บทคัดย่อ

ชื่อโครงการวิจัย การประดิษฐ์โครงยกผู้ป่วยด้วยไฮดรอลิกราคาประหยัด
ผู้ทำการวิจัย นายทศพร พิชัยยา นายกฤษณะ มงคลเกิด
หน่วยานที่สังกัด ภาควิชากายภาพบำบัด หน่วยช่าง คณะเทคนิคการแพทย์
ความเป็นมา มีผู้ป่วยจำนวนมากที่ไม่สามารถช่วยเหลือตนเองได้เนื่องจากอ่อนแรงมาก หรือน้ำหนักตัวมากจนเป็นอุปสรรคต่อการเคลื่อนไหว และเคลื่อนย้ายตนเอง รวมถึงการ ให้การดูแลรักษาและพยาบาล ในประเทศที่พัฒนาแล้ว ตามโรงพยาบาลต่างๆ จะมีเครื่อง ยกผู้ป่วยด้วยไฮดรอลิกสำหรับช่วยยก เคลื่อนย้ายผู้ป่วย ช่วยให้การดูแลมีประสิทธิภาพ และปลอดภัย ในประเทศไทยยังไม่มีการนำเข้าหรือผลิตเพื่อใช้งานในโรงพยาบาล ผู้วิจัย ได้ออกแบบและประดิษฐ์เครื่องยกผู้ป่วยด้วยไฮดรอลิกขึ้นโดยใช้วัสดุภายในประเทศ วัตถุประสงค์ เพื่อประดิษฐ์เครื่องยกผู้ป่วยด้วยไฮดรอลิกเพื่อใช้งานในโรงพยาบาลสำหรับ การยกและเคลื่อนย้ายผู้ป่วย เพื่อให้การยกและเคลื่อนย้ายผู้ป่วยมีความปลอดภัย ลดความ เลี้ยงต่อการบาดเจ็บ

วิธีการศึกษา ศึกษารูปแบบเครื่องยกผู้ป่วยแบบต่างๆ ที่มีจำหน่ายในต่างประเทศ เพื่อหาข้อ ดี ข้อค้อย และออกแบบโดยให้มีความเรียบง่าย ประหยัด สะควกในการใช้งานตามหอผู้ ป่วย จัดหาวัสดุและประคิษฐ์เครื่องยกตามที่ออกแบบไว้ แล้วนำไปทดสอบการใช้งาน ณ คณะเทคนิคการแพทย์ และ หอผู้ป่วยฟื้นฟูสภาพ โรงพยาบาลมหาราชนครเชียงใหม่ ผลการศึกษา เครื่องยกที่ประดิษฐ์มีน้ำหนักเบา มีล้อเลื่อน สามารถใช้ยกผู้ป่วยเข้าออก ระหว่างเก้าอี้ล้อเป็น เตียงนอนประจำหอผู้ป่วย และพื้นได้ จากการทดสอบสามารถยก และ เคลื่อนย้ายอาสาสมัครที่มีน้ำหนัก 100 กิโลกรัม โดยใช้ผู้ช่วยเพียงคนเดียวได้ มีระยะยกสูง สุดจากพื้นเท่ากับ 90 ซม. ค่าวัสคุในการประดิษฐ์ใช้งบประมาณ 10,000 บาทต่อเครื่อง ขณะที่เครื่องยกที่ผลิตในต่างประเทศราคาไม่รวมภาษีเท่ากับ 50,000 บาท หรือสูงกว่า จุด ด้อยที่พบคือความฝืดของล้อระหว่างการเคลื่อนย้าย

วิจารณ์ การประคิษฐ์ และการทคสอบ สามารถดำเนินการได้ตรงตามวัตถุประสงค์ ใช้ต้น ทุนที่ประหยัด สามารถนำไปใช้ในโรงพยาบาลได้ ควรมีการวิจัยเพื่อแก้ไขจุดด้อยต่อไป สรุป เครื่องยกนี้สามารถนำไปใช้ตามโรงพยาบาลต่างๆ ได้ มีราคาที่ประหยัด ในเชิงการ ผลิตสามารถใช้ต้นทุนที่ต่ำกว่า 10,000 บาท ต่อเครื่องได้

Abstract

Project Development of economical hydraulic patient lift

Researcher Todsaporn Pichaiya Kritsna Mongkolkerd

*Department of Physical Therapy **Division of Engineering Faculty of

Associated Medical Sciences

Background There is number of patients who were unable to perform activities of daily living due to weakness or over weight which moving, transporting including cares are limited. In modern hospitals, especially in developed countries, for safety, hydraulic patient lift is one of the basic hospital's equipment for lifting and transferring patients. Currently, hydraulic patient lifts are not imported or assembled for hospitals in Thailand. The authors designed and assembled the economic patient lift, which aimed to use the materials available from the local. Objective To assembled the hydraulic patient lift to use in hospital according to safety reasons and to minimize the risk of injury during lifting and transferring. Methods The advantages and disadvantages of the commercial hydraulic lifts were studied. The model was then redesign based on the simple, economical, and practical to use in hospital. The lifts were assembled from the materials available from the local shops in Chiang Mai. The completed hydraulic lifts were tested in Maharaj Nakorn Chiang Mai's Rehabilitation ward and at Faculty of Associated Medical Sciences. Results The assembled hydraulic lifts were light and able to lift and move patient between wheelchair, bed and floor. Test results showed that the lift was able to elevate and transport volunteer who had weight 100 kg. The maximum lift distance from floor was 90 cm. Cost of assembly per unit was 10,000 bath, whereas the price per unit (tax excluded) of imported lift was at least 50,000 bath. Major disadvantage of the assembled lift was friction in the wheels during transporting heavy patients. Discussion The assembly of the economic was successfully done with the economic cost and practical to be used in the hospital. Further research is recommended to minimize the disadvantages. Conclusion The assembled economical hydraulic lift is practical to be used in the hospital. In commercial, the cost of assembly which less than 10,000 per unit are possible.