STATISTICAL FOUNDATIONS OF DATA SCIENCE

JIANQING FAN RUNZE LI CUN-HUI ZHANG HUI ZOU

Contents

*	erac	A0	XV		
1	Introduction				
	1.1	Rise of Big Data and Dimensionality			
		1.1.1 Biological sciences			
		1.1.2 Health sciences			
		1.1.3 Computer and information sciences			
		1.1.4 Economics and finance			
		1.1.5 Business and program evaluation			
		1.1.6 Earth sciences and astronomy			
	1.2	2 Impact of Big Data			
	1.3	Impact of Dimensionality	1		
		1.3.1 Computation	1		
		1.3.2 Noise accumulation	1		
		1.3.3 Spurious correlation	1		
		1.3.4 Statistical theory	1		
	1.4	Aim of High-dimensional Statistical Learning			
	1.5	1.5 What Big Data Can Do			
	1.6	Scope of the Book	1		
2	Multiple and Nonparametric Regression				
	2.1	Introduction	2		
	2.2	Multiple Linear Regression	2		
		2.2.1 The Gauss-Markov theorem	2		
		2.2.2 Statistical tests	2		
	2.3	Weighted Least-Squares	2		
	2.4	Box-Cox Transformation	2		
	2.5	Model Building and Basis Expansions	3		
		2.5.1 Polynomial regression	3		
		2.5.2 Spline regression ,	3		
		2.5.3 Multiple covariates	3		
	2.6	Ridge Regression	3		
		2.6.1 Bias-variance tradeoff	3		
		2.6.2 ℓ ₂ penalized least squares	3		
		2.6.3 Bayesian interpretation	. 3		

1	11		CONT	CIVIS
		2.6.4	Ridge regression solution path	39
		2.6.5	Kernel ridge regression	41
	2.7	Regres	ssion in Reproducing Kernel Hilbert Space	42
	2.8	Leave-	one-out and Generalized Cross-validation	47
	2.9	Exerci	ises	49
	Inti		ion to Penalized Least-Squares	55
	3.1	Classi	cal Variable Selection Criteria	55
		3.1.1	Subset selection	55
			Relation with penalized regression	56
		3.1.3		57
	3.2		l-concave Penalized Least Squares	59
			Orthonormal designs	61
		3.2.2	Penalty functions	62
		3.2.3	Thresholding by SCAD and MCP	63
		3.2.4	Risk properties	64
		3.2.5	Characterization of folded-concave PLS	65
	3.3	Lasso	and L_1 Regularization	66
		3.3.1	Nonnegative garrote	66
		3.3.2	Lasso	68
		3.3.3	Adaptive Lasso	71
		3.3.4	Elastic Net	72
		3.3.5	Dantzig selector	74
		3.3.6	SLOPE and sorted penalties	77
		3.3.7	Concentration inequalities and uniform convergence	78
		3.3.8	A brief history of model selection	81
	3.4	Bayesi	an Variable Selection	81
		3.4.1	Bayesian view of the PLS	81
		3.4.2	A Bayesian framework for selection	83
	3.5	Numer	rical Algorithms	84
		3.5.1	Quadratic programs	84
		3.5.2	Least angle regression*	86
		3.5.3	Local quadratic approximations	89
		3.5.4	Local linear algorithm	91
		3.5.5	Penalized linear unbiased selection*	92
		3.5.6	Cyclic coordinate descent algorithms	93
		3.5.7	Iterative shrinkage-thresholding algorithms	94
		3.5.8	Projected proximal gradient method	96
		3.5.9	ADMM	96
			Iterative local adaptive majorization and minimization	97
			Other methods and timeline	98
	3.6		arization Parameters for PLS	99
	0.0	3.6.1	Degrees of freedom	100
		3.6.2	Extension of information criteria	100
		3.6.3	Application to PLS estimators	102

Statistical Foundations of Data Science gives a thorough introduction to commonly used ratifation and obligation and contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It serves as a gruduate-level restoroic and a reason monograph on high-dimensional statistics, spantly and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications.

The book begins by introducing the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of mode building six nonsparentive regression and shemel tricks. Inprovides a comprehensive account of sparsity explorations and model selections for multiple regression, generated linear models, quantific regression, bazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account of high-dimensional covariance estimation, learning stems factors and hidden structures, and as their applications to statistical estimation, inference, prediction and much learning problems. It also introduces throughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.

The authors are international authorities and leaders on the presented topics. All are fellows of the Institute of Mathematical Statistics and the American Statistical Association.

Jianqing Fan is Frederick L. Moore Professor, Princeton University, He is co-editing Journal of Business and Economics Statistics and was the co-editor of The Annals of Statistics, Probability Theory and Related Fields, and Journal of Econometrics and has been recognized by the 2000 COPSS Predictions' Avend Conference (Augustinism Fellow, Guy medal in silver, Noether Senior Scholar Award, and Academics of Academic Sinics.

Runze Li is Elberly family chair professor and AAAS fellow, Pennsylvania State University, and was co-editor of The Annals of Statistics.

Cun-Hui Zhang is distinguished professor, Rutgers University and was co-editor of Statistical Science.

Hui Zou is professor, University of Minnesota and was action editor of Journal of Machine Learning Research.

