สารบัญ

	หน้า
กิตติกรรมประกาศ	9
บทคัดย่อภาษาไทย	จ
ABSTRACT	ฉ
สารบัญตาราง	ĩ
สารบัญรูปภาพ	ฑ
รายการสัญลักษณ์	ต
รายการอักษรย่อ	ຄ
บทที่ 1 บทนำ	1
บทที่ 2 หลักการและทฤษฎีที่เกี่ยวข้อง	7
2.1 แกรฟิน	7
2.1.1 โครงสร้างพื้นฐานของแกรฟีน	7
2.1.2 สมบัติทางไฟฟ้า	9
2.1.3 สมบัติเชิงกลของแกรฟืน	13
2.1.4 สมบัติเชิงความร้อนของแกรฟืน	14
2.1.5 สมบัติเชิงแสงของแกรฟืน	15
2.2 การสังเคราะห์แกรฟืน	16
2.2.1 กระบวนการตกสะสมไอเกมี	17
2.2.1.1 กลไกพื้นฐานในกระบวนการ CVD	18
2.2.1.2 ผลของอุณหภูมิสำหรับกระบวนการ CVD	20
2.2.1.3 ผลของความดันสำหรับกระบวนการ CVD	21

2.3	ท่อนา	โนการ์บอน	22
	2.3.1	โครงสร้างและสมบัติของท่อนาโนคาร์บอน	23
	2.3.2	กลไกการเกิดท่อนาโนคาร์บอน	24
	2.3.3	การสังเคราะห์ท่อนาโนคาร์บอนที่เรียงตัวอย่างเป็นละเบียบแบบ	25
		ตั้งฉากกับวัสคุฐาน	
		2.3.3.1 การเตรียมฟิล์มบางเพื่อสังเคราะห์ท่อนาโนคาร์บอน	26
		โดยใช้เทกนิกการอาร์กที่แก โท ด	
		2.3.3.2 ตัวอย่างงานวิจัยที่เกี่ยวข้องกับการสังเคราะห์ท่อนาโน	27
		คาร์บอนโดยเท คนิคตกสะสมไอเคม ี	
2.4	การปร	ระยุกต์ใช้งานแกรฟินสำหรับใช้เป็นอุปกรณ์เซนเซอร์	31
	2.4.1	การคัคแปลงสมบัติของแกรฟีน โคยการเจือ	36
	2.4.2	การประยุกต์แกรฟืนที่ถูกคัดแปลงสำหรับใช้งานเป็นอุปกรณ์	43
		แก๊สเซนเซอร์	
	2.4.3	การประขุกต์ใช้แกรฟีนเป็นเซ็นเซอร์ตรวจจับแสง	45
	2.4.5	การประยุกต์แกรฟีนสำหรับโฟโตดีเทกเตอร์	47
2.5	เทคนิค	าในการตรวจสอบลักษณะเฉพาะของชิ้นงาน โดย XPS	55
	2.5.1	การวิเคราะห์องก์ประกอบทางเกมีโดยเทกนิก XPS	55
	2.5.2	อัตรกิริยาระหว่างเอ็กซเรย์กับวัสดุ	57
ີລິ	2.5.3	ความกว้างของจุดยอคใน XPS	59
C	2.5.4	สมบัติของสเปกตรัม	61
A	2.5.5	อุปกรณ์และองค์ประกอบของเครื่องของ XPS	65
	2.5.6	คุณภาพของสเปกตรัม	67
	2.5.7	ตัวอย่างการใช้เทคนิค XPS สำหรับตรวจสอบชิ้นงานประเภท	68
		คาร์บอน	
2.6	การวิเ	คราะห์ลักษณะเฉพาะของแกรฟืนและท่อนาโนคาร์บอนโคยใช้	70
	เทคนิศ	ารามานสเปค โตส โคปี	
	2.6.1	หลักการของเทคนิครามานสเปกโตสโคปี	70

		2.6.2 การใช้เทคนิครามานสเปกโตสโคปีสำหรับตรวจสอบ แกรฟีนและท่อนาโนคาร์บอน	71
		2.6.3 การใช้รามานสเปกตรัมในการวิเคราะห์ข้อมูลของท่อ นาโนคาร์บอน	74
	2.7	การตรวจสอบแกรฟีนและท่อนาโนคาร์บอนโดยใช้เทคนิคกล้อง จุลทรรศน์แบบส่องทะลุผ่าน	75
	2.8	การวิเคราะห์และตรวจสอบแกรฟีนและท่อนาโนคาร์บอนโดยใช้เทคนิค กล้องจุลทรรศน์แบบส่องกราค	79
บทที่ 3	วิธีก	ารทดลอง	81
	3.1	การตรียมชิ้นงานแกรฟินและแกรฟินที่ถูกคัดแปลง	81
		3.1.1 การสังเคราะห์แกรฟืน	83
		3.1.2 ขั้นตอนการย้ายแกรฟินออกจากวัสคุฐาน	84
		3.1.3 การฉายเลเซอร์ลงบนแผ่นแกรฟืนโดยใช้อุปกรณ์ LightScribe	87
		3.1.4 การเจือแกรฟืนด้วยการอบอ่อน	89
	3.2	การตรวจวัดการตอบสนองต่อแก๊สเอทานอลของชิ้นงาน	90
		3.2.1 ตัวอย่างการวิเกราะห์ข้อมูลการตอบสนองต่อแก๊สเอทานอล	96
	3.3	กระบวนการสร้างอุปกรณ์ โฟโตดีเทคเตอร์	98
	~	3.3.1 การสังเคราะห์ท่อนาโนคาร์บอนในลักษณะที่ตั้งฉากกับวัสดุ	98
	a	ฐาน (VACNTs)	
	Co	3.3.2 การสร้างชิ้นงานโฟโตดีเทกเตอร์	99
	А	3.3.3 การวัคสมบัติทางไฟฟ้าของส่วนประกอบของ	100
		โฟโตดีเทกเตอร์	
		3.3.4 การตรวจวัคสมบัติและประสิทธิภาพของโฟโตดีเทคเตอร์	101
		3.3.5 การควบคุมสเต็ปเปอร์มอเตอร์ด้วยบอร์ดควบคุมมอเตอร์ โมดูล	
		L298N และอาเครียโน	

