

បាយគ្រីមយ៉ាវ

ชื่อโครงการ การสังเคราะห์เอกสารของกรณีมันจากน้ำมันปาล์มโดยไบเปสท์ฟลิตจาก เทอร์โมไฟล์ที่แยกได้จากน้ำพุร้อนในห้องถัง ผู้เขียนรายงานวิจัย รองศาสตราจารย์ ดร.สุรีย์ พุตระกูล

ได้คัดเลือกเทอร์โมไฟล์ที่ผลิตໄລເປສນອກເໜີລືນໃນປິດມາສູງ 15 ໂອໂໂລເທຈາກເຫຼືອ
ໄລພິລິຄແບບທີ່ເວັບໄດ້ຈາກນ້ຳພຸ່ວອນຈັງຫວັດເຂີຍໃໝ່ 30 ໂອໂໂລເທ ແລະ ຕີກຳກາກວົວພິລິດໄລເປສ
ແລະ ໂປຣຕີເອສພນວ່າມີ 5 ໂອໂໂລເທທີ່ພິລິດໄລເປສນອກເໜີລືນໃນປິດມາສູງແລະ ພິລິດໄປ
ໄວ້ຕີກຳກາຕ່ອງໄປ

ไลเปสโซกเซลลจากเทอร์โมพลิคแบบที่เรีย 5 ไอโซเลท คือ TLS63, TLO13, TP434, T20 และ P1 เพาะเลี้ยงในอาหารเหลวในภาวะที่เหมาะสมสำหรับการเจริญและการผลิตไลเปสและนาเอ็นไซม์ที่ได้มำทำให้เข้มข้นและทำให้บริสุทธิ์ขึ้นบางส่วนโดยการตกรตะกอนด้วยเกลือแอมโมเนียมซัลเฟต ตามด้วยไคลอไรด์ซีส นำไลเปสที่บริสุทธิ์ขึ้นบางส่วนไปคุณชั้บบัน celite 545 ที่พิเชชที่เหมาะสมสำหรับแยกตัวตัวของมันได้แยกตัวตัวต่อการรวมของไลเปสตัวที่เตรียมได้ของ TLS63, TLO13, TP434, T20 และ P1 เป็น 15.88, 14.14, 18.86, 14.14 และ 4.71 หน่วยตามลำดับ ปฏิกิริยาอัลกออลไลซ์ของไตรโอลิอินในเชรานอลและไอโซโปรปานอล ที่ปริมาณน้ำน้อย ๆ ของไลเปสที่เตรียมได้ที่ 30°ซ เทียบกับไลเปสจาก *P. fluorescens* จากบริษัท Armano ตัวบัน celite 545 และ Lipozyme IM20 ไลเปสจาก *Mucor Meihiei* คุณชั้บบัน Duolite จากบริษัท Novo การวิเคราะห์ผลผลิตเอทิลและไอโซโปรปิลเอสเทอร์ที่ผลิตขึ้นใน 24 ชม. ในส่วนผสมของปฏิกิริยาโดยใช้ครามาโตกราฟีผิวบางและครามาโทกราฟิกพบว่า Lipozyme ไลเปสจาก *P. fluorescens* และไลเปสจาก TLS63, T20 และ P1 สามารถเร่งปฏิกิริยา ethanolysis ของไตรโอลิอินได้ผลผลิตสูงและเพาะ Lipozyme และ *P. fluorescens* ไลเปสเท่านั้นที่สามารถเร่งปฏิกิริยา isopropanolysis ของ triolein และได้ผลผลิตสูงกว่า ethanolysis จากการศึกษาพบว่าไลเปสจากเทอร์โมไฟล์ 3 ไอโซเลท TLS63, T20 และ P1 มีแนวโน้มสูงในการนำไปใช้สัมภาระที่อสเทอร์จากไขมันและน้ำมันในตัวทำละลายอินทรีย

