

บทคัดย่อ

ผลสัมพันธ์สายน้ำผึ้งที่เคลือบผิวด้วยสารเคลือบผิวทางการค้า 3 ชนิด ได้แก่ ZIVDAR, FOMESA และ CITRASHINE โดยวิธีทางการค้าที่โรงแรกซึ่งสัมบูรณ์บริษัทส่วนสัมทรายทองจำกัด และผลสัมที่ไม่ได้เคลือบผิว แล้วเก็บรักษาไว้ที่อุณหภูมิห้อง (24 ± 3 องศาเซลเซียส) ความชื้นสัมพัทธ์ 59 ± 6 เปอร์เซ็นต์ เป็นเวลา 10 วัน หรือเก็บรักษาไว้ที่อุณหภูมิ 5 องศาเซลเซียส ความชื้นสัมพัทธ์ 85 ± 3 เปอร์เซ็นต์ เป็นเวลา 41 วัน โดยวัดการเปลี่ยนแปลงทางกายภาพและเคมี ผลการทดลอง พบว่า ผลสัมที่เคลือบผิวด้วยสารเคลือบผิว ZIVDAR ยอมให้มีการแตกเปลี่ยนแก่สอกซิเจนและสารรับอนไดออกไซด์ได้ที่สุด และผลสัมที่เคลือบผิวด้วยสารเคลือบผิว ZIVDAR มีปริมาณเอทานอลในน้ำคั้นน้อยกว่าและเกิดกลิ่นและรสชาติผิดปกติซึ่งก่อให้ผลสัมที่เคลือบผิวน้ำผึ้งมีลักษณะปรากฏดีกว่าผลสัมที่ไม่ได้เคลือบผิว แต่ไม่มีผลต่อค่าสีผิวผล และส่วนประกอบทางเคมีอื่นๆ ของผลสัม

ผลสัมพันธ์สายน้ำผึ้งขนาดเล็ก (เบอร์ 4) และขนาดใหญ่ (เบอร์ 6) ที่เคลือบผิวด้วยสารเคลือบผิว ZIVDAR, FOMESA และผลสัมที่ไม่ได้เคลือบผิว (ชุดควบคุม) เก็บรักษาไว้ที่อุณหภูมิห้อง (24 ± 3 องศาเซลเซียส) ความชื้นสัมพัทธ์ 59 ± 6 เปอร์เซ็นต์ เป็นเวลา 10 วัน พบว่า ผลสัมขนาดเบอร์ 6 สูญเสียน้ำหนักน้อยกว่า เกิดกลิ่นและรสชาติผิดปกติน้อยกว่า มีลักษณะปรากฏภายนอกดีกว่า มีกิจกรรมของเอนไซม์แอลกออลดีไซโตรีนสูงกว่าผลสัมขนาดเบอร์ 4 ขนาดของผลสัมมีผลต่อค่า hue angle ของสีผิว ค่าพีเอช ปริมาณของแข็งที่ละลายน้ำได้ และปริมาณกรดทึ้งหมดที่ ไทเทրตได้ แต่ไม่มีผลต่อปริมาณแก๊สออกซิเจนและสารรับอนไดอิกไซด์ภายในผล ปริมาณเอทานอลในน้ำคั้น กิจกรรมของเอนไซม์ไพรูเวตดีكارบอซิเลส ค่า L* และ chroma ของสีผิว อัตราส่วนปริมาณของแข็งที่ละลายน้ำได้ต่อปริมาณกรดทึ้งหมดที่ ไทเทรตได้ และปริมาณวิตามินซี โดยผลสัมที่เคลือบผิวด้วยสารเคลือบผิว FOMESA สูญเสียน้ำหนักน้อยที่สุด แต่ผลสัมที่เคลือบผิวด้วย ZIVDAR มีปริมาณแก๊สออกซิเจนภายในผลมากกว่าและแก๊สคาร์บอนไดอิกไซด์ภายในผลน้อยกว่า รวมทั้งมีปริมาณเอทานอลในน้ำคั้นน้อยกว่าผลสัมที่เคลือบผิวด้วย FOMESA นอกจากนี้การเคลือบผิวยังมีผลต่อกิจกรรมของเอนไซม์แอลกออลดีไซโตรีนส์ คุณภาพด้านการเกิดกลิ่นและรสชาติที่ผิดปกติ และลักษณะปรากฏของผลสัม แต่ไม่มีผลต่อกิจกรรมของเอนไซม์ไพรูเวตดีคารบอซิเลส การเปลี่ยนแปลงของสีผิว และส่วนประกอบทางเคมีของผลสัม