บทที่ 4	ผลก	ารทคลองและอธิปรายผล	106
	4.1	การวิเคราะห์ลักษณะทางกายภาพและ โครงสร้างจุลภาคของแกรฟืนและ ท่อนาโนการ์บอน	106
	4.2	ผลการทคลองสำหรับการใช้แกรฟืนในการตรวจวัดแก๊สเอทานอล	107
		4.2.1 การวิเคราะห์สมบัติทางกายภาพและองก์ประกอบของชิ้นงาน โดยเทกนิครามานสเปกตรัม	107
		4.2.2 การวิเคราะห์สมบัติทางกายภาพและองค์ประกอบของชิ้นงาน โดยเทกนิก XPS	112
		4.2.3 การวัคสมบัติการนำไฟฟ้าของชิ้นงานแก๊สเซนเซอร์	122
		4.2.4 การทคสอบการตอบสนองต่อแก๊สเอทานอล	122
		4.2.5 การการวัดการตอบสนองต่อไอน้ำ	128
	4.2	การทดสอบชิ้นงานโฟโตดีเทคเตอร์	129
		4.2.1 การทคสอบสมบัติทางไฟฟ้าในรูปแบบของ FET	129
		4.2.2 การทคสอบการตอบสนองต่อแสงอินฟราเรคของ โฟโตคีเทกเตอร์	132
		4.2.3 การสร้างโฟโตดีเทกเตอร์แบบไฮบริคโดยใช้ CNT/GP	134
	ลิเ	4.2.4 การทดสอบการตอบสนองต่อแสงของโฟโตดีเทกเตอร์แบบ CNT/GP	137
	Co	4.2.5 การวิเคราะห์ประสิทธิภาพการตอบสนองต่อแสงของโฟโตดี เทคเตอร์แบบ CNT/GP	139
บทที่ 5	สรุป	ผลการทดลอง	145
	5.1	สรุปผลการทคลองของแก๊สเซ็นเซอร์	145
	5.2	สรุปผลการทคลองของโฟโตคีเทคเตอร์	146
	5.3	ข้อเสนอแนะ	146
เอกสารอ้	้างอิง		148
ภาคผนวร	ſ		

สารบัญตาราง

		หน้า
ตารางที่ 1	ตัวอย่างผลการวิจัยที่เกี่ยวแก๊สข้องกับเซ็นเซอร์สำหรับใช้ตรวจจับเอทานอล	2
ตารางที่ 2	สรุปขั้นตอนการเตรียมชิ้นงานสำหรับชิ้นงานแกรฟีนและแกรฟีนที่ได้รับการ คัดแปลง	91
ตารางที่ 3	การเตรียมความเข้มข้นของสารละลายเอทานอล	95
ตารางที่ 4	การจำแนกกำลังของเลเซอร์ในแต่ละตำแหน่ง	102
ตารางที่ 5	การเปรียบเทียบผลของค่าการตอบสนองต่อแก๊สเอทานอลในงานวิจัยที่ เกี่ยวข้อง	129
ตารางที่ 6	แสดงการเปรียบเทียบผลการทคสอบ โฟโตคีเทคเตอร์กับงานาวิจัยที่ใกล้เคียง	141

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

The MAI UNIVERSIT

สารบัญภาพ

รูปที่ 2.1	(a) โครงสร้างอะตอมของแกรฟื้นในลักษณะสองมิติ ประกอบด้วย	8
	แลตทิซจริงของระนาบแบบซิกแซกและอาร์มแชร์ (b) แลตทิซส่วนกลับ	
	ของแกรฟีน (C) ตัวอย่างการวิเคราะห์ โครงสร้างของแกรฟีนประกอบด้วย	
	(ถ่าง) การระบุตำแหน่งของระนาบผลึก และ(บน) การคำนวณระยะห่าง	
	ระหว่างผลึก	
รูปที่ 2.2	(A) โครงสร้างอะตอมของแกรฟืนที่แสดงแลตทิซย่อยและความสัมพันธ์	10
	ของอะตอมข้างเกียง (B) แถบโครงสร้างพลังงานของแกรฟืนที่ได้จากการ	
	คำนวณด้วยสมการ 2.4 แสดงถึงความสมมาตรของแถบพลังงานและ	
	ลักษณะของจุดไดแร็ค	
รูปที่ 2.3	(a) ชิ้นงานแกรฟีนสำหรับทดสอบสภาพความด้านทานไฟฟ้า (b) ลักษณะ	11
	ของขั้วในชิ้นงานแกรฟืนและช่องสำหรับตรวจวัคสมบัติทางไฟฟ้า (c)	
	พฤติกรรมการตอบสนองของแกรฟืนต่อการให้สนามไฟฟ้าจากภายนอก	
รูปที่ 2.4	การตรวจวัคสมบัติเชิงกลของแผ่นแกรฟืนโดยใช้ AFM	14
รูปที่ 2.5	การตรวจวัดค่าสภาพการนำความร้อนของแกรฟืนโดยวิเคราะห์ผลจากรา	15
	มานสเปกตรัม	
รูปที่ 2.6	การตรวจสอบสมบัติการดูดซับแสงของแกรฟื้นที่มีความหนาหนึ่งชั้นและ สองชั้น	16
«19 · · · ·	แยบอาพแสด ระหมม CVD โดยพื้นธานสำหรับอารสับดราะห์วัสด	17
аци 2.7	แผนภาพแแห่งระบบ CVD เพอพนฐานแาทรบการแงเทราะหรแห ของแข้งบนแผ่นซิลิกอน	1 /
รูปที่ 2.8	แผนภาพแสดงการเปลี่ยนแปลงความเข้มข้นของแก๊สสารตั้งต้นไปยังผิว	19
	ของแผ่นซิลิกอน	
รูปที่ 2.9	ความสัมพันธ์ระหว่างอุณหภูมิกับอัตราการตกสะสมในกระบวนการ	20
	CVD	

