

GRADES K-12

VISIBLE LEARNING FOR MATHEMATICS

What Works Best to Optimize Student Learning

JOHN HATTIE, DOUGLAS FISHER, AND NANCY FREY

Ρ

WITH LINDA M. GOJAK, SARA DELANO MOORE, AND WILLIAM MELLMAN

A

Foreword by Diane J. Briars

C

Contents

List of Figures	xi
List of Videos	xv
About the Teachers Featured in the Videos	xvii
Foreword Diane J. Briars	xxi
About the Authors	xxv
Acknowledgments ,	xxvii
Preface	1
Chapter 1. Make Learning Visible in Mathematics	5 13
Forgetting the Past	14
What Makes for Good Instruction?	17
The Evidence Base Meta-Analyses Effect Sizes	18 18 19
Noticing What Does and Does Not Work	20
Direct and Dialogic Approaches to Teaching and Learning	23
The Balance of Surface, Deep, and Transfer Learning Surface Learning Deep Learning Transfer Learning	27 29 30 32
Surface, Deep, and Transfer Learning Working in Concert	34

	Conclusion	35
	Reflection and Discussion Questions	36
	Chapter 2. Making Learning Visible	
	Starts With Teacher Clarity	37
	Learning Intentions for Mathematics	40
	Student Ownership of Learning Intentions	43
	Connect Learning Intentions to Prior Knowledge	44
	Make Learning Intentions Inviting and Engaging	45
	Language Learning Intentions	
	and Mathematical Practices	48
	Social Learning Intentions	
	and Mathematical Practices	51
	Reference the Learning Intentions	
	Throughout a Lesson	55
	Success Criteria for Mathematics	56
	Success Criteria Are Crucial for Motivation	56
	Getting Buy-In for Success Criteria	61
	Preassessments	66
	Conclusion	67
	Reflection and Discussion Questions	68
	Chapter 3. Mathematical Tasks	
	and Talk That Guide Learning	71
	Making Learning Visible Through	
	Making Learning Visible Through	72
	Appropriate Mathematical Tasks	72
	Exercises Versus Problems	
	Difficulty Versus Complexity	76
	A Taxonomy of Tasks Based on Cognitive Demand	80
	Making Learning Visible Through Mathematical Talk Characteristics of Rich Classroom Discourse	85 85
+	Conclusion	97
	Reflection and Discussion Questions	97

.

Chapter 4. Surface Mathematics Learning Made Visible

	The Nature of Surface Learning	103
	Selecting Mathematical Tasks	
	That Promote Surface Learning	105
	Mathematical Talk That Guides Surface Learning What Are Number Talks, and	106
	When Are They Appropriate? What Is Guided Questioning,	107
	and When Is It Appropriate? What Are Worked Examples,	109
	and When Are They Appropriate? What Is Direct Instruction,	113
	and When Is It Appropriate?	116
	Mathematical Talk and Metacognition	119
	Strategic Use of Vocabulary Instruction	120
	Word Walls Graphic Organizers	123 125
	Strategic Use of Manipulatives	
	for Surface Learning	125
	Strategic Use of Spaced Practice With Feedback	128
	Strategic Use of Mnemonics	130
	Conclusion	131
	Reflection and Discussion Questions	132
Cha	apter 5. Deep Mathematics	
Lea	rning Made Visible	133
	The Nature of Deep Learning	136
	Selecting Mathematical Tasks	
	That Promote Deep Learning	141
	Mathematical Talk That Guides Deep Learning	142

99

	Supports for Accountable Talk Teach Your Students the Norms of Class Discussion	146 148
	Mathematical Thinking in	
	Whole Class and Small Group Discourse	150
	Small Group Collaboration and	
	Discussion Strategies	151
	When Is Collaboration Appropriate?	153
	Grouping Students Strategically	154
	What Does Accountable Talk Look	
	and Sound Like in Small Groups?	157
	Supports for Collaborative Learning	159
	Supports for Individual Accountability	162
	Whole Class Collaboration and Discourse Strategies	165
	When Is Whole Class Discourse Appropriate?	165
	What Does Accountable Talk Look and	
	Sound Like in Whole Class Discourse?	166
	Supports for Whole Class Discourse	167
	Using Multiple Representations	
	to Promote Deep Learning	169
	Strategic Use of Manipulatives for Deep Learning	170
	Conclusion	171
	Reflection and Discussion Questions	171
	apter 6. Making Mathematics	
a	rning Visible Through Transfer Learning	173
	The Nature of Transfer Learning	175
	Types of Transfer: Near and Far	177
	The Paths for Transfer: Low-Road Hugging	
	and High-Road Bridging	179
	Selecting Mathematical Tasks That	
	Promote Transfer Learning	181
	Conditions Necessary for Transfer Learning	183
	Metacognition Promotes Transfer Learning	185

Cł

Self-Questioning Self-Reflection	185 187
Mathematical Talk That Promotes Transfer Learning	188
Helping Students Connect Mathematical Understandings Peer Tutoring in Mathematics Connected Learning	189 190 191
Helping Students Transform Mathematical Understandings Problem-Solving Teaching Reciprocal Teaching	192 192 193
Conclusion	194
Reflection and Discussion Questions	195
Chapter 7. Assessment, Feedback, and Meeting the Needs of All Learners	197
Assessing Learning and Providing Feedback Formative Evaluation Embedded in Instruction Summative Evaluation	200 200 208
Meeting Individual Needs Through Differentiation Classroom Structures for Differentiation Adjusting Instruction to Differentiate Intervention	211 211 212 214
Learning From What Doesn't Work Grade-Level Retention Ability Grouping Matching Learning Styles With Instruction Test Prep Homework	226 226 228 229 230
Visible Mathematics Teaching and Visible Mathematics Learning	231
Conclusion	231
Reflection and Discussion Questions	234

Appendix A. Effect Sizes	235
Appendix B. Standards for Mathematical Practice	240
Appendix C. A Selection of International Mathematical Practice or Process Standards	242
Appendix D. Eight Effective Mathematics Teaching Practices	244
Appendix E. Websites to Help Make Mathematics Learning Visible	246
References	249
Index	259

Visit the companion website at http://resources.corwin.com/VL-mathematics to access videos and downloadable versions of all reproducibles.