โครงการวิจัยเรื่อง การศึกษาปฏิกิริยาอัลกอฮอไลซีสของน้ำมันหมูและน้ำมันถั่วเหลืองในตัวทำละลาย อินทรีย์โดยไลเปสตรึง

ผู้เขียนรายงาน รองศาสตราจารย์ ดร.ภาวิณี คณาสวัสดิ์

บทคัดย่อ

โลเปสจาก *C. cylindracea* (CCL) และ *P. fluorescens* (PFL) มีแอคติวิตี 11,580 และ 14,720 ยูนิต/กรัม ตามลำดับ ซึ่งสูงกว่าไลเปสจากตับอ่อน ไลเปสจาก *Rhizopus* Picantase และ Itacase CCL ที่ ตรึงด้วยซีไลท์ 545 หรือซีไลท์ GC ไม่มีแอคติวิตีในเมธาโนไลซีสและเอธาโนไลซีส และเช่นเดียวกับ PFL ที่ ตรึงด้วยซีไลท์ 545 ในขณะที่ PFL ที่ตรึงด้วยซีไลท์ GC (IPFL) (A, 0.414 C, 0.273%) และ Lipozyme IM-20 (A, 0.444 C, 4.847%) เร่งได้ทั้งเมธาโนไลซีสและเอธาโนไลซีส การศึกษาสภาวะที่เหมาะสม สำหรับการผลิตเอธิลเอสเทอร์จากน้ำมันหมูและน้ำมันถั่วเหลืองโดย IPFL และ Lipozyme แสดงว่าผลผลิต สูงสุดนั้นได้จากอุณหภูมิเดียวกันที่ 30°C และ A, ของเอนไซม์ตรึงที่ 0.936 แต่ต่างกันด้วยตัวทำละลายร่วม และน้ำที่เดิมในเอนไซม์โดย IPFL ต้องใช้ i-octane เป็นตัวทำละลายร่วมที่เหมาะสม และเติมน้ำ 20 และ 10% สำหรับเอธาโนไลซีสของน้ำมันหมูและน้ำมันถั่วเหลือง ตามลำดับ ในขณะที่ Lipozyme มี n-hexane เป็นตัวทำละลายร่วมที่เหมาะสม และเติมน้ำ 10% สำหรับปฏิกิริยาของทั้งสองสับสเตรท องค์ประกอบของ เอสเทอร์จากเมธาโนไลซีสและเอธาโนไลซีสถูกวิเคราะห์บ่งซี้โดย GC-MS พบว่า oleate และ linoleate เป็น เอสเทอร์จากเมธาโนไลซีสและเอธาโนไลซีสของ IPFL (A, 0.936) ที่ 30°C โดยใช้ i-octane เป็นตัวทำ ละลายร่วมและเติมน้ำ 20% ได้ผลผลิดเอสเทอร์ทั้งหมด 0.541 กรัมของ myristate 1.4% palmitate 16.7% oleate 55.3% linoleate 9% และ stearate 10.2%

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved Project Title Study of Alcoholysis of Lard and Soybean Oil in Organic Solvents by

Immobilized Lipases

Author Associated professor Dr.Pawinee Kanasawud

ABSTRACT

C. cylindracea lipase (CCL) and P. fluorescens lipase (PFL) had the activities at 11,580 and 14,720 units/g respectively. These activities were higher than lipases from pancreas, lipase from Rhizopus, Picantase and Itacase. Immobilized CCL on celite 545 or celite GC provided no activity on methanolysis and ethanolysis. The same result was observed for immobilized PFL on celite 545. Whereas immobilized PFL on celite GC (IPFL_b) (A_w 0.414, C_w 0.273%) and Lipozyme IM-20 (A_w 0.444, C_w 4.847%) catalyzed both methanolysis and ethanolysis. Study of the optimum condition for the production of ethyl esters from lard and soybean oil by IPFL, and Lipozyme indicated that the maximum yield obtained from the same temperature of 30°C and Aw of the enzymes at 0.936 but different in the cosolvent and the water added to the enzymes. IPFL_b needed i-octane as a suitable cosolvent and the addition of 20 and 10% for ethanolysis of lard and soybean oil respectively. Whereas Lipozyme had n-hexane for a suitable cosolvent and 10% added water for the reactions of the both substrates. The composition of esters from methanolysis and ethanolysis were identified by using GC-MS. Oleate and linoleate appeared as the main esters obtained from lard and soybean oil respectively. The synthesis of ethyl ester by IPFL_b (A_w 0.936) catalyzed ethanolysis of 1 g lard at 30°C using i-octane as cosolvent and 20% added water provided 0.541 g total esters of 1.4% myristate, 16.7% palmitate, 55.3% oleate, 9% linoleate and 10.2% stearate.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved