

STATISTICAL PROCESS CONTROL

John Oakland and Robert Oakland

7th edition

RESOURCES

สำนักหอสมุด มหาวิทยาลัยเชียงใหม่

b 16706997

0 12578630

i 22687567

Statistical Process Control

7th Edition

John Oakland and Robert Oakland

Contents

<i>Preface</i>	xiii
PART I	
Process understanding	1
1 Quality, processes and control	3
<i>Objectives</i> 3	
1.1 <i>The basic concepts</i> 3	
1.2 <i>Design, conformance and costs</i> 8	
1.3 <i>Quality, processes systems, teams, tools and SPC</i> 13	
1.4 <i>Some basic tools</i> 18	
<i>Chapter highlights</i> 20	
<i>Note</i> 21	
<i>References and further reading</i> 21	
<i>Discussion questions</i> 22	
2 Understanding the process	24
<i>Objectives</i> 24	
2.1 <i>Improving customer satisfaction through process management</i> 24	
2.2 <i>Information about the process</i> 27	
2.3 <i>Process mapping and flowcharting</i> 30	
2.4 <i>Process analysis</i> 35	
2.5 <i>Statistical process control and process understanding</i> 39	
<i>Chapter highlights</i> 42	
<i>Note</i> 42	
<i>References and further reading</i> 42	
<i>Discussion questions</i> 43	

3 Process data collection and presentation	44
<i>Objectives</i>	44
3.1 <i>The systematic approach</i>	44
3.2 <i>Data collection</i>	46
3.3 <i>Bar charts and histograms</i>	48
3.4 <i>Graphs, run charts and other pictures</i>	55
3.5 <i>Conclusions</i>	58
<i>Chapter highlights</i>	59
<i>References and further reading</i>	60
<i>Discussion questions</i>	60
PART II	
Process variability	63
4 Variation: understanding and decision making	65
<i>Objectives</i>	65
4.1 <i>How some managers look at data</i>	65
4.2 <i>Interpretation of data</i>	67
4.3 <i>Causes of variation</i>	70
4.4 <i>Accuracy and precision</i>	74
4.5 <i>Variation and management</i>	78
<i>Chapter highlights</i>	82
<i>References and further reading</i>	83
<i>Discussion questions</i>	83
5 Variables and process variation	84
<i>Objectives</i>	84
5.1 <i>Measures of accuracy or centring</i>	84
5.2 <i>Measures of precision or spread</i>	87
5.3 <i>The normal distribution</i>	89
5.4 <i>Sampling and averages</i>	90
<i>Chapter highlights</i>	96
<i>References and further reading</i>	97
<i>Discussion questions</i>	97
<i>Worked examples using the normal distribution</i>	99
PART III	
Process control	103
6 Process control using variables	105
<i>Objectives</i>	105
6.1 <i>Means, ranges and charts</i>	105

6.2 Are we in control? 117	
6.3 Do we continue to be in control? 119	
6.4 Choice of sample size and frequency, and control limits 122	
6.5 Short-, medium- and long-term variation: a change in the standard practice 125	
6.6 Summary of SPC for variables using \bar{X} and R charts 129	
Chapter highlights 130	
References and further reading 131	
Discussion questions 132	
Worked examples 138	
7 Other types of control charts for variables	149
Objectives 149	
7.1 Life beyond the mean and range chart 149	
7.2 Charts for individuals or run charts 151	
7.3 Median, mid-range and multi-vari charts 156	
7.4 Moving mean, moving range and exponentially weighted moving average (EWMA) charts 161	
7.5 Control charts for standard deviation (σ) 171	
7.6 Techniques for short run SPC 176	
7.7 Summarizing control charts for variables 178	
Chapter highlights 178	
Note 179	
References and further reading 179	
Discussion questions 180	
Worked example 186	
8 Process control by attributes	188
Objectives 188	
8.1 Underlying concepts 188	
8.2 np-charts for number of defectives or non-conforming units 190	
8.3 p-charts for proportion defective or non-conforming units 199	
8.4 c-charts for number of defects/non-conformities 202	
8.5 u-charts for number of defects/non- conformities per unit 206	
8.6 Attribute data in non-manufacturing 207	
Chapter highlights 211	
References and further reading 211	
Discussion questions 212	
Worked examples 214	