ผลการศึกษาเกี่ยวกับการพัฒนาสูตรสารเคลือบผิวและได้ทดลองเคลือบผิวผลสัมรวม 5 ครั้ง โดยเก็บรักษาผลสัมไว้ที่อุณหภูมิห้อง ผลการทดลองแสดงให้เห็นว่าสารเคลือบผิว polyethylene 17.5% + shellac 0.5% เมน้ำสำหรับการนำมาเคลือบผิวผลสัมมากที่สุด และสารเคลือบผิวผลสัมที่มีส่วนผสมของ carnauba และ candelilla wax ช่วยลดการสูญเสียน้ำหนักของผล

สีมไดค์ที่สุด แต่มีข้อเสียคือผลสัมภ์มีกลิ่นและรสชาติผิดปกติเร็ว ในขณะที่สารเคลือบผิวที่มีส่วนผสมของ zein, chitosan และ gum arabic ไม่เหมาะสมสำหรับการนำมาใช้เคลือบผิวผลสัมภ์พันธุ์สายนำ้ผึ้ง

การเคลือบผิวผลสัมภ์ด้วยสารเคลือบผิวที่พัฒนาขึ้น 4 สูตร คือ สูตร A (candelilla micro-emulsion 8% + commercial polyethylene 12%), สูตร B (commercial polyethylene 17.5% + shellac in ethanol 0.5%), สูตร C (commercial polyethylene 17.5% + shellac microemulsion 0.5%) และสูตร D (polyethylene microemulsion 17.5% + shellac microemulsion 0.5%) เปรียบเทียบกับผลสัมภ์ที่เคลือบผิวด้วยสารเคลือบผิว ZIVDAR และผลสัมภ์ที่ไม่ได้เคลือบผิว แล้วเก็บรักษาไว้ที่อุณหภูมิห้อง (27 ± 3 องศาเซลเซียส) ความชื้นสัมภพที่ 56 ± 11 เปอร์เซ็นต์ เป็นเวลา 11 วัน พบว่าผลสัมภ์ที่เคลือบผิวด้วยสารเคลือบผิวสูตร A (candelilla 8% + polyethylene 12%) สูญเสียน้ำหนักน้อยที่สุด แต่ผลสัมภ์มีกลิ่นและรสชาติผิดปกติเร็วกว่าและมากกว่าผลสัมภ์ที่เคลือบผิวด้วยสารเคลือบผิวชนิดอื่นๆ ในขณะที่การเคลือบผิวผลสัมภ์ด้วยสารเคลือบผิวสูตร B, C, D และ ZIVDAR สามารถลดการสูญเสียน้ำหนักของผลสัมภ์ได้ประมาณ 45-50 เปอร์เซ็นต์ โดยที่กลิ่นและรสชาติผิดปกติและลักษณะปูรณาภรณ์ไม่มีความแตกต่างกัน นอกจากนี้ผลการทดลองยังแสดงให้เห็นว่าผลสัมภ์ที่เคลือบผิวสูตร B, C, D และ ZIVDAR ยอนให้เกิดการแตกเปลี่ยนแก๊สได้ไกล์เดียวกันและดีกว่าผลสัมภ์ที่เคลือบผิวด้วยสารเคลือบผิวสูตร A และการเคลือบผิวมีผลต่อกรรมของเอนไซม์ไพรูเวตดี-คาร์บอซิเลสและแอลกอฮอล์ดีไซด์โรจีเนส แต่ไม่มีผลต่อการเปลี่ยนแปลงส่วนประกอบทางเคมีของผลสัมภ์

