TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
ABSTRACT (in English)	iv
ABSTRACT (in Thai)	vi
LIST OF TABLES	xiii
LIST OF FIGURES	xv
LIST OF SCHEMES	xvii
ABBREVIATIONS AND SYMBOLS	xix
CHAPTER I INTRODUCTION	
1.1 Statement and significance of the problem	1
1.2 The Classification of anti-malarial agents	
1.2.1 Amino quinolines groups	3
1.2.2 Compound's inhibit of tetrahydrofolate groups	5
1.2.3 Artemisinin and its derivatives groups	6
1.2.4 Antibiotic groups	6
1.3 Literature reviews	
A 1.3.1 Piperine (32)	70
1.3.2 Dimethyl itaconate-anthracene adduct ((±)-42)	9
1.3.3 Dihydroethanoanthracenic (DEA) derivatives	10
1.3.4 Dimethyl 2,2-dimethylsuccinate (59)	11

			Page
1.4	Aims	and Objectives	11
СНАРТ	ER II	EXPERIMENTAL	
2.1	Extra	action of piperine (32)	14
2.2	Prepa	aration of 11-methoxyacetyl-11-methoxycarbonyl-9,10-	
	dihyc	dro-9,10-ethanoanthracene ((±)-42)	15
2.3	Synth	nesis of racemic of 4'-(2"'-benzo[c][1,3]dioxolyl)vinyl-3'-	
	meth	oxycarbonyl-5'-piperidinecarbonyl-1'-cyclopentanone-2'-spiro	
	-11-9	,10-dihydro-9,10-ethanoanthracenes ((\pm)-60- i and (\pm)-60- ii)	
	2.3.1	Preparation of compounds (±)-60-i and (±)-60-ii	
		(no added additive)	17
	2.3.2	Preparation of compounds (±)-60-i and (±)-60-ii	
		(added 3.0 equivalents of TMEDA as additive)	21
	2.3.3	Preparation of compounds (\pm) -60- i and (\pm) -60- ii	
		(added 5.0 equivalents of TMEDA as additive)	22
	2.3.4	Preparation of compounds (\pm)-60- i and (\pm)-60- ii	
		(added 10.0 equivalents of TMEDA as additive)	23
	2.3.5	Preparation of compounds (±)-60-i and (±)-60-ii	
		(added 3.0 equivalents of HMPA as additive)	23
	2.3.6	Preparation of compounds (±)-60-i and (±)-60-ii	
		(added 5.0 equivalents of HMPA as additive)	24
2.4	Oxida	ation reaction of 4'-(2"'-benzo[c][1,3]dioxolyl)vinyl-3'-metho	
	xycar	bonyl-5'-piperidinecarbonyl-1'-cyclopentanone-2'-spiro-11-	
	9,10-0	dihydro-9,10-ethanoanthracenes $((\pm)-60-i$ and $(\pm)-60-ii)$	

				Page
	2.4.1	Oxidati	on reaction of compound (±)-60-i	25
	2.4.2	Oxidati	on reaction of compound (±)-60-ii	29
2.5	Synth	esis of o	ptically active of 4'-(2"'-benzo[c][1,3]dioxolyl)vinyl	
	-3'-me	ethoxyca	rbonyl-5'-piperidinecarbonyl-1'-cyclopentanone-2'	
	-spiro	-11-9,10	-dihydro-9,10-ethanoanthracenes ((-)-60-i, (-)-60-ii,	
	(+)-60)-i and (+	-)-60-ii)	
	2.5.1	Resolut	ion of optically pure dimethyl itaconate-anthracene	
		adducts	((+)-(11S)-42 and (-)-(11R)-42)	32
		2.5.1.1	(±)-11-Carbomethoxy-11-carboxylmethyl-9,10-	
			dihydro-9,10-ethanoanthracene ((±)-64)	32
		2.5.1.2	(-)-11-Carbomethoxy-11-[(-)- menthoxyacetyl]	
			-9,10-dihydro-9,10-ethanoanthracenes	
			((-)-(11S)-65-i and (-)-(11R)-65-ii)	34
		2.5.1.3	11-Carbomethoxy-11-methoxyacetyl-9,10-dihydro	
			-9,10-ethanoanthracene ((+)-(11S)-42)	38
		2.5.1.4	11-Carbomethoxy-11-methoxyacetyl-9,10-dihydro	
			-9,10-ethanoanthracene ((-)-(11S)-42)	39
	2.5.2	Synthes	is of enantiomeric of 4'-(2"'-benzo[c][1,3]-dioxolyl)	
		vinyl-3'	-methoxycarbonyl -5'-piperidinecarbonyl-1'-cyclopen	
		tanone-	-2'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes	
		((-)-60-	-i and (-)- 60 -ii)	39