9 Cumulative sum (cusum) charts	218
<i>Objectives</i> 218	
9.1 <i>Introduction to cusum charts</i> 218	
9.2 <i>Interpretation of simple cusum charts</i> 221	
9.3 <i>Product screening and pre-selection</i> 227	
9.4 <i>Cusum decision procedures</i> 229	
<i>Chapter highlights</i> 233	
<i>References and further reading</i> 234	
<i>Discussion questions</i> 234	
<i>Worked examples</i> 238	
 PART IV	
Process capability	245
10 Process capability for variables and its measurement	247
<i>Objectives</i> 247	
10.1 <i>Will it meet the requirements?</i> 247	
10.2 <i>Process capability indices</i> 248	
10.3 <i>Interpreting capability indices</i> 254	
10.4 <i>The use of control chart and process capability data</i> 255	
10.5 <i>A service industry example: process capability analysis in a bank</i> 258	
<i>Chapter highlights</i> 259	
<i>References and further reading</i> 260	
<i>Discussion questions</i> 261	
<i>Worked examples</i> 261	
 PART V	
Process improvement	263
11 Process problem solving and improvement	265
<i>Objectives</i> 265	
11.1 <i>Introduction</i> 265	
11.2 <i>Pareto analysis</i> 268	
11.3 <i>Cause and effect analysis</i> 277	
11.4 <i>Scatter diagrams</i> 282	
11.5 <i>Stratification</i> 286	
11.6 <i>Summarizing problem solving and improvement</i> 288	
<i>Chapter highlights</i> 288	

<i>References and further reading</i>	289
<i>Discussion questions</i>	290
<i>Worked examples</i>	293
12 Managing out-of-control processes	301
<i>Objectives</i>	301
<i>12.1 Introduction</i>	301
<i>12.2 Process improvement strategy</i>	302
<i>12.3 Use of control charts for trouble-shooting</i>	304
<i>12.4 Assignable or special causes of variation</i>	314
<i>Chapter highlights</i>	318
<i>References and further reading</i>	319
<i>Discussion questions</i>	319
13 Designing the statistical process control system	320
<i>Objectives</i>	320
<i>13.1 SPC and the quality management system</i>	320
<i>13.2 Teamwork and process control/improvement</i>	323
<i>13.3 Improvements in the process</i>	326
<i>13.4 Taguchi methods</i>	333
<i>13.5 Summarizing improvement</i>	338
<i>Chapter highlights</i>	339
<i>References and further reading</i>	340
<i>Discussion questions</i>	340
14 Six-sigma process quality	341
<i>Objectives</i>	341
<i>14.1 Introduction</i>	341
<i>14.2 The six-sigma improvement model</i>	344
<i>14.3 Six-sigma and the role of Design of Experiments</i>	347
<i>14.4 Building a six-sigma organization and culture</i>	349
<i>14.5 Ensuring the financial success of six-sigma projects</i>	351
<i>14.6 Concluding observations and links with Excellence</i>	358
<i>Chapter highlights</i>	359
<i>References and further reading</i>	361
<i>Discussion questions</i>	361
15 The implementation of statistical process control	363
<i>Objectives</i>	363
<i>15.1 Introduction</i>	363

15.2 <i>Successful users of SPC and the benefits derived</i>	364
15.3 <i>The implementation of SPC</i>	365
15.4 <i>Proposed methodology for implementation</i>	371
<i>Acknowledgements</i>	375
<i>Chapter highlights</i>	376
<i>References and further reading</i>	376
Appendices	377
A The normal distribution and non-normality	379
B Constants used in the design of control charts for mean	388
C Constants used in the design of control charts for range	389
D Constants used in the design of control charts for median and range	390
E Constants used in the design of control charts for standard deviation	391
F Cumulative Poisson probability curves	392
G Confidence limits and tests of significance	393
H OC curves and ARL curves for \bar{X} and R charts	402
I Autocorrelation	408
J Approximations to assist in process control of attributes	410
K Glossary of terms and symbols	415
Index	421