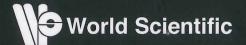
Solume 3 <</p>

Series on Chemistry, Energy and the Environment

Advanced Green Chemistry


Part 1: Greener Organic Reactions and Processes

Edited by István T Horváth • Max Malacria

Series Editors

Karl M. Kadish • Roger Guilard

ชาฟักหอสมุดมหาวิทยา<u>สัยเชียงให้</u>

Series on Chemistry, Energy and the Environment

Advanced Green Chemistry

Part 1: Greener Organic Reactions and Processes

Edited by

István T Horváth

City University of Hong Kong, Hong Kong

Max Malacria

ICSN, France & Sorbonne Université UPMC, France

Series Editors

Karl M. Kadish

University of Houston, USA

Roger Guilard

Université de Bourgogne, France

Contents

Pr	eface	V
1	Origins and Early History of Green Chemistry Paul T. Anastas	1
	I. Prehistory of Green Chemistry	1
	II. Personal Reflections	8
	III. Early Events in Green Chemistry	11
	IV. Going Forward	15
	V. References	16
2	Conversion of Carbohydrates to Chemicals	19
	László T. Mika and Edit Cséfalvay	
	I. Introduction	20
	II. Renewable Feedstocks	23
	A. Composition and Structure of Biomass Resources	23
	B. Pretreatment Processes of Biomass Resources	27
	III. Platform Chemicals	31
	A. Hydrogen and C ₁ Basic Chemicals	31
	1. Hydrogen and Carbon Monoxide	31
	2. Methanol	34
	B. C ₂ and C ₄ Basic Chemicals	34
	1. Ethanol	34

	2. Lactic Acid	35
	3. Glycerol	37
	4. Succinic Acid	39
	C. C ₅ and C ₆ Basic Chemicals	40
	1. Furfural	40
	2. Furfuryl Alcohol	42
	3. 5-Hydroxymethyl-2-Furfural	45
	4. Levulinic Acid	48
	5. Gamma-Valerolactone	51
	6. 2-Methyltetrahydrofuran	53
	7. Isosorbide	54
	D. Chitin-Based Chemicals	55
	IV. Biomass-Based Solvents	58
	A. Lactic Acid and Its Esters	58
	B. Glycerol	60
	C. Gamma-Valerolactone	62
	V. Summary and Future Perspectives	65
	VI. References	66
2	Columnian Debassion of Ionia Liquids and Their Dole in the	
3	Solvation Behavior of Ionic Liquids and Their Role in the	
	Production of Lignocellulosic Biofuels and Sustainable Chemical Feedstocks	77
	Coby J. Clarke, Wei-Chien Tu, Lisa Weigand,	/ /
	Agnieszka Brandt and Jason P. Hallett	
	List of Abbreviations	78
	I. Introduction	81
	II. Lignocellulose	83
	A. Overview	83
	B. Cellulose	83
	C. Hemicellulose	84
	D. Lignin	84
	III. Ionic Liquids	85
	IV. Solvent Requirements	87
	A. Solvation Behavior of ILs and Biorefining Processes	87
	B. IL Solvent Characteristics and Process Economics	87
	C. ILs and Biorefining Separations	89

Contents xi

	v. Solubility of Lighocellulose in ills	89
	A. IL Solubility	89
	1. Cellulose	90
	2. Lignin	94
	3. Lignocellulose	95
	B. Effect of Water	96
	VI. Pretreatment and Depolymerization	97
	VII. Saccharification	99
	VIII. Chemical Modifications and Materials	100
	A. Cellulose and Hemicellulose	100
	1. Cellulosic Materials	101
	2. Platform Chemicals	102
	3. HMF Production from Glucose in ILs	103
	4. Fructose to HMF	105
	5. HMF Production from Cellulose	105
	6. Xylose to Furfural	106
	7. Levulinic Acid	109
	8. Extraction of HMF/Furfural/LA from ILs	111
	B. Lignin	113
	1. Chemical Production	113
	2. Depolymerization	115
	3. Materials and Composites	123
	IX. Conclusions	126
	X. References	127
1	Aliphatic Nitro Compounds as Key Precursors for the	
	Eco-Friendly Synthesis of Fine Chemicals under	
	Solvent-Free Conditions	135
	Roberto Ballini and Alessandro Palmieri	
	List of Abbreviations	137
	I. Introduction	137
	II. Reactivity of Aliphatic Nitro Compounds	
	(Nitroalkanes and Nitroalkenes)	138
	III. Nitroaldol (Henry) Reaction under SolFC	140
	A. Aza-Henry Reaction under SolFC	145