หน้า

รูปที่ 2.10	ความสัมพันธ์ระหว่างอุณหภูมิกับอัตราการตกสะสมในกระบวนการ CVD เมื่อมีการใช้ระบบความคันที่แตกต่างกันในกระบวนการทคลอง	21
รูปที่ 2.11	ลักษณะการเกิดท่อ SWCNT จากแกรฟืน	22
รูปที่ 2.12	ภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดของ (a) MWCNT และ (b) SWCNT	23
รูปที่ 2.13	โครงสร้างของอะตอม SWCNT และการวิเคราะห์โครงสร้างอะตอมของ ท่อนาโนคาร์บอน	23
รูปที่ 2.14	กลไกในการสังเคราะห์ท่อนาโนคาร์บอนที่มีตัวเร่งปฏิกิริยา (A)แบบ อนุภาค และ(B)แบบฟิล์ม	25
รูปที่ 2.15	เปรียบเทียบประสิทธิภาพในการสะท้อนแสงของท่อนาโนคาร์บอนแบบ ตั้งกับวัสดุฐานและแกรฟีนจากค่าดัชนีของการสะท้อนของแสงในช่วง ความยาวคลื่น 400 ถึง 2000 μm	26
รูปที่ 2.16	กลไกการตกสะสมไอของพลาสมาในกระบวนการอาร์คที่แคโทด	27
รูปที่ 2.17	ท่อนาโนคาร์บอนที่ได้จากการสังเคราะห์จากวิธี water- assisted CVD	28
รูปที่ 2.18	ลักษณะของชิ้นงานที่เตรียมสำหรับการสังเคราะห์ SWNTs (a) แสดงชั้น ของผิววัสดุฐานและองค์ประกอบของขั้ว (b) ภาพถ่ายลักษณะของชิ้นงาน จากมุมบน (c) ทิศทางของเส้นสนามไฟฟ้าที่เกิดขึ้นระหว่างขั้วอิเล็กโทรด ของชิ้นงาน	30
รูปที่ 2.19	แผนภาพแสดงจำนวนงานวิจัยที่ศึกษาเกี่ยวกับแกรฟืนในการเป็นวัสคุฐาน ของเซนเซอร์แก๊สต่อปี ในช่วงปี 2007 ถึง 2014	31
รูปที่ 2.20	การวัดการตอบสนองต่อแก๊ส ในโตรเจนไดออกไซด์ของแกรฟีน (a) โดย การวัดค่าความต้ำนทานของแกรฟีนในระหว่างที่ปล่อยแก๊ส (b-c) การ เปลี่ยนแปลงค่าความต้านทานเทียบกับปริมาณความหนาแน่นของ โมเลกุลแก๊สที่ยึดเกาะและหลุดออกบนพื้นผิวของแกรฟีน	32
รูปที่ 2.21	(a) ตัวอย่างชิ้นงานแก๊สเซนเซอร์แบบ chemiresistor โดยมีความแตกต่าง เมื่อเทียบกับชิ้นงานแบบ (b) FET	33

ราใที่ 2 22	(๑) ตัวอย่างการวิเคราะห์ผลของเซบเซอร์ที่ทำจากแกรฟีบรีดิวซ์ทดสอบ	34
3 D H 2,22	(a) กระอาณาระแบรเอาการจะบนตรมอยากการการการเปลี่ยนแปลง	51
	ความเข้มข้นของแก๊สที่ใช้ทดสอบ (c) การทดสอบเปรียบเทียบผลในการ	
	ตอบสนองของเซนเซอร์เทียบกับแก๊สชนิดอื่น (d) กราฟการตอบสนอง	
	ของแกรฟีนรีดิวซ์ที่ความเข้มข้น 80 ppm	
รูปที่ 2.23	กลไกการตรวจจับแก๊สของเซนเซอร์แบบตรวจวัดความต้านทานเมื่อ	36
Υ.	สภาพแวคล้อมมีการเปลี่ยนแปลง <u>(</u> a) ในสภาวะสมคุล (b) ในสภาวะที่ถูก	
	ออกซิไดซ์เพื่อเพิ่มความหนาแน่นของโฮลทำให้ค่าความต้านทานมีค่า	
	สูงขึ้น (c) ในสภาวะที่ถูกรีคิวซ์เพื่อเพิ่มความหนาแน่นของอิเล็กตรอนทำ	
	ให้กวามต้านทานมีก่าที่ต่ำลง	
รปที่ 2.24	รามานสเปกตรัมของ NG และ PG (ซ้าย) เจือในโตรเจน 10 นาที ที่	37
ଧ	อุณหภูมิ 750 ,800 ,850 และ 950 องศาเซลเซียส (ขวา) เจือในโตรเจนที่	
	อุณหภูมิ 800 องศาเซลเซียส ใช้เวลา 10 ,30 และ 60 นาที่ ตามลำคับ	
รูปที่ 2.25	รามานสเปกตรัมในโหมดของการสร้างภาพจำลองของชิ้นงาน (A) PG	38
	ແລະ (B) NG	
รูปที่ 2.26	สเปกตรัม XPS เพื่อตรวจสอบ โครงสร้างอะตอมของชิ้นงาน (A) คาร์บอน	39
	และสัคส่วนของธาตุเจือ (B) ในโตรเจน	
รปที่ 2.27	แบบจำลองโครงสร้างของ (A) PG ที่เจือด้วยอะตอมของในโตรเจน (B-	39
ରା :	C)ในลักษณะของการแทนที่อะตอมคาร์บอน อะตอมสีฟ้าแทนตำแหน่ง	
ລິ	อะตอมของธาตุในโตรเจนและอะตอมสีขาวแทนตำแหน่งอะตอมของ	
	ธาตุการ์บอน	
รูปที่ 2.28	้ (a) รามานสเปกตรัมเปรียบเทียบระหว่าง GP กับ NG (b) รามานสเปกตรัม	41
A	ในโหมดของการสแกนบนชิ้นงาน NG (Raman mappings) (c) XPS ของ	
	C1s สำหรับ NG กับ GP (d) XPS ของ N1s สำหรับ PG	
รูปที่ 2.29	(a) ภาพถ่าย STM ของ NG (b) ถูกขยายให้มีขนาคสเกลบาร์มีขนาค 4	42
	อังสตรอม (c) ภาพจำลอง โครงสร้างแกรฟีนที่ถูกเจือจากในรูป b	

รูปที่ 2.30	แบบจำลองโครงสร้างของการเจือในโตรเจนบนแกรฟืน (a) $\mathrm{N_2^{~^{AA}}}$ (b) $\mathrm{N_2^{~^{BB}}}$	42

