graphene sample at all temperatures show a low level of responsitivity ~1% with ethanol 

vapors in all concentrations. Figure 3 shows the response of samples to different ethanol 

vapor concentrations at varying temperatures. The response was defined as the following 

equation,  

 Response (%) 100%
a g

a

R R

R


                                              (1).  

The response of graphene increases with temperature for most ethanol vapor 

concentrations except 50 and 100 ppm at 150 °C as displayed in figure 3 (A).  The range 

of response for graphene is 0.07 to 1.19 %. Conversely, the response of N-doped graphene 

decreases with temperature shown in figure 3 (B). The response of N-doped graphene is 

from 0. 30 to 2. 34% .  The highest response of 2. 34%  for N- doped graphene occurs for 

measuring at room temperature. No dependence of response to ethanol vapor was found. 
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Figure. 3 Response of ( A)  graphene and ( B)  N- doped graphene at different 

operating temperatures for varying ethanol vapor concentrations. 

 

3.3 Discussion 

 From the results of element analyzing and response of graphene and N- doped 

graphene, we proposed adsorbed oxygen in graphene surface is the main factor to govern 

temperature dependence of the response of graphene.  Then, these adsorbed oxygen 

molecules in graphene were ionized and trapped electrons from the conduction band [12]. 

According to adsorption of oxygen, we can explain the ethanol vapor response of 

graphene in term of oxygen ions as shown in equation (2) [13], 

2 3 2 2 26 2 3 6abs freeO CH CH OH CO H O S e                              (2). 

The reaction produces free electrons in graphene, resulting in decrease resistance of 

sensor samples [ 1 4 ] .  The adsorbed oxygen ions in graphene will prevent ethanol 

molecules to have reactions with graphene surface. Therefore, at higher temperatures the 

rate of the reaction increase, leading to decrease of resistance and increase of response 

[14].  

For N- doped graphene, we suggest ethanol vapor sensing process follows a 

different mechanism for understanding the decrease of response.  Nitrogen in N- doped 

graphene provides free electrons and thus give the high mobility of electrons in graphene 

at room temperature. At elevated temperatures, the detachment of nitrogen from graphene 

structure occurs.  It is evident from the decrease of nitrogen concentration in XPS results 

[ 15] .  The raising temperature would either decrease the number of free electrons from 

nitrogen dopants or reduce electron mobility [16]. It can cause the high resistance of N-

doped graphene for sensor measurement above room temperature, resulting in lower 

response. 
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4. Conclusions 

 Graphene and N- doped graphene were successfully synthesized by chemical 

vapor deposition.  Responses of graphene and N- doped graphene to ethanol vapor were 

measured for varying ethanol vapor concentrations and at different temperatures. 

Temperature dependence of response was found. The response of graphene increases for 

increase temperature in sensor measurement, but that of N-doped graphene decreases. We 

suggest adsorbed oxygen on graphene can reduce free electrons causing a decrease of 

response. For N- doped graphene, nitrogen detachment from N- doped graphene leads to 

high resistance of N- doped graphene comparing to graphene, resulting in a decrease of 

response.        
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