Abstract

Project Code: RSA 40-8-0015

Project Title: Cloning, expression and characterization of glutathione S-

transferases in the mosquito Anopheles dirus B

Investigator: Dr. La-aied Prapanthadara

E-mail Address: inhso001@chianqmai.ac.th

Project Period: January 1998 - December 2000

Objectives: The main objective of this project is to characterize the wild type and recombinant glutathione S-transferase isoenzymes involved with insecticide metabolism in the mosquito *Anopheles dirus* B. This will be achieved by:

- 1. Purification and characterization of various isoenzymes of glutathione Stransferase from *Anopheles dirus* B.
- 2. 2. PCR amplification and characterization of cDNA, cloning, expression and kinetically characterization of the isoenzymes

Abstract:

The mosquito Anopheles dirus B was used in this study as the model anopheline for investigation of glutathione S-transferase (GST) isoenzymes in this species. This enzyme family plays important role in detoxication of xenobiotic chemicals and thus involved in insecticide resistance. In this study we aimed to explore GST isoenzymes those are important in metabolism of DDT. Previously we have purified and characterized a major glutathione S-transferase (GST) activity, GST-4a. In this report we have purified an isoenzyme, GST-4c, which has the greatest DDT-dehydrochlorinase activity. Three additional isoenzymes, GST-4b, GST-5 and GST-6, were also partially purified and characterized for comparison. Activities to metabolized DDT as well as the interaction with various insecticides were determined. In a comparison between An. dirus and previous data from An. gambiae the two anopheline species possess a similar pattern of GST isoenzymes although less diversity of isoenzymes was present in An. dirus than in An. gambiae. The individual enzymes also differ significantly at the functional level. The results from this study indicate that characterization of one anopheline species cannot extent to apply for other anopheline.

The biochemically-purified isoenzymes gave a limited low yield and purity therefore the molecular cloning of wild type isoenzymes was approached. The project was aimed to obtain the N-terminal sequence of the wild type isoenzymes to use for PCR primers. Unfortunately the N-terminus appeared to be blocked. Therefore study of allelic variation of GST isoenzymes was performed on the class I that had been identified to the nucleotide sequence level. Four allelic forms of the mosquito *Anopheles dirus* GST, adGST1-1, were cloned, expressed and characterized. There was one or two amino acid change in each allelic form, which was shown to confer different kinetic properties although several of the residue changes were not in the putative substrate-binding pocket. Computer simulation analysis based on an available crystal structure demonstrated that residues affecting nearby responsive regions of tertiary structure could modulate enzyme specificity, possibly through regulating attainable configurations of the protein.

Keywords: Glutathiothione S-transferase, Anopheles dirus,

รหัสโครงการ RSA 40-8-0015

ชื่อโครงการ การโคลน การแสดงออกของยืน และการศึกษาคุณสมบัติของเอนไซม์ กลูตาไธโอน-เอส ทรานเฟอเรส ในยุงกันปล่อง Anopheles dirus

ชื่อนักวิจัย ดร.ละเอียด ประพันธดารา

E-mail address

inhso001@chiangmai.ac.th

ระยะเวลาโครงการ มกราคม 2541-ธันวาคม 2543

วัตถุประสงค์ วัตถุประสงค์หลักของงานวิจัยนี้ คือการศึกษาคุณสมบัติทั่วไปของเอ็น ไซม์กลูตาไธโอน เอส-ทรานสเฟอเรสและคุณสมบัติที่เกี่ยวกับการเร่งการย่อยสลายสารเคมี ฆ่าแมลงในยุงกันปล่องชนิด An.dirus B ซึ่งการศึกษานี้ประกอบด้วย

- 1. การแยกเอ็นไซม์ให้บริสุทธิ์จากลูกน้ำ และการศึกษาคุณสมบัติของเอ็นไซม์ที่ แยกได้
- 2. การเพิ่มขยายจำนวน CDNA ของเอ็นไซม์กูลตาไธโอน เอส-ทรานสเฟอเรส และการโคลน การให้มีการแสดงออกของยืน เพื่อนำเอ็นไซม์ที่ได้มาศึกษาคุณ สมบัติต่างๆ

