## MITIGATION OF PLANT ABIOTIC STRESS BY MICROORGANISMS

APPLICABILITY AND FUTURE DIRECTIONS

USTAVO SANTOYO
JAY KUMAR
MOHD AAMIR
SIVAKUMAR UTHANDI



สำนักหอสมุด มหาวิทยาลัยเชียงใหม่

# MITIGATION OF PLANT ABIOTIC STRESS BY MICROORGANISMS: APPLICABILITY AND FUTURE DIRECTIONS

สำนักห**อสมุด**มหาวิทยาลัยเชียงใหม่ CHIANG MAI UNIVERSITY LIBRARY

Edited by

### GUSTAVO SANTOYO

Institute of Biological and Chemical Research (IIQB), Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia, Mexico

### AJAY KUMAR

Department of Postharvest Science, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel

### MOHD AAMIR

Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, India

### SIVAKUMAR UTHANDI

Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India





ACADEMIC PRESS

An imprint of Elsevier

## Contents

### Contributors ix

1. Abiotic stress and plant response: Adaptive mechanisms of plants against multiple stresses

SUKUMAR TARIA, MAHESH KUMAR, BADRE ALAM, SUDHIR KUMAR, SUSHIL KUMAR, SUMAN ROY, SUDHIR KUMAR, AND JAGADISH RANE

- 1. Introduction 1
- 2. High-temperature stress and its tolerance mechanisms 2
- 3. Drought stress and mechanism of tolerance 4
- 4. Cold stress and its tolerance 7
- 5. Salinity stress and its tolerance mechanism 8
- 6. Flooding stress and its tolerance mechanism in plants 11
- 7. Future perceptives 13

References 13

2. Plant microbiome: Modulation of plant defense and ecological dynamics under stressed environment

RAZAK HUSSAIN, SHIKHA SHARMA, GEETIKA, INDU KUMARI, AND MUSHTAQ AHMED

- 1. Introduction 19
- 2. Plant microbiome 21
- 3. Plant growth-promoting microbes and abiotic stresses 22
- 4. Plant growth-promoting microbes and biotic stress (pathogenic microbes such as pathogenic bacteria, fungi, viroids, insects, and nematodes) 30
- 5. Plant-microbiome interactions studied by metagenomics and metabolomics 35

- 6. Conclusion and future prospect 35 Acknowledgment 36 References 36
- 3. The role of bacterial ACC deaminase and trehalose in increasing salt and drought tolerance in plants

MA. DEL CARMEN OROZCO-MOSQUEDA, AJAY KUMAR, BERNARD R. GLICK, AND GUSTAVO SANTOYO

- 1. Introduction 41
- 2. Drought and salinity of soils 42
- 3. Effects of drought and salinity on plants 43
- 4. Plant growth-promoting bacteria 45
- 5. ACC deaminase 46
- 6. Trehalose 46
- 7. Synergy between ACC deaminase and trehalose 48
- 8. Conclusions 49

Acknowledgment 49

References 49

4. Microbial management of crop abiotic stress:

Current trends and prospects

### ARTI GAUTAM AND AKHILESH KUMAR PANDEY

- 1. Introduction 53
- 2. Effect of abiotic stresses on plants 55
- 3. Plant growth-promoting microorganism and their interaction with plants 56
- 4. Biochemical and molecular mechanisms of plant-microbe interactions 63
- 5. Interaction of genes and their cross talks 65
- 6. Phytoremediation using plant-microbe interactions 66
- 7. Conclusion and future prospects 67 References 67

## 5. Microbial elicitors: Positive and negative modulators of plant defense

### J. BESLIN JOSHI, JULIE A. MAUPIN-FURLOW, AND SIVAKUMAR UTHANDI

- 1. Introduction 77
- 2. Microbial elicitors 78
- 3. Types of microbial elicitors 78
- 4. Bacterial elicitors 80
- 5. Fungal elicitors 83
- 6. Elicitors from Oomycetes 84
- 7. Viral elicitors 86
- 8. Defense regulation of microbial elicitors 86
- 9. Role of microbial elicitors in plant defense elicitation 89
- 10. Conclusions 91

References 92

6. Microbial behavior, responses toward salinity stress, mechanism of microbe-mediated remediation for sustainable crop production