- รูปที่ 2.31 (a) ความสัมพันธ์ระหว่างลักษณะการวางตัวของอะตอมในโตรเจนบน 43 แกรฟีนกับพลังงานที่ใช้ในการเจือ รูปแบบการเจือในโตรเจนในแบบ (b) N₂^{AB}, (c) N₂^{AA} (d) N₄V₂ (e) N₄V₃
- รูปที่ 2.32 (a) ภาพถ่ายจากกล้องจุลทรรศน์แสงจากค้านบนของชิ้นงานแกรฟีน FET 44 (b) ลักษณะของแกรฟีน FET (c) ผล AFM เปรียบเทียบความหนาของชั้น แกรฟีนหลังผ่านกระบวนการ (d) วิเคราะห์สภาพการนำไฟฟ้าของแกรฟีน ที่เปลี่ยนไปโดยจากแผนภาพฮิสเตอร์รีติก (hysteretic)
- รูปที่ 2.33 วัดความสามารถในการตอบสนองต่อแก๊สของแกรฟีน FET เมื่อถ้างด้วย 45 (a) ไอน้ำ (b) nonanal (c) octanoic acid (d) trimethylamine
- รูปที่ 2.34 (a) แผนภาพชิ้นงานแกรฟืนโฟโตดีเทคเตอร์ (b) การตรวจการสมบัติการ 49 นำไฟฟ้าของแกรฟืนชั้นบนแทนด้วยสีแดงและแกรฟืนชั้นถ่างแทนด้วยสี ดำ (c) กลไกการเปลี่ยนแปลงของแถบพลังงานในแกรฟืนชั้นบนและชั้น ถ่างเมื่อมีการกระตุ้นด้วยแสง (d) กลไกการเปลี่ยนแปลงของแถบพลังงาน ในแกรฟืนระหว่างชั้นบนและชั้นล่างเมื่อมีการไบอัสความต่างศักย์จาก แกรฟืนชั้นล่าง
- รูปที่ 2.35 (a)การทดสอบการนำไฟฟ้าของชิ้นงานแกรฟีนโฟโตดีเทกเตอร์ซึ่งใช้แสง 49 เลเซอร์ที่มีกำลังแตกต่างกันในการกระตุ้น (b) ตรวจสอบความสามารถใน การให้กำเนิดกระแสไฟฟ้าจากแสงที่มากระตุ้นบนชิ้นงานแกรฟีน โฟโตดีเทกเตอร์
- รูปที่ 2.36 (a)ขั้นตอนการเตรียมชิ้นงานโฟโตดีเทกเตอร์แบบรอยต่อซอตกี้ (b) การ 50 ทดสอบสมบัติทางไฟฟ้าของชิ้นงานโฟโตดีเทกเตอร์ (c) การทดสอบ ความไวในการตอสนองของโฟโตดีเทกเตอร์

ความสัมพันธ์ของการเปลี่ยนแปลงของกระแสในโฟโตดีเทคเตอร์เมื่อถูก	51
กระตุ้นด้วยแสงทมความถ์ (a) 500 Hz ,(b) 5000Hz ,(c) วเคราะหเวลา ใน	
การตอบสนองของโฟโตคีเทกเตอร์ และ (d) การวิเคราะห์กวามสามารถ	
ในการให้กำเนิดกระแสของโฟโตดีเทกเตอร์ที่ขึ้นกับความถึของแสงที่มา	
กระศุ้น	
(a)ความสัมพันธ์ของการเปลี่ยนแปลงกระแสในโฟโตดีเทคเตอร์เมื่อถูก	52
กระตุ้นด้วยแสงและถูกใบอัสด้วยความต่างศักย์ตั้งแต่ -3 ถึง 0 V และ (b)	
การปรับเปลี่ยนความต่างศักย์ใบอัสที่มีผลต่อประสิทธิภาพในการ ตอบสนองของโฟโตดีเทกเตอร์	
กลไกการสร้างกระแสไฟฟ้าจากโฟโตดีเทคเตอร์แบบร่อยต่อซอตกี้ของ	53
CNTF และ SLG	
ขั้นตอนการเตรียมชิ้นงานโฟโตดีเทคเตอร์แบบรอยต่อ p-n	54
(a) การทดสอบการตอบสนองตอแสงอนฟราเรดของชนงานแกรฟนแบบ	54
รอยต่อ p-n ที่มีขนาคพื้นที่ (b) 50 µm และ(c) 3 µm ตามล้ำดับ	
(a-c) การฉายแสงจากแหล่งกำเนิดที่แตกต่างกันเพื่อกระตุ้นให้เกิดโฟโต	56
อิเล็กตรอน (d) กระบวนการเกิดโฟโตอิเล็กตรอนของอะตอมของ	
ออกซิเจนจากการฉายเอ็กซเรย์	
กระบวนเกิดโฟโตอิเล็กตรอนแบบที่สาม โดย (a) การเกิดโฟโตร	58
อิเล็กตรอน เมื่อมีโฟตอนจากเอ็กซเรย์มาทำอัตรกิริยากับอิเล็กตรอนในชั้น	
พลังงานของอะตอม ทำให้อิเล็กตรอนในชั้นพลังงานดังกล่าวหลุดออกไป	
และ (b) ทำให้อิเล็กตรอนในชั้นอื่นที่มีพลังงานใกล้เคียงกัน คายพลังงาน	
เมื่อลงมาแทนที่ในตำแหน่งอะตอมดังกล่าวโคย (c) การคายพลังงาน	
บางส่วนของอิเล็กตรอนทำให้อิเล็กในบางตำแหน่งต้องหลุดออกไป	
(Auger electron) เพื่อทำให้อิเล็กตรอนในชั้นพลังงานดังกล่าวมีความ	
เสถียร [57]	
	กวามสัมพันธ์ของการเปลี่ยนแปลงของกระแสในไฟโตดีเทคเตอร์เมื่อถูก กระตุ้นด้วยแสงที่มีความถี่ (a) 500 Hz ,(b) 5000Hz ,(c) วิเคราะห์เวลาใน การตอบสนองของไฟโตดีเทคเตอร์ และ (d) การวิเคราะห์ความสามารถ ในการให้กำเนิดกระแสของไฟโตดีเทคเตอร์ที่ขึ้นกับความถี่ของแสงที่มา กระตุ้น (a)ความสัมพันธ์ของการเปลี่ยนแปลงกระแสในโฟโตดีเทคเตอร์เมื่อถูก กระตุ้นด้วยแสงและถูก ใบอัสด้วยความต่างศักย์ตั้งแต่ -3 ถึง 0 V และ (b) การปรับเปลี่ยนความต่างศักย์ในอัสที่มีผลต่อประสิทธิภาพในการ ตอบสนองของโฟโตดีเทคเตอร์ กลไกการสร้างกระแสไฟฟ้าจากโฟโตดีเทคเตอร์แบบร่อยต่อซอดกิ้ของ CNTF และ SLG ขั้นตอนการเตรียมชิ้นงานโฟโตดีเทคเตอร์แบบรอยต่อ p-n (a) การทอสอบการตอบสนองต่อแสงอินฟราเรดของชิ้นงานแกรฟันแบบ รอยต่อ p-n ที่มีขนาดพื้นที่ (b) 50 µm และ(c) 3 µm ตามลำคับ (a-c) การถายแสงจากแหล่งกำเนิดที่แตกต่างกันเพื่อกระตุ้นให้เกิดไฟโต อิเล็กตรอน (d) กระบวนการเกิด โฟโตอิเล็กตรอนของอะตอมของ ออกซิเจนจากการฉายเอ็กซเรย์ กระบวนเกิด โฟโตอิเล็กตรอนแบบที่สาม โดย (a) การเกิด โฟโตร อิเล็กตรอน เมื่อมีโฟตอนจากเอ็กซเรย์มาทำอัตรกิริยากับอิเล็กตรอนในชั้น พลังงานของอะตอม ทำให้อิเล็กตรอนในชั้นพลังงานดังกล่าวหลุดออกไป และ (b) ทำให้อิเล็กตรอนในชั้นตลังกนในชั้นพลังงานดังกล่าวหลุดออกไป และ (b) ทำให้อิเล็กตรอนในชั้นดีนก่าวดำเลาหลังกัน เมื่อสามารถึง การเกิดโฟโตร เล่สงบาแทนที่ในตำแหน่งอะตอมดังกล่าวโดย (c) การกายพลังงาน บางส่วนของอิเล็กตรอนทำให้อิเล็กในบางตำแหน่งต้องหลุดออกไป (Auger electron) เพื่อทำให้อิเล็กตรอนในชั้นพลังงานดังกล่าวมีความอเส