xii Contents

IV.	Conjugate Addition of Nitroalkanes	
	to Electron-Poor Alkenes under SolFC	151
	A. Chemoselective Conjugate Addition of Nitroalkanes	
	to Electron-Poor Alkenes Possessing Two Electron-	
	Withdrawing Groups in α - and β -Positions,	
	under SolFC	154
V.	One-Pot Synthesis of "Fine Chemicals"	
	by the Reaction of Nitroalkanes with Aldehydes	
	or Electrophilic Alkenes, under SolFC	156
	A. One-Pot Henry-Michael Reaction	157
	B. One-Pot Synthesis of α-Nitro Ketones	157
	C. One-Pot Synthesis of Allylrethrone	158
	D. One-Pot Synthesis of Cyclohexanol Derivatives	159
	E. One-Pot Synthesis of Isoxazoline 2-Oxide Derivatives	160
	F. Three-Component Synthesis of Pyrrole Derivatives	162
	G. One-Pot Synthesis of Pyrrolidines under SolFC	163
VI.	Conjugate Addition of Nucleophiles	
	to β-Nitroacrylates under SolFC	163
	A. Solvent-Free, anti-Michael Addition of Methylene	
	Derivatives to β-Nitroacrylates	164
	B. Solvent-Free, Friedel-Crafts Reaction of Pyrroles	
	with β -Nitroacrylates under SolFC	164
	C. Solvent-Free, Conjugate Addition of Amines to	
	β-Nitroacrylates	165
	D. Solvent-Free, One-Pot Process for the Preparation	
	of Highly Substituted Furans from β -Nitroacrylates	167
	E. Solvent Free, One-Pot Process for the Preparation	
	of Highly Substituted Pyrroles from β-Nitroacrylates	167
	F. Solvent-Free, One-Pot Process for the Preparation	
	of Tetrahydroquinolines and their Conversion into	
	Quinoline-2-Carboxylate Derivatives	170
	Conclusions	172
	Acknowledgment	172
IX.	References	172

Contents	XIII

5	Green Reaction Media for Cross-Coupling Reactions:	
	A Recent Overview and Possible Directions	177
	Stefano Santoro, Eleonora Ballerini, Assunta Marrocchi,	
	Oriana Piermatti and Luigi Vaccaro	
	List of Abbreviations	178
	I. Introduction	178
	II. Mizoroki-Heck Reaction	183
	III. Suzuki-Miyaura Reaction	189
	IV. Sonogashira Reaction	195
	V. Other Cross-Coupling Reactions	197
	VI. Conclusions	200
	VII. References	201
6	In Situ Monitoring of the Electrochemical Surface	
	Modification by Thin Organic Layers	205
	Jörg Rappich, Guoguang Sun and Karsten Hinrichs	
	List of Abbreviations	206
	I. Introduction	208
	II. In Situ Methods	212
	A. Cyclic Voltammetry	212
	1. Cathodic Reduction of Diazonium Ions	212
	2. Anodic Oxidation of Heterocycles	213
	B. Electrochemical Quartz Crystal Microbalance	214
	1. Faradaic Efficiency	216
	C. Visible and Near-Infrared Spectroscopic Techniques	219
	1. Photoluminescence Spectroscopy	220
	2. Surface-Enhanced Raman Backscattering	
	Spectroscopy	225
	3. Reflection Anisotropy Spectroscopy	233
	4. In Situ IR Spectroscopic Techniques	236
	5. In Situ Infrared Spectroscopic Ellipsometry	238
	6. IR Microscopy	241
	D. Optical Constants and Anisotropy	242
	III. Vista	245
	IV. Conclusion and Perspectives	248

xiv Contents

V. 2	Acknowledgments	248
VI. I	References	249
7 Cont	inuous Flow Technologies in the Development	
	Green" Organic Reactions and Processes	257
	s Hellgardt and King Kuok (Mimi) Hii	
List of A	bbreviations	258
I.	Introduction	258
II.	Development of Flow Chemistry for Organic Synthesis:	
	Myths and Facts	259
	A. Myth 1: Enhanced Mixing and Faster Reactions	261
	B. Myth 2: More Compact (Small Footprint)	262
	C. Myth 3: More Flexible	263
Ш.	Homogeneous Systems	263
	A. Minimizing the Inventory of Hazardous Reagents	264
	B. Extending the Process Window	265
	C. Short-lived Intermediates	267
IV.	(Heterogeneous) Catalysis in Flow	268
V.	Photochemistry	271
VI.	Electrochemistry	273
VII.	All Together Now: Telescoped Processes	277
VIII.	But Is It Really Green?	278
IX.	Conclusions and Future Challenges	281
X.	References	282
Index		285