

ABSTRACT

Data from this study demonstrated that the antimicrobial activities of herb extracts were affected by the herb types, extraction procedures, sources of the herb, microbiological methods to asses the antimicrobial activity and the target microorganisms to be inhibited. The guava extract that was heated for 60 min, obtained from the source no. 2 and did not receive a sterilisation process displayed a broad antimicrobial activity against *Streptococcus salivarius* and *Streptococcus mitior* and a bactericidal activity against *S. salivarius*. On the other hand, the mint extract that was boiled for 2 h, purchased from the market no. 1 and received a sterilisation process demonstrated a constant antimicrobial action against *S. mitior* in different microbiological methods examined. The ash and acidity of the herb added milk candies were significantly increased with higher addition levels of the herb extracts. The herb added milk candy significantly had a higher L^* value (lighter) than that of the control milk candy. At the same time, all of the herb added milk candies had a better microbiological quality than that of the control milk candy. The amount of sucrose and total sugar contents was significantly reduced in the sugar alcohol added milk candies, including sorbitol, maltitol and mannitol, compared to those of the control candy that only used sucrose. Higher reducing amounts of the sucrose and total sugars were achieved at higher supplementation levels of the sugar alcohol. The presence of different types of polyol in the milk candy affected the sensory properties of the final product, especially for the colour, hardness and sweetness characteristics. Different packaging materials, *i.e.* PET/PP/Al and nylon/PE, and storage temperatures of 30 and 45°C were mainly affected the moisture content and a_w of the candy samples during 12 weeks of storage.

Keywords: mint leaves, basil leaves, guava leaves, ginger, milk candy, sorbitol, maltitol, mannitol, packaging materials, storage temperatures.

บทคัดย่อ

ผลจากการศึกษาในครั้งนี้แสดงให้เห็นว่า ชนิดของสมุนไพร วิธีการสกัด แหล่งของสมุนไพร วิธีการวิเคราะห์กิจกรรมการต้านจุลินทรีย์ และกลุ่มจุลินทรีย์เป้าหมายที่ต้องการขับยึงล้วนส่งผลต่อการต้านจุลินทรีย์ของสารสกัดจากสมุนไพร สารสกัดจากใบฟรัง (ที่ได้จากแหล่งหมายเลข 2) ที่ถูกดั่มให้ร้อนนาน 60 นาที โดยไม่ถึงระดับการสเตอโรไรส์ แสดงสมบัติการต้านจุลินทรีย์ที่กว้างมาก โดยมีผลในการต้านทั้ง *Streptococcus salivarius* และ *Streptococcus mitior* โดยในกรณีของ *S. salivarius* นั้นมีสมบัติในการทำลาย ส่วนในกรณีของสารสกัดจากสารระเหน (จากตลาดหมายเลข 1) ที่ต้มนาน 2 ชั่วโมง โดยถึงระดับการสเตอโรไรส์ แสดงสมบัติการต้าน *S. mitior* โดยใช้วิธีการทดสอบที่ต่างไปจากวิธีที่ใช้ในการทดสอบสารสกัดสมุนไพรชนิดอื่น ปริมาณของถ้า และความเป็นกรด ของผลิตภัณฑ์ลูกกวาดนมเติมสารสกัดสมุนไพร มีค่าเพิ่มขึ้นอย่างมีนัยสำคัญตามปริมาณสารสกัดสมุนไพรที่เติม ผลิตภัณฑ์ลูกกวาดนมเติมสารสกัดสมุนไพรโดยรวมแล้ว มีค่าความสว่างของสี (L^*) มากกว่า และมีสมบัติด้านจุลชีววิทยาที่ดีกว่า ผลิตภัณฑ์ลูกกวาดนมชุดควบคุม ปริมาณของน้ำตาลซูโครส และน้ำตาลทึ้งหมด ในผลิตภัณฑ์ลูกกวาดนมที่มีการใช้สารให้ความหวาน (ซูบิทอล молติทอล และแมนนิตอล) มีค่าลดลงอย่างมีนัยสำคัญ เมื่อเทียบกับลูกกวาดนมชุดควบคุมที่มีการใช้น้ำตาลซูโครส โดยปริมาณของทึ้งซูโครส และน้ำตาลทึ้งหมด จะลดลงเมื่อปริมาณของสารทดแทนความหวานที่ใช้เพิ่มมากขึ้น ชนิดของสารทดแทนความหวานที่ใช้ ส่งผลต่อสมบัติด้านประสาทสัมผัสของผลิตภัณฑ์สุดท้ายที่ได้รับ โดยเฉพาะอย่างยิ่ง ถักษณะด้านสี ความแข็ง และความหวาน ชนิดของบรรจุภัณฑ์ที่แตกต่างกัน (PET/PP/AI และ nylon/PE) และอุณหภูมิในการเก็บรักษา (30 และ 45 $^{\circ}\text{C}$) มีผลต่อทึ้งปริมาณความชื้น และค่ากิจกรรมของน้ำ (a_w) ของตัวอย่างลูกกวาดนมที่เก็บรักษาไว้นาน 12 สัปดาห์

คำสำคัญ: สาระแห่ง การพลู ฟรัง ชิง ลูกกวาดนม ซูบิทอล มอลติทอล แมนนิตอล บรรจุภัณฑ์ อุณหภูมิการเก็บรักษา