รูปที่ 2.44	แผนภาพของเอ็กซเรย์พลังงาน 1 eV ที่ฉายลงบนชิ้นงานซึ่ง (a) โฟโต	61
	อิเล็กตรอนของอะตอมที่ผิวชิ้นงานซึ่งหลุดออกมาเมื่อมีเอ็กซเรย์มา	
	กระตุ้นโดยที่ไม่การสูญเสียพลังงาน (b) โฟโตอิเล็กตรอนที่อยู่ในตำแหน่ง	
	ที่ลึกลงไปจากผิวของชิ้นงานถูกกระตุ้นด้วยเอ็กซเรย์ ทำให้โฟโต	
	อิเล็กตรอนดังกล่าวหลุดออกมาจะมีการสูญเสียพลังงานจลน์บางส่วนไป	
	ในระหว่างที่โฟโตอิเล็กตรอนเดินทางออกจากชิ้นงาน (c) ไม่เกิคโฟโต	
	อิเล็กตรอนที่หลุดออกมาจากชิ้นงานได้	
รูปที่ 2.45	ตัวอย่างการวิเคราะห์ผลของสปกตรัมในโหมดสแกนสำรวจของชิ้นงาน	63
	พอลิยูรีเทน	
รูปที่ 2.46	การวิเคราะห์ผลของสเปกตรัมในโหมดที่จำแนกตามชนิดของธาตุ(a)	
	การ์บอน (b) ออกซิเจน และ(c)ในโตรเจน ของชิ้นงานพอลิยูรีเทน	
รูปที่ 2.47	แผนภาพขั้นตอนเกิคสปินอัฟและสปินคาว์นของอิเล็กตรอนในออบิทัล	64
	เมื่อใด้รับการกระตุ้นจากเอ็กซเรย์	
รูปที่ 2.48	ตัวอย่างผลของอัตราส่วนพื้นที่ที่มีผลต่อขนาดของจุดยอด XPS ในชั้น พลังงาน 4f	65
รูปที่ 2.49	แผ่นภาพของเครื่อง XPS สเปกโตรมิเตอร์ที่ประกอบด้วยองค์ประกอบที่	66
-	สำคัญ เช่น ระบบสุญญากาศ แหล่งกำเนิคเอ็กซเรย์ และอุปกรณ์ในการ	
	ตรวจวัคค่าพลังงาน โฟโตอิเล็กตรอน	
รูปที่ 2.50	การทำงานของอุปกรณ์ที่ใช้วิเคราะห์พลังงานโฟโตอิเล็กตรอนที่มี ลักษณะเป็นท่อครึ่งวงกลม	67
รุปที่ 2.51	พีคของชิ้นงานแกรไฟต์ (a) พีค C1s (b) พีคจากสัญญาณรวบกวนของ	68
ά Δ	แกรไฟต์	
รูปที่ 2.52	การตรวจสอบส่วนประกอบของธาตุในแกรฟีนที่ถูกเจือค้วยอะตอมของ	69
ข	ในโตรเจนโดยใช้เทกนิก XPS ในการวิเกราะห์	
รูปที่ 2.53	ผล XPS ของท่อนาโนคาร์บอนที่ถูกอบอ่อนในบรรยากาศของ HNO3, air,	69
v	$\mathrm{H_2O_2}$ และ $\mathrm{H_2SO_4}$ +HNO $_3$ ตามลำดับ	
รูปที่ 2.54	หลักการของการเกิดความเข้มของจุดยอดในแต่ละตำแหน่งของรามาน	71
	สเปกตรัม	