บทคัดย่อ

การศึกษานี้ต้องการทราบเกี่ยวกับเอ็นไซม์กูลตาไธโอน เอส-ทรานสเฟอเรส ที่เกี่ยว ข้องกับการเร่งปฏิกิริยาการย่อยสลายของสารเคมีฆ่าแมลง และทำให้ยุงดื้อต่อสารเคมีฆ่า แมลง ยุงกันปล่องชนิด An.dirus B ได้ถูกนำมาเป็นแบบในการศึกษา วิธีการคือได้นำ เทคนิคทางด้าน Column Chromatography ซึ่งได้เคยพัฒนาได้ในงานวิจัยก่อนหน้านี้ มา ทำการแยกไอโซเอ็นไซม์ชนิดต่างๆ ของกลูตาไธโอน เอส-ทรานสเฟอเรส ในการนี้สามารถ แยกไอโซเอ็นไซม์ได้ 5 ชนิด จากยุง An.dirus B โดยที่มี ไอโซเอ็นไซม์ GST-4a และ GST-4c แยกได้บริสุทธิ์ แสดงให้เห็นได้จากการวิเคราะห์บน SDS-PAGE ส่วนอีกสามไอ โซเอ็นไซม์ คือ GST-4b GST-5 และ GST-6 นั้นแยกได้ไม่บริสุทธิ์ จาการศึกษาคุณสมบัติ ต่างๆ พบว่า GST-4c มีความสามารถเร่งการย่อยสลาย DDT ได้ดีที่สุด เมื่อเปรียบเทียบ ลักษณะต่างๆ ของกูลตาไธโอน เอส-ทรานสเฟอเรส ระหว่างยุงกันปล่อง 2 ชนิด คือ An.dirus B กับ An.gambiae จากอัฟริกา พบว่าแม้ยุงทั้ง 2 ชนิดจะมีเอ็นไซม์กูลตาไธโอน เอส-ทรานสเฟอเรส ที่คล้ายๆกัน แต่ความหลากหลายของไอโชเอ็นไซม์มีมากใน An.gambiae กว่าใน An.dirus B นอกจากุนี้ลักษณะการเร่งปฏิกิริยาและหน้าที่ของแต่ละไอ โซเอ็นไซม์ในยุง 2 ชนิด นี้ยังแดกต่างกันด้วย ิผลการศึกษานี้ แสดงให้เห็นว่า การศึกษากล ไกในยุงชนิดหนึ่งๆ ไม่สามารถนำมาใช้ได้โดยดรงต่อยุงอีกชนิดหนึ่งได้

เนื่องจากเอ็นไซม์ที่แยกได้จากลูกน้ำโดยตรง มีปริมาณจำกัด อีกทั้งการวิเคราะห์ หาลำดับกรดอะมิโนปลาย N-terminus พบว่ามี N-terminal block จึงได้ทำการเพิ่มจำนวน และศึกษา allelic variation ความสัมพันธ์ของลำดับกรดอะมิโน และโครงสร้างของโปรดีน กับ activity ของกลูตาไธโอน เอส-ทรานสเฟอเรสจาก AdGST1-1 ซึ่งทราบลำดับกรดอะมิโน และนิวคลีโอไทด์อยู่แล้ว สามารถเพิ่มขยาย cDNA และโคลน AdGST1-1 จากยุง An.dirus B ได้ 4 allelic forms ทั้ง 4 forms นี้มีความแตกต่างกันเพียงกรดอะมิโนหนึ่งหรือ สองตัวของโปรตีน โดยอาศัย comperter simulation analysis เปรียบเทียบกับคุณสมบัติ ทางจลน์ศาสตร์ พบว่าการเปลี่ยนแปลงโครงสร้างขึ้นซึ่งเกิดจากการเปลี่ยนแปลงของกรดอะ มิโนหนึ่งหรือสองตัว นี้มีผลต่อคุณสมบัติทางจลน์ศาสตร์ของเอ็นไซม์ด้วย

คำหลัก: กลูตาไซโอน เอส-ทรานสเฟอเรส ยุงกันปล่อง

