

SENSEMAKING IN ELEMENTARY SCIENCE SUPPORTING TEACHER LEARNING

EDITED BY ELIZABETH A. DAVIS, CARLA ZEMBAL-SAUL, AND SYLVIE M. KADEMIAN

Contents

	List of Figures	xii
	List of Tables	xiv
	About the Editors	xv
	About the Contributors	xvi
	Acknowledgments	XX
An	orking Toward a Vision of Sensemaking in Elementary Science: Introduction to Sensemaking in Elementary Science: Supporting	1
	acher Learning zabeth a. davis, carla zembal-saul, and sylvie m. kademian	1
SF	CTION I	
	ages of the Possible	13
1	Positioning Students at the Center of Sensemaking: Productive Grappling with Data CARLA ZEMBAL-SAUL AND KIMBER HERSHBERGER	15
	CARLA ZEMIDAL-SAUL AND KIMBER HERSHBERGER	
2	Portrait of a First-Grade Teacher: Using Science Practices to Leverage Young Children's Sensemaking in Science AMBER S. BISMACK AND LEIGH ANN HAEFNER	31
3	Science, Engineering, Literacy, and Place-Based Education: Powerful Practices for Integration JENNIFER L. CODY AND MANDY BIGGERS	46
4	Literacy Practices for Sensemaking in Science that Promote Epistemic Alignment LEEANNA HOOPER AND CARLA ZEMBAL-SAUL	64

x	Contents
A .	JUNICIUS

5	Response: Making Sense of Sensemaking in Elementary Education—Perspectives from Identity and Implications for Equity LUCY AVRAAMIDOU	78
6	Response: Integrating and Supporting Science Practices in Elementary Classrooms KATHERINE L. MCNEILL	87
SEC	CTION II	
Pre	omising Practices, Tools, and Frameworks	95
7	Approximations of Practice: Scaffolding for Preservice Teachers ELIZABETH A. DAVIS	97
8	Planning and Enacting Investigation-based Science Discussions: Designing Tools to Support Teacher Knowledge for Science Teaching SYLVIE M. KADEMIAN AND ELIZABETH A. DAVIS	113
9	Scaffolding Beginning Teaching Practices: An Analysis of the Roles Played by Tools Provided to Preservice Elementary Science Teachers SARAH J. FICK AND ANNA MARIA ARIAS	129
10	Using Tools to Notice Student Ideas and Support Student Sensemaking in Rehearsal and Classroom Lesson Reflections AMANDA BENEDICT-CHAMBERS	145
11	A Framework for the Teaching Practice of Supporting Students to Construct Evidence-Based Claims Through Data Analysis: A Lens for Considering Teacher Learning Opportunities ANNA MARIA ARIAS	161
12	Response: Scaffolds, Tools, and Transitions Toward Disciplined Improvisation MATTHEW KLOSER AND MARK WINDSCHITL	178

	Conten	
	CTION III	
Suj	pportive Contexts for Professional Learning	187
13	Designing a Practice-Based Elementary Teacher Education Program and Supporting Professional Learning in Science Teaching ELIZABETH A. DAVIS, ANNEMARIE S. PALINCSAR, AND SYLVIE M. KADEMIAN	189
14	Learning to Teach Science in an Elementary Professional Development School Partnership CARLA ZEMBAL-SAUL, BERNARD BADIALI, BRITTANY MUELLER, AND ALICIA M. MCDYRE	204
15	Starting Small: Creating a Supportive Context for Professional Learning that Fosters Emergent Bilingual Children's Sensemaking in Elementary Science MEGAN HOPKINS, CARLA ZEMBAL-SAUL, MAY H. LEE, AND JENNIFER L. CODY	218
16	Response: Supporting Elementary Teacher Learning to Teach Science JAN H. VAN DRIEL	233
17	Response: Two Lenses for Looking at Supportive Contexts for Science Teacher Learning KATHLEEN ROTH	241
Pro	nclusion: Reflections on Science Teacher Education and fessional Development for Reform-Based Elementary Science RY T. FORBES	251

Index

266

Figures

1.1	Data Collection for the Distances Marbles Rolled at	
	Different Ramp Heights	20
3.1	Our Integration Framework	50
3.2	Student Writing Sample of a Claim-Evidence-Reasoning	
	Framework	55
3.3	MAP Reading Scores Across Three Iterations of the Unit	56
3.4	Mark-Ups of a Student's Work with a Newspaper Article	57
3.5	Claims and Evidence Board for Geology Unit	59
4.1	Ms. Meryl's Pattern of Instruction	68
8.1	Conceptual Framework for Knowledge Needed for Science	
	Teaching Knowledge	115
9.1	Lesson Planning Tool	133
9.2	Theory of Action for the Support Provided by Tools	134
9.3	Scientific Modeling Tool	135
9.4	Sensemaking Planning Tool	136
9.5	Explore Observation Tool	137
9.6	Approximation Reflection Tool	138
11.1	Goals for Elementary Students Described in NGSS	163
11.2	The Students Constructing Evidence-Based Claims	
	Framework: Science Practice of Constructing Evidence-	
	Based Claims in Elementary Classroom	164
11.3	The Supporting Evidence-Based Claims Framework to	
	Describe the Teaching Practice of Supporting Students to	
	Construct Evidence-Based Claims Through Data Analysis	166
11.4	The Decomposed Practice of Supporting Students to	
	Analyze the Data from the EEE Framework	172
11.5	The Decomposed Practice of Supporting Students to Make	
	Claims Justified by Evidence and Reasoning from the EEE	
	Framework	172
11.6	Learning Opportunities Across the Teacher Education	
	Prograin	175
13.1	Timeline of the Four-Semester Elementary Teacher	
	Education Program	193

16.1	The Interconnected Model of Teacher Professional Growth	235
18.1	Conceptual Model of Instructional Practice	255

Tables

'n

3.1	Five-Paragraph Essay Organizer Scaffold	53
4.1	Pedagogical Shifts in Implementing Literacy for Sensemaking	
	in Science	74
6.1	Themes for Integrating and Supporting Science Practices	88
7.1	Examples of Structuring and Problematizing Intentions	100
7.2	Continuum of Authenticity and Complexity	101
7.3	Peer-Teaching Rehearsal Experiences in a Science Methods	
	Course	102
7.4	Design Questions for Structuring Novices' Learning	108
7.5	Design Questions for Problematizing Novices' Work	109
8.1	Suite of Tools Designed to Support Teacher Knowledge for	
	Science Teaching	116
9.1	Coding Schemes, Example Codes, and Example Tools	133
10.1	Supporting Student Sensemaking in Rehearsal and	
	Classroom Lesson Reflections	151
13.1	Teacher Education Pedagogies	192
17.1	Three Types of Assistance for Supporting Teachers	245
17.2	Multiple Fronts for Supporting Teacher Learning	246