รูปที่ 2.55	รามานสเปกตรัมของแกรฟีนแบบหนึ่งชั้น	72
รูปที่ 2.56	(a)การกระเจิงของรามานสเปกตรัมที่ทำให้เกิด 2D และ (b) 2D'	73
รูปที่ 2.57	การวิเคราะห์ความหนาของแกรฟืน โดยอาศัยรามานสเปกตรัม	73
รูปที่ 2.58	(a) รามานสเปกตรัมของ SWCNT A และ SWCNT B ที่ผลิตจาก Carbolex® และ HiPCO® ตามลำดับ เปรียบเทียบกับรามานสเปกตรัมของ แกรไฟต์ (b) ลักษณะปรากฏการณ์ในการเกิดจุดยอดในแต่ละแบบของ SWCNT	75
รูปที่ 2.59	(a) ภาพถ่ายแกรฟื้นที่อยู่กริดทองแดง และ (b) ภาพกำลังขยายสูงของ แกรฟืนในโหมด HRTEM	77
รูปที่ 2.60	ภาพถ่ายแกรฟืนที่อยู่กริดทองแดง (ภาพเล็ก) ตำแหน่งการเลี้ยวเบนของลำ อิเล็กตรอนของแกรฟืนในโหมด SAED	78
รูปที่ 2.61	(a) ภาพถ่ายจาก TEM ของท่อนาโนคาร์บอน (b) ภาพถ่ายท่อนาโน คาร์บอนในโหมด HRTEM และ (ภาพเล็ก) โหมค SAED	78
รูปที่ 2.62	ภาพถ่าย SEM ของแกรฟืนที่สังเคราะห์ในระดับความดัน (a) 15 mbar (b) 25 mbar (c) 50 mbar	80
รูปที่ 2.63	ภาพถ่าย SEM ของวัสคุผสมพอลิโพรไพลีนที่มีการเติมท่อนาโนคาร์บอน ลงไปในสัคส่วน(a) 0.5%และ (b) 1%	80
รูปที่ 3.1 ลิ	การสังเคราะห์แกรฟืนโดย CVD ซึ่งมืองค์ประกอบ (A) ปั้มดูดอากาศ (B) วาว์ลปรับความคันในชัมเบอร์ (C) เตาที่มีชัมเบอร์ใส่ชิ้นงานอยู่ภายใน และ (D) อุปกรณ์ง่ายกระแสไฟฟ้าเพื่อควบคุมอุณหภูมิของขดลวดตัวนำ อายใบเตา	82
รูปที่ 3.2 A	แผนภาพแสดงขั้นตอนการสังเคราะห์แกรฟินบนแผ่นทองแดง (step 1) การเพิ่มอุณหภูมิและปรับระดับความดันของสารตั้งต้นให้เหมาะสมกับ การสังเคราะห์ (step 2) ช่วงของการอบอ่อนชิ้นงานที่ความดัน 1-2 Torr (step 3) ช่วงในการเพิ่มอุณหภูมิจาก 450 ไป 900 องศาเซลเซียส (step 4) ช่วงการสังเคราะห์แกรฟิน (step 5) ช่วงในการเย็นตัว (step 6) เป็น ขั้นตอนในการปรับสภาวะเตาให้เหมาะสมต่อการปิดระบบและการนำเอา	84
	ช่นงานออกมาจากเตาที่สังเคราะห้	

รูปที่ 3.3	ขั้นตอนการวางแผ่นทองแคงบนสารละลายเฟอร์ริกในเตรค (a) สาร ละลายเฟอร์ริกในเตรค (b) การวางแผ่นทองแคงลงบนสารละลายเฟอร์ริก	
	ในเตรด	
รูปที่ 3.4	(a) อุปกรณ์เครื่องเขียนแผ่น DVD LightScribe ใช้เป็นอุปกรณ์ในการฉาย	87
•	เลเซอร์เพื่อทำลวคลายบนปกแผ่น DVD (b) ลักษณะการใช้ของอุปกรณ์	
	เครื่อง LightScribe	
รูปที่ 3.5	ลักษณะการติดชิ้นงานบนแผ่น DVD ซึ่งเป็นแกรฟืนที่อยู่บนวัสดุฐานแผ่น	87
-	ทองแดง ก่อนนำเข้าเกรื่อง LightScribe	
รูปที่ 3.6	ตัวอย่างการใช้งานโปรแกรม Sure Thing disk labeler 6.0 ในการออกแบบ	88
	หรือทำลวคลายของเลเซอร์บนปกแผ่น DVD แถบวงแหวนสีคำคือบริเวณ	
	ที่จะทำการฉายเลเซอร์	
รูปที่ 3.7	(A) แผนภาพแสดงแบบจำลองแผ่น DVD ที่มีแกรฟืนบนแผ่นทองแดงติด	88
U.	อยู่ (B) การฉายเลเซอร์เพื่อทำให้ชิ้นงาน GP กลายเป็น LSG	
รูปที่ 3.8	ขั้นตอนการเจือแกรฟินค้วยไอของแอม โมเนีย	90
ราใที่ 3.9	อปกรณ์ที่ใช้ในการเคลือบทองเพื่อทำเป็บขั้วไฟฟ้าของชิ้นงานแกรฟีน	92
а 1 1 1 1 5,9	ด้วยวิธีสปัตเตอริ่ง	72
รูปที่ 3.10	แผนภาพชิ้นงานแกรฟีนเซนเซอร์ที่ผ่านการทำขั้วโดยการเคลือบทองใน	93
ų	บริเวณปลายสองข้างของแกรฟีนด้วยวิธีวิธีสปัตเตอริ่ง	
รูปที่ 3.11	แผ่นภาพแสดงวงจรที่ใช้ในการวัดค่าความต้านทานของชิ้นงานแกรฟีน	94
ິຄິ	ประกอบด้วย (A) อุปกรณ์ควบคุมแรงคันกระแสตรงของวงจรที่จ่าย	
	แรงคัน 5 โวตถ์ (DC power supply)ให้กับชิ้นงาน ซึ่งจะทำการจ่ายแรงคัน	
	ผ่าน (B) อุปกรณ์ตรวจวัดกระแส (Keithley 196) ที่แสคง โดยสัญลักษณ์ A	
1	และมี (C) อุปกรณ์ที่ใช้วัดความต่างศักย์ (Agilent 34970A) ที่แสดงโดยใช้	
	สัญลักษณ์ V ซึ่งข้อมูลทั้งหมดจะถูกส่งไปยัง (D) คอมพิวเตอร์เพื่อทำการ	
	วิเคราะห์และประมวลผลสภาพการนำไฟฟ้าในชิ้นงาน แกรฟีน	