S.M. TAMILSELVI, CHITDESHWARI THIYAGARAJAN, VETRIMURUGAN ELUMALAI, AND SIVAKUMAR UTHANDI

- 1. Introduction 103
- 2. Soil salinization 104
- 3. Salinity status 106
- 4. Salinization and its impact 106
- 5. Remediation of salinization 110
- 6. Microbial reclamation of salt-affected soils 111
- 7. Microbial mechanism to salinity tolerance 112
- 8. Conclusions and future directions 116

References 116

Further reading 127

7. Microbe-mediated alleviation of heat stress in plant: Current trends and applications

KUMAR ABHISHEK, DEBABRATA DAS, SHILADITYA DEY, AND POOJA SINGH

- 1. Introduction 129
- 2. Significant types of heat-related stresses in plants 131
- 3. Plant response to heat stress 132
- 4. Drought tolerance using microbes 134
- 5. Role of the rhizosphere microenvironment in microbe-mediated functions 136
- 6. Potential benefits and possible mechanisms of microbial interactions 136

- 7. A coping mechanism to heat stress at an ecosystem level 137
- 8. Current research trends for developing heat tolerance in plants 138
- 9. Drought mitigation using plant growth-promoting bacteria and AM fungi 139
- 10. Future perspective for research on developing heat tolerance in plants 140
- 11. Conclusions 141

References 142

8. Harnessing endophytic microbial diversity for stress alleviation: Current perspectives for crop improvement

PALLAVI MISHRA, SHAILESH K. TIWARI, ACHUIT K. SINGH, AND MD. ZUBBAIR MALIK

- 1. Introduction 149
- 2. Agricultural applications of endophytic microbes in crop improvement 151
- 3. How do plants respond to stressful environments? An overview 152
- Endophytic microbial diversity from extremes of environment: Opportunities for plant stress alleviation 154
- Endophytic microbes and their effects in different crop plants under stress 162
- 6. Conclusion and future perspectives 162 References 167

9. Functional genomics tools for studying microbe-mediated stress tolerance in plants

ISHSIRJAN KAUR CHANDOK, HEENA AFREEN, RUKHSAR AFREEN, SHAZIA HAIDER, DURGA PRASAD MOHARANA, TOUSEEF HUSSAIN, MOHD AAMIR, V. SHANMUGAM, AND MD. ZUBBAIR MALIK

- 1. Introduction 175
- 2. Types of abiotic and biotic stresses in plants 178
- 3. Functional genomics tools 179
- 4. RNA interference (RNAi) or RNA silencing 182
- 5. Application and limitations 187
- 6. Microbe mediated stress tolerance and functional genomics 191
- 7. Metagenomics, metatranscriptomics, and metaproteomics 191
- 8. Transcriptomics 192

- 9. Proteomics 193
- Microbial genome annotation and cluster of orthologous groups (COGs) 193
- 11. Metabolomics 195
- 12. CRISPR/Cas9: A new paradigm in functional genomics 196
- 13. Conclusions 196

Acknowledgment 197

Author contributions 197

Competing interests 197

References 197

# 10. Role of exopolysaccharide and biofilms in microorganisms for alleviating salt stress

### SWETA JHA, ADITYA ABHA SINGH, AND NIRMLADEVI THAKUR

- 1. Salinity as abiotic stress 205
- 2. Microbial diversity of the saline environment 207
- 3. Methods of alleviation of salt stress 210
- 4. Biofilm 212
- 5. Biofilm formation 213
- 6. Role of extracellular polymeric substances (EPSs) in biofilm formation 215
- 7. Significance of communication in biofilm 217
- 8. Alleviation of the salt stress 217
- 9. Application studies of EPS-producing microorganisms 222
- 10. Conclusions 225

References 225

# 11. Soil salinization and bioremediation using halophiles and halotolerant microorganisms

SUSANTA KUNDU, SUSAN JACOB PERINJELIL, AND NIRMLADEVI THAKUR

- 1. Introduction 231
- 2. Plant response to salt stress 235
- 3. Salt management strategies 237
- 4. Halophiles and halotolerant microorganisms 242
- 5. Mechanisms of plant growth promotion by halophilic and halotolerant microorganisms 245
- Use of halophiles and halotolerant bacteria to remediate saline soil for sustainable agriculture 249
- 7. Conclusion 251

