Sustainable ENERGY

Towards a Zero-Carbon Economy using Chemistry, Electrochemistry and Catalysis

Julian R.H. Ross

สานกหอสมุด มหาวทยาลยเชยงเหม

SUSTAINABLE ENERGY

Towards a Zero-Carbon Economy using Chemistry, Electrochemistry and Catalysis

JULIAN R.H. ROSS

Emeritus Professor, University of Limerick, Limerick, Ireland; Member of the Royal Irish Academy (MRIA); Fellow of the Royal Society of Chemistry (FRSC)

Contents

Pret	face	Vİİ
Ack	nowledgements	ix
1.	Introduction	1
	Energy production and the greenhouse effect	1
	Greenhouse gases	4
	Consequences of the greenhouse effect	9
	The sources of greenhouse gas emissions	11
2.	Traditional methods of producing, transmitting and using	2 B
	energy	21
	Introduction	21
	Coal	21
	Crude oil	38
	Natural gas	42
	Concluding remarks	47
3.	Less conventional energy sources	49
	Introduction	49
	Nuclear energy	50
	Geothermal energy	55
	Tidal energy	59
	Wave power	62
	Hydroelectric power	63
	Wind power	67
	Solar power	69
	Concluding remarks	75
4.	The production and uses of hydrogen	77
	Introduction	77
	The production of hydrogen from natural gas by steam reforming	77
	The production of hydrogen from natural gas by other methods	89
	Methanol production	96
	Production of fuels using the Fischer Tropsch process	97
	Production of ammonia	99
	Conclusions	102

-	Diamage as a sauves of an array and abarriage	102
5.	Biomass as a source of energy and chemicals	103
	Introduction	103
	Wood as a source of energy and paper	104
	Non-traditional uses of biomass: First and second generation bio-refinery	440
	processes	112
	Concluding remarks **	129
6.	Transport	131
	Introduction	131
	Historical development of mechanically driven transport	131
	Exhaust emission control	143
	Hybrid vehicles	150
	Plug-in hybrid vehicles	152
	Battery electrical vehicles	154
	Fuel cell yehicles	159
	Concluding remarks	160
7.	Batteries, fuel cells and electrolysis	163
	Introduction	163
	The Volta pile, Faraday and the electrochemical series	163
	Half-cell EMF's and the electrochemical series	167
	The kinetics of electrochemical processes	170
	Electrochemical batteries	175
	Flow batteries	185
	Fuel cells	186
	Electrolysis	192
8.	The way forward: Net Zero	197
0.	Introduction	197
	Hydrogen production using renewable energy	197
	Fuel cells to be used for transportation purposes	203
	Solid oxide hydrolysis cells (SOEC's) for hydrogen production and their use	203
	for the synthesis of green ammonia and methanol	205
	to the synthesis of green affilholia and methanol	203
Tai	lpiece .	221
Ind	ex	225