รูปที่ 3.12	แผนภาพแสดงวงจรสำหรับทดสอบชิ้นงานแกรฟีน มืองค์ประกอบแบบ	96
	เดียวกับวงจรที่วัคสภาพการนำไฟฟ้าในแกรฟีน โดยมีอุปกรณ์เพิ่มเติมใน	
	ส่วนของการควบคุมการปล่อยแก๊สเอทานอล (ethanol vapor pump) เข้า	
	ไปทำอัตรกิริยากับชิ้นงานแกรฟืนในตำแหน่งที่ (F) และมีการเพิ่ม	
	อุณหภูมิให้กับชิ้นงานระหว่างการทคสอบ โคยใช้ (E) เตาขคลวคนิโครม	
	(heating coil) ในการให้ความร้อน โดยข้อมูลที่วัคได้จะถูกส่งไปยัง (D) คอมพิวเตอร์	
รูปที่ 3.13	การคำนวณหาค่าทคสอบการตอบสนองของแกรฟื้นแบบ N-GP โคย	97
	ทคสอบที่ความเข้มข้นของแก๊สเอทานอล 25 ppm ณ อุณหภูมิ 25°C	
	ช่วงเวลาในการเปิดแก๊สเท่ากับ 100 วินาที (A) การตอบสนองของ N-GP	
	สำหรับความต้านทานในช่วงที่มีการเปิดและปิดแก๊สเอทานอล (B) การ	
	วิเคราะห์หาช่วงเวลาที่ N-GP สามารถตอบสนองต่อแก๊สเอทานอลและ	
	ช่วงเวลาในการคืนสภาพ	
รูปที่ 3.14	กระบวนการสังเคราะห์ VACNT ในระบบ CVD	99
รูปที่ 3.15	รูปแบบของชิ้นงานโฟโตคีเทคเตอร์ที่ทำจากแกรฟีนและVACNT ซึ่งจะ	100
	ตรวจสอบการตอบสนองด้วยแสงเลเซอร์อินฟราเรด	
รูปที่ 3.16	แผ่นภาพการออกแบบการเตรียมชิ้นงานสำหรับการวัด FET ของ(A)	101
	แกรฟีน (B) แกรฟีนที่เจือด้วยในโตรเจน (C) ฟีล์มของท่อนาโนคาร์บอน	
	กับ PMMA และ (D) รูปแบบของการตรวจวัด	
รูปที่ 3.17	ชุดอุปกรณ์สำหรับการตรวจวัดการตอบสนองต่อแสงอินฟราเรด	103
รูปที่ 3.18	บอร์ค L298N ที่ใช้ในการควบคุมมอเตอร์	103
รูปที่ 3.19	โค้คคำสั่งที่ใช้ในการควบคุมความเร็วและรูปการหมุนของสเต็ปเปอร์	105
	มอเตอร์	
รูปที่ 4.1	การตวจสอบลักษณะโครงสร้างจุลภาคโดยเทคนิค TEM ในชิ้นงาน(A)	106
	GP และ (B) CNT	
รูปที่ 4.2	ภาพถ่าย SEM ของท่อนาโนคาร์บอนที่สังเคราะห์ได้หลังจากพยายาม	107
	สังเคราะห์ VACNT	

รูปที่ 4.3	รามานสเปกตรัมของชิ้นงานแกรฟีนก่อนและหลังทำการทดสอบการ	108		
	N-GP line (D) LSG			
รูปที่ 4.4	การทดสอบตรวจสอบอัตราส่วนของกวามเข้มในจุดยอดของรามาน สเปกตรัมของแกรฟีน(แดง) ก่อนการทดสอบแก๊สเซนเซอร์, (น้ำเงิน) หลัง การทดสอบแก๊สเซนเซอร์ของชิ้นงาน GP, LSG, N-GP, N-LSG โดย (A) ตรวจสอบกวามหนาของแกรฟีนโดยอาศัย I2D/IG ,(B) ตรวจสอบปริมาณ ตำหนิในชิ้นงานผ่านอัตราส่วนของ ID/IG และ (C) ตรวจสอบขนาดของ ผลึกในโกรงสร้างของแกรฟีน L ในแต่ละชิ้นงาน			
รูปที่ 4.5	XPS ในโหมดการสแกนสำรวจพบจุดยอด C1s ,N1s และ O1s ในชิ้นงาน (A) GP, (B) LSG ,(C) N-GP และ (D) LSG	114		
รูปที่ 4.6	สเปกตรัม XPS ของธาตุการ์บอน (C1s) ของชิ้นงาน (A) GP (B) LSG (C) N-GP และ(D) N-LSG			
รูปที่ 4.7	สเปกตรัม XPS ของธาตุในโตรเจนสำหรับชิ้นงาน (A) GP, (B) LSG, (C) N-GP และ (D) N-LSG เส้นสัญญาณพื้นหลังแสดงด้วยสีเขียว			
รูปที่ 4.8	สเปกตรัม XPS ของธาตุออกซิเจนในชิ้นงาน (A) GP,(B) LSG,(C) N-GP และ (D) N-LSG			
รูปที่ 4.9	การเปลี่ยนแปลงของปริมาณชาตุของ (A) N1s และ (B) O1s ของแต่ละ ชิ้นงาน	119		
รูปที่ 4.10	แบบจำลองอะตอมของในโตรเจนที่เจือใน (สีน้ำเงิน) โครงสร้างอะตอม ของคาร์บอน ซึ่งมีอะตอมของในโตรเจนที่เจือแบบ (เขียว) pyridinic N, (แคง) quaternary N หรือ graphitic N และ (เหลือง) pyrrolic N	121		
รูปที่ 4.11	การวัดสภาพการนำไฟฟ้าในชิ้นงาน GP,N-GP,LSG และ N-LSG ที่ความ ต่างศักย์ -4 ถึง 4 โวลต์	122		
รูปที่ 4.12	ค่าการตอบสนองต่อแก๊สเอทานอลสำหรับการเปิดแก๊ส 60 วินาที ในแต่ ละอุณหภูมิของชิ้นงาน (A) แกรฟีน GP, (B) แกรฟีนที่เจือด้วยในโตรเจน N-GP และ (C) แกรฟีนที่ถูกฉายเลเซอร์และเจือด้วยในโตรเจน N-LSG	124		
รูปที่ 4.13	ค่าการตอบสนองต่อแก๊สเอทานอลสำหรับการเปิดแก๊ส 100 วินาที ใน ชิ้นงาน (A) GP, (B) N-GP และ (C) N-LSG	124		

