ชื่อเรื่องงานวิจัย การผสมระหว่างพลาสติกและแป้งเพื่อการสลายตัวได้ของพลาสติก ชื่อผู้เขียน จันทราวรรณ ทวีเปล่งแสงสุข และ นิทัศน์ จิระอรุณ

บทคัดย่อ

ในงานวิจัยนี้ ได้ทำการศึกษาผลการผสมแป้งและน้ำมันพืชกับพอลิเอทิลีน โดยติดตามการ เปลี่ยนแปลงสมบัติเชิงกลของชิ้นงานที่มีส่วนผสมต่างๆ พอลิเอทิลีนที่ใช้มีทั้งชนิดความหนาแน่น ต่ำและความหนาแน่นสูง ร่วมกับแป้งมันและแป้งข้าวโพด น้ำมันพืชที่ใช้มีน้ำมันปาล์มและน้ำมัน ถั่วเหลือง สมบัติเชิงกลที่มีการศึกษาคือ ความต้านทานแรงดึง เปอร์เซ็นต์การยึดตัว โมคูลัส และ ความแข็ง ชิ้นงานที่ทดสอบถูกนำไปตากแดด ฝังดิน และแช่น้ำ เป็นระยะเวลา 2 - 3 เดือน เพื่อชัก นำให้เกิดการเสื่อมสภาพขึ้น

จากการทดลองพบว่า ก่อนเสื่อมสภาพ ค่าความค้านทานแรงคึงเฉลี่ยของพอลิเอทิลีนความ หนาแน่นต่ำเท่ากับ 105 กก/ชม² ในขณะที่ของพอลิเอทิลีนความหนาแน่นสูงเท่ากับ 325 กก/ชม² ค่าเปอร์เซ็นต์การยึดคัวของพอลิเอทิลีนความหนาแน่นต่ำเท่ากับ 320% เทียบกับ 33% ของพอลิเอ ทิลีนความหนาแน่นสูง ค่าโมคูลัสเฉลี่ยและค่าความแข็งรือคเวลล์สเกลอาร์ของพอลิเอทิลีนความ หนาแน่นค่ำเท่ากับ 610 กก/ชม² และ 22.3 ตามลำดับ

เมื่อนำชิ้นงานพอลิเอทิลีนความหนาแน่นต่ำไปตากแคด ฝังคิน หรือแช่น้ำ เป็นระยะเวลา 3 เดือน พบว่าความด้านทานแรงคึงลดลงไปเหลือประมาณ 38 % ของค่าเริ่มแรก

เมื่อมีการผสมแป้งลงในพอลิเอทิลิน พบว่าค่าความค้านทานแรงดึง เปอร์เซ็นต์การยึคตัว โมดูลัส และความแข็ง ลดลงไปมากอย่างเห็นได้ชัด การผสมน้ำมันพืชลงในพอลิเอทิลินก็มีผลใน ทำนองเดียวกัน เมื่อนำชิ้นงานที่มีส่วนผสมต่างๆไปตากแคด ฝังดิน หรือแช่น้ำ พบว่าสมบัติเชิงกล ต่างๆตามที่ระบุมาแล้วลดลงไปอีก

คังนั้น สรุปได้ว่าการผสมแป้งและน้ำมันพืชถงในพอถิเอทิถีนสามารถทำให้เกิดการเสื่อม สภาพของพอถิเอทิถีนได้มากขึ้น นี้มีความสำคัญสำหรับการย่อยสถายพลาสติกพอถิเอทิถีนทาง ชีวภาพหลังจากที่มีการใช้งานและทิ้งพลาสติกแล้ว Research Title Plastic and Starch Blending for Degradable Plastic

Authors Jantrawan Taweeplengsangsuke and Nitat Jira-arun

Abstract

In this research, the effects of mixing starch and vegetable oil with polyethylene were studied by observing the changes in mechanical properties of various compositions. Both low density (LDPE) and high density (HDPE) polyethylenes were used in conjunction with both tapioca and maize starches. The vegetable oils used were palm oil and soybean oil. The mechanical properties that were studied were tensile strength, percentage elongation, modulus, and hardness. Test specimens were exposed to sunlight, buried in soil, and immersed in water for 2 - 3 months to induce degradative effects.

From the experiments carried out, it was found that, before degradation, the average tensile strength of LDPE was 105 kg/cm² while that of HDPE was 325 kg/cm². The average percentage elongation of LDPE was 320 % compared with 33 % for HDPE. The average modulus and R - scale Rockwell hardness of LDPE were 610 kg/cm² and 22.3 respectively.

When the LDPE specimens were exposed to sunlight, buried in soil, or immersed in water for 3 months, it was observed that the tensile strengths decreased by about 38 % of their initial values.

When starch was mixed with the polyethylene, it was found that the tensile strength, percentage elongation, modulus, and hardness of the specimens decreased markedly. The addition of vegetable oil showed similar effects. When the blended specimens of various compositions were exposed to sunlight, buried in soil, or immersed in water, the afore-mentioned mechanical properties decreased even more.

It can be concluded that the mixing of starch and vegetable oil in polyethylene makes the polymer more degradable. This has significance for the environmental biodegradability of polyethylene plastics which have been discarded after use.