References 252

12. Role of plant growth-promoting bacteria (PGPB) in abiotic stress management

ZOBIA KHATOON, SUILIANG HUANG, MUHAMMAD ASAD FAROOQ, GUSTAVO SANTOYO, MAZHAR RAFIQUE, SANAM JAVED, AND BUSHRA GUL

- 1. Introduction 257
- 2. Drought stress management by PGPR 258
- 3. Salt stress management by PGPR 260
- 4. Phytopathogens management under stress conditions by PGPR 261
- 5. Heavy metal stress management by PGPR 262
- 6. Heat stress management by PGPR 263
- 7. Cold stress management by PGPR 264
- 8. Conclusions 265

Acknowledgment 268

Author contribution 268

Conflict of interest 268

References 268

13. An insight on developing nanoformulations suitable for delivering plant beneficial microorganisms to crops under abiotic stresses

### HARIPRIYA SHANMUGAM

- 1. Introduction 273
- 2. Developing Nanoformulation for PBMs 274
- 3. Excipients for nanoformulation 274
- 4. Nanoformulations for PBMs delivery 284
- 5. Release mechanisms of loaded microbes 289
- 6. Modes of delivery of PBMs-loaded nanoformulations 290
- 7. Biosafety of nanoformulations 291
- 8. Conclusions 292

References 292

## 14. Salt tolerance in plants: Using OMICS to assess the impact of plant growth-promoting bacteria (PGPB)

### GERRY APLANG JANA, BERNARD R. GLICK, AND MAHMOUD W. YAISH

- 1. Salinity is a global problem in agriculture production 299
- 2. Effect of salinity on plants 300
- 3. Physiological and the molecular responses to salinity in plants 300
- 4. Mechanisms of salt tolerance in plants 301

- 5. Plant growth-promoting bacteria 303
- OMICS enhanced understanding of stress tolerance mechanisms induced by PGPB in plants 308
- 7. Conclusions 313 Acknowledgment 313 References 313

15. Abiotic stress-mediated transcription regulation, chromatin dynamics, and gene expression in plants: Arabidopsis as a role model

PALLAVI MISHRA, POOJA SINGH, ASHUTOSH RAI, KUMAR ABHISHEK, V. SHANMUGAM, MOHD AAMIR, AJAY KUMAR, MD. ZUBBAIR MALIK, AND SUSHIL KUMAR SINGH

- 1. Introduction 321
- 2. Histone variants 326
- 3. Epigenetic modifications 327
- 4. DNA methylation 329
- 5. Histone modification 329
- 6. Histone-modifying enzymes 330
- 7. Histone acetylation/deacetylation 330
- 8. Histone methylation/demethylation 335
- 9. Other histone modifications 336
- 10. RNA-directed DNA methylation 337
- 11. miRNA 337
- 12. siRNA 338
- 13. Chromatin remodeling factors 338
- 14. Conclusions 339

References 339

Further reading 345

### 16. Cytoskeleton in abiotic stress signaling

ELSA-HERMINIA QUEZADA, MANOJ-KUMAR ARTHIKALA, AND KALPANA NANJAREDDY

- 1. Introduction 347
- 2. Types of cytoskeleton in plants 348
- 3. Methods to visualize the cytoskeleton 352
- 4. Cytoskeleton under different types of abiotic stress 354
- 5. Conclusions 363

Acknowledgments 363

References 363

17. Abscisic acid: a critical player in rhizobacteria-mediated root behavior and adaptation to environmental stress

GUSTAVO RAVELO-ORTEGA, JESÚS SALVADOR LÓPEZ-BUCIO, AND JOSÉ LÓPEZ-BUCIO

- 1. Introduction 373
- 2. An overview of the functions of abscisic acid in plants 374
- 3. Abscisic acid in rhizobacteria-mediated plant protection to abiotic stress 376
- 4. Root movements guided by abscisic acid and rhizobacteria 377
- 5. Bacterial-root cross talk: The language of amino lipids and abscisic acid 378
- 6. Root architecture alterations by rhizobacteria involve target of rapamycin signaling 380
- 7. Conclusions 382

References 383

Index 387