Abstract

Tangerine fruit cv. Sai Nam Phueng were coated with 3 commercial coatings; ZIVDAR, FOMESA and CITRASHINE by commercial method at packing house of Sai Thong Company Limited and non-coated tangerine fruit was used as control. All coated fruit were stored at room temperature ($24\pm3^{\circ}\text{C}$) and $56\pm9\%$ relative humidity for 10 days or stored at 5°C and $85\pm3\%$ relative humidity for 41 days. The physiological and physico-chemical changes were recorded. The results indicated that the peel of tangerine which was coated with ZIVDAR had the optimal exchange of O_2 and CO_2 gases. The coated tangerine fruit with ZIVDAR had a lower level of internal ethanol content. The off-flavor also occurred at the slower rate than the other fruit which were pre-coated with other chemicals. Besides, coating also resulted in the decrease of weight loss and had better appearance than the uncoated fruit. However, coating had no effect on the skin color and other chemical compositions.

Tangerine fruit of small size (No. 4) and large size (No. 6) which were coated with ZIVDAR and FOMESA as well as the uncoated fruit (control) were stored at room temperature ($24\pm3^{\circ}\text{C}$) and relative humidity of $59\pm6\%$ for 10 days. The results showed that the tangerine fruit of size No. 6 had a lower level of weight loss with less off-flavor and a better appearance. In addition, the fruit also possessed a higher alcohol dehydrogenase (ADH) activity than its counterpart with size No. 4. The size of tangerine fruit played crucial role towards hue angle of peel color, pH level, total soluble solids (TSS) and titratable acidity (TA). Despite of this, the fruit size had no effect on the internal contents of oxygen and carbon dioxide, ethanol content in the fruit juice, pyruvate decarboxylase (PDC) activity, L^* and chroma values of peel color, TSS/TA ratio, as well as vitamin C content. The coated tangerine fruit with FOMESA had the lowest weight loss while ZIVDAR coated fruit had higher oxygen content and lower internal carbon dioxide content and ethanol content in fruit juice than FOMESA coated fruit. Moreover, the results indicated that coating had influenced on ADH activity, off-flavor and external appearance quality of tangerine fruit. However, coating did not influence PDC activity, the change in peel color and chemical compositions of the fruit.

The development of numerous coating formulas were carried out for five times by storing the tangerine fruit at room temperature. The results showed that the wax which composed of 17.5% polyethylene and 0.5% shellac was the best coating material. Coatings materials which contained carnauba and candelilla waxes assisted in the lowering of weight loss. But the

disadvantages included the rapid occurrence of off-flavor. The coating agents which composed of zein, chitosan, and gum arabic were not suitable for tangerine.

The four formulations of coating materials for tangerine fruit were developed as following; formulation A (8% candelilla microemulsion + 12% commercial polyethylene), formulation B (17.5% commercial polyethylene + 0.5% shellac in ethanol), formulation C (17.5% commercial polyethylene + 0.5% shellac microemulsion), and formulation D (17.5% polyethylene microemulsion + 0.5% shellac microemulsion). These coating materials were compared to coated fruit with ZIVDAR and uncoated fruit during stored at room temperature ($27\pm3^{\circ}\text{C}$) and $56\pm11\%$ relative humidity for 11 days. The results indicated that tangerine fruit coated with formulation A had the lowest weight loss but showed off-flavor faster and in the greater extent than fruit which was coated with other formulations. The coated tangerine fruit with formulation B, C, D, and ZIVDAR could reduce weight loss by 45-50% and there are no difference in off-flavor and external appearance. Moreover, the fruit peel which was coated with formulation B, C, D and ZIVDAR allowed the similar level of gas exchange but at the better rate than formulation A. Coatings had effect on PDC and ADH activities, but had no effect on chemical compositions of tangerine fruit.