รูปที่ 4.14	การวิเคราะห์ประสิทธิภาพการตอบสนองต่อแก๊สเอทานอลของชิ้นงาน	127
	(A-C) แกรฟีน และ(D-F) ในชิ้นงานแกรฟีนเจือในโตรเจนอะตอม	
รูปที่ 4.15	ผลของการทดสอบการตอบสนองต่อไอน้ำสำหรับชิ้นงานแกรฟินและ	128
	แกรฟืนที่เจือด้วยในโตรเจนอะตอมที่อุณหภูมิ 25,100 และ 150°C	
รูปที่ 4.16	ชิ้นงานสำหรับการทดสอบสมบัติทางไฟฟ้าในรูปแบบของ FET ของ (A)	130
	GP (B) N-GP และ (C) CNT+PMMA	
รูปที่ 4.17	ผลการตรวจวัคสมบัติทางไฟฟ้าในรูปแบบของ FET สำหรับชิ้นงาน (A)	131
	GP (B) N-GP ແລະ(C) CNT+PMMA	
รูปที่ 4.18	ลักษณะการวางชิ้นงานกับตำแหน่งของลำเลเซอร์สำหรับการทคสอบการ	132
	สนองของโฟโตดีเทคเตอร์	
รูปที่ 4.19	(A) ภาพถ่ายชิ้นงานโฟโตดีเทคเตอร์ที่มีส่วนประกอบของ GP กับ	134
	CNT+PMMA และ(B) ภาพถ่ายจาก SEM แสดงบริเวณขอบรอยต่อ	
	ระหว่างแกรฟีนและท่อนาโนคาร์บอน	
รูปที่ 4.20	(A) รามานสเปกตรัมของแกรฟืนที่ถูกเจือด้วยในโตรเจนโดยใช้เวลา	135
-	ทั้งหมด 15, 30, 45 และ 60 นาที รวมถึง (B) รามานสเปกตรัมของท่อนา	
	โนคาร์บอน	
รูปที่ 4.21	ผลจากการเจือในโตรเจนลงในแผ่นแกรฟืน (A) ความสัมพันธ์ของ	136
	ปริมาณตำหนิกับความหนาของแผ่นแกรฟืนและ (B) ความสัมพันธ์ของ	
	ปริมาณต่ำหนิในแกรฟืนกับขนาดของผลึกในขอบเกรนของแผ่นแกรฟืน	
ລິ	เมื่อทำการเจือตามระยะเวลา 30 ถึง 60 นาที	
รูปที่ 4.22	(A-C) กระแสไฟฟ้าในชิ้นงานช่วงก่อนการทคสอบแสงและ (E-F)	138
	กระแสไฟฟ้าในช่วงระหว่างการทคสอบของชิ้นงาน GP,CNT และ	
A	CNT/GP ตามลำคับ	
รูปที่ 4.23	การวัดกระแสไฟฟ้าในชิ้นงานก่อนการกระตุ้นด้วยแสงอินฟราเรคของ	139
	ชื่นงาน (A) CNT/N-GP (30), (B) CNT/N-GP (45) และ (C) CNT/GP (60)	
	และการทคสอบการตอบสนองต่อแสงอินฟราเรคในชิ้นงาน (D) CNT/N-	
	GP (30), (E) CNT/N-GP (45) และ (F) CNT/GP (60) ตามลำดับ	
รูปที่ 4.24	ผลการวิเคราะห์ค่า (A) responsivity และ (B) detectivity ของชิ้นงาน	140
	GP,CNT และCNT/GP ตามลำดับ	

- รูปที่ 4.25 ค่า (A) responsivity และ (B) detectivity ของชิ้นงาน CNT/GP กับ 141 CNT/N-GP ที่ถูกเจือด้วยในโตรเจน
- รูปที่ 4.26 กลไกในการเกิดกระแสไฟฟ้าจากรอยต่อของแกรฟีนและท่อนาโน 142 คาร์บอน
- รูปที่ 4.27 การเลือกตำแหน่งฉายเลเซอร์ไปบนชิ้นงานที่ประกอบด้วยแกรฟีนและ 143 ท่อนาโนคาร์บอน
- รูปที่ 4.28 แนวโน้มการเปลี่ยนแปลงของค่า responsivity และ detectivity จากการ 144 เปลี่ยนตำแหน่งของการฉายเลเซอร์บนชิ้นงาน (A) CNT/GP และ (B) CNT/N-GP (60 min)

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

รายการอักษรย่อ

SLG	single layer graphene
CVD	chemical vapor deposition
LPCVD	low pressure chemical vapor deposition
AP-CVD	ambient pressure chemical vapor deposition
PVDs	physical vapor depositions
CNT	carbon nanotube
VACNTs	vertical aligned carbon nanotubes
SWCNT	single-wall carbon nanotube
MWCNT	multilayer-wall
DWNT	double-walled carbon nanotube
PMMA	poly(methylmethacrylate)
FET	field-effect transistor
AFM	atomic force microscopy
NG	nitrogen-doped graphene
PG	pristine graphene
XPS	X-ray photoelectron spectroscopy
STM	scanning tunneling microscopy
BG	background signal
RBM	radial breathing mode
TEM	transmission electron microscopy
HRTEM	high resolution transmission electron microscopy
SAED	selected area electron diffraction
SEM	scanning electron microscopy

รายการสัญลักษณ์

	σ	conductivity
	n	carrier density
	μ	mobility
	e	electron charge
	E ₀	permittivity in air
	ε,	permittivity
	μ_{FE}	field effect mobility
19	R _a	air resistance
	R _g	gas resistance
	T _{res}	response times
N S	T _{res}	recovery times
	rGO	reduced graphene oxide
	E _{photon}	photon energy
	E _G	band gap energy
	R	responsivity
0 0	D^*	detectivity
ລູງຊາ	1,SUM	photocurrent
Copyri	I _d O	dark current
AÍÍ	Popt	light source intensity
	E _B	binding energy
	KE	kinetic energy
	L _a	crystallite size