ได้ทำการเตรียมไอลีเพสต์รีนจากเทอร์โมฟิลิกแบคทีเรีย 14 ไอโซเลทเพื่อศึกษาการเร่งปฏิกิริยา ethanolysis และ isopropanolysis ของน้ำมันปาล์มเทียบกับ Lipozyme IM20 เทอร์โมฟิลิกแบคทีเรียทั้ง 14 ไอโซเลทเลี้ยงในอาหารเหลวในภาวะที่เหมาะสมสมสำหรับแต่ละไอโซเลท สำหรับการเจริญและการผลิตไอลีเพสต์รีนไอลีเพสต์ที่ได้ทำให้เข้มข้นขึ้นโดย ultrafiltration ตามด้วยการตกรตะกอนด้วย 50-60% สารละลายน้ำมันปาล์มที่มีน้ำมันปาล์มอีกตัว และดูดซับบน celite 545 ที่พิเศษที่เหมาะสมสมสำหรับแยกตัวของ enone ออกตัวของ TLS63, TLO13, TP434, T20 และ P1 ไอลีเพสเป็น 15.88, 14.14, 18.86 และ 4.71 หน่วยต่อกิโลกรัม enone ตามลำดับและมีค่า water activity (A_w) อยู่ในช่วง 0.45-6.0 ethanolysis และ isopropanolysis ของน้ำมันปาล์มที่ปริมาณน้ำต่ำโดยใช้ไอลีเพสต์รีนเหล่านี้เทียบกับ Lipozyme IM20 ที่ 30๐๙ พบร่วมกับ Lipozyme และไอลีเพสจาก TLS632, T20 และ P1 สามารถเร่งปฏิกิริยา ethanolysis ของน้ำมันปาล์มได้ผลผลิตเตอร์สูงในภาวะที่ทำการทดลอง เนื่องจาก Lipozyme เท่านั้นสามารถเร่งปฏิกิริยา isopropanolysis ซึ่งมีผลผลิตเตอร์ต่ำกว่า ethanolysis เล็กน้อย ผลการทดลองซึ่งให้เห็นแนวโน้มของการใช้ไอลีเพสจากเทอร์โมฟิลิกแบคทีเรีย 4 ไอโซเลทคือ TB611, TLS63, T20 และ P1 ในการเร่งปฏิกิริยา interesterification ของไขมันและน้ำมันในตัวกลางที่ไม่ใช่น้ำ ไอลีเพส จากเทอร์โมฟิลิกแบคทีเรียไอโซเลท P1 เป็น.enone ที่เหมาะสมที่สุดในบรรดาเทอร์โมไฟล์ที่คัดเลือกสำหรับการสังเคราะห์เตอร์ของกรดไขมันจากน้ำมันปาล์ม

Abstract

Title Synthesis of Fatty Acid Esters from Palm Oil by Lipase from Thermophiles Isolated from Local Hot Spring

Report by Associate Professor Dr.Suree Phutrakul

Fifteen isolates of thermophiles producing extracellular lipases have been selected from 30 isolates of thermophilic bacteria from Chiang Mai hot springs and studied for lipases and proteases production. Five isolates of thermophilic bacteria producing high activity of lipases and low activity of protease have been selected for further study.

Extracellular lipases from 5 isolates of the thermophilic bacterial TLS63, TLO13, TP434, T20 and P1 cultured at their optimal conditions were studied. The lipases were concentrated by ultrafiltration and partial purification by ammonium sulphate precipitation followed by dialysis. The partially purified lipases were adsorbed on celite 545 at their optimum pH. The lipase activity per gram of the immobilized preparations of TLS63, TLO13, TP434, T20 and P1 lipases were 15.88, 14.14, 18.86, 14.14 and 4.71 units respectively.

Alcoholysis of triolein in ethanol and isopropanol at low water content by the lipase preparations were carried out at 30°C in comparison to *P. fluorescens* lipase from Amano immobilized on celite 545 and Lipozyme IM20 lipase from *Mucor Meihel* adsorbed on Duolite from NOVO. The ethyl and isopropyl ester formed at 24 h in the reaction mixture were analysed by thin layer and gas chromatography. Lipozyme, *P. fluorescens* lipases and lipases from TLS63, T20 and P1 could catalyse ethanolysis of triolein with high percent conversions. Only Lipozyme and *P. fluorescens* lipases could catalyse isopropanolysis of triolein with high yield than that of ethanolysis. It could be seen from this study that lipases from three isolates of thermophilic bacteria, TLS63, T20 and P1 had high potential application in ester synthesis from fats and oils in organic media.

Immobilized extracellular lipases from fourteen isolates of thermophilic bacteria were prepared to investigate their catalytic activities on ethanolysis and isopropanolysis of palm oil in comparison to Lipozyme IM20. The thermophiles were cultured at their optimum conditions for growth and lipase production. The crude lipases were concentrated by ultrafiltration followed by precipitation with 50-60% saturated ammonium sulphate and adsorbed on celite 545 at the optimum pHs for their activities. The activities of TLS63, TLO13, TP434, T20 and P1 lipases were 15.88, 14.14, 18.86 and 4.71 units per gram of the immobilized preparations respectively and exhibited water activities around 0.45-0.60.

Ethanolysis and isopropanolysis of palm oil at low water content by these immobilized preparations and Lipozyme IM20 were carried out at 30°C. Lipozyme and lipases from TLS63, T20 and P1 could catalyze ethanolysis of palm oil with relatively high percent conversions at the experimental condition. Only Lipozyme could catalyze isopropanolysis with slightly lower yield than that of ethanolysis. The experimental results indicated high potential application of lipases from four isolates of thermophilic bacteria : TB611, TLS63, T20 and P1 in interesterification of fats ad oils in non-aqueous media. Lipase from Thermophilic bacteria isolate P1 is the most suitable enzyme among thermophiles chosen for the synthesis of fatty acid ester from palm oil.