			Page
	2.5.3	Synthesis of enantiomeric of 4'-(2"'-benzo[c][1,3]dioxolyl)	
		vinyl-3'-methoxycarbonyl-5'-piperidinecarbonyl-1'-cyclopen	
		tanone-2'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes	
		((+)-60-i and (+)-60-ii)	40
2.6	Synthe	esis of 4-(2"-benzo[c][1,3]dioxolyl)vinyl-2,2-dimethyl	
	-3-met	thoxycarbonyl-5-piperidinecarbonyl-1-cyclopentanones	
	((±)-6]	1-i and (±)-61-ii)	
	2.6.1	Preparation of dimethyl-2,2-dimethylsuccinate (59)	41
	2.6.2	Synthesis of 4-(2"-benzo[c][1,3]dioxolyl)vinyl-2,2-	
		dimethyl-3-methoxycarbonyl-5-piperidinecarbonyl	
		-1-cyclopentanones ((\pm)-61- i and (\pm)-61- ii)	42
2.7	Oxida	tion reaction of 4-(2"-benzo[c][1,3]dioxolyl)vinyl-2,2-	
	dimeth	nyl-3-methoxycarbonyl-5-piperidinecarbonyl-1-cyclopen	
	tanone	: ((±)-61-i)	47
2.8	Detern	nination of antiplasmodial activity	51
2.9	Detern	nination of cytotoxicity assay	52
СНАРТ	ER III	RESULTS AND DISCUSSION	
3.1	Synthe	esis of racemica of 4'-(2"'-benzo[c][1,3]dioxolyl)vinyl	
	-3'-me	thoxycarbonyl-5'-piperidinecarbonyl-1'-cyclopentanone	
	-2'-spi	ro-11-9,10-dihydro-9,10-ethanoanthracene (\pm)- 60 - i and	
	(±)-60	-ii	53

		Page
3.2	Oxidation reaction of 4'-(2"'-benzo[c][1,3]dioxolyl)vinyl-3'-	
	methoxycarbonyl-5'-piperidinecarbonyl-1'-cyclopentanone	
	-2'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes ((\pm)-60- i	
	and (±)- 60 - <i>ii</i>)	62
3.3	Synthesis of optically active of 4'-(2"'-benzo[c][1,3]dioxolyl)	
	vinyl-3'-methoxycarbonyl-5'-piperidinecarbonyl-1'-cyclopen	
	tanone-2'-spiro-11-9,10-dihydro-9,10-ethanoanthracenes	
	((-)-60-i, (-)-60-ii, (+)-60-i and (+)-60-ii)	72
3.4	Synthesis of 4-(2"-benzo[c][1,3]dioxolyl)vinyl-2,2-dimethyl	
	-3-methoxycarbonyl-5-piperidinecarbonyl-1-cyclopentanone	
	$((\pm)-61-i \text{ and } (\pm)-61-ii)$	76
3.5	Oxidation reaction of 4-(2"-benzo[c][1,3]dioxolyl)vinyl-2,2	
	-dimethyl-3-methoxycarbonyl-5-piperidinecarbonyl-1-cyclo	
	pentanone $((\pm)-61-i)$	81
3.6	Bioactivity and cytotoxicity test	86
CHAPT	ER IV CONCLUSIONS	88
REFERI		91
	oxright by Chiang Mai University	
CURRIC	CULUM VITAE g h t s r e s e r \	/ e ¹¹ 0

LIST OF TABLES

		Page
Table 1	Data of piperine (32)	14
Table 2	Data of dimethyl itaconate-anthracene adduct ((±)-42)	16
Table 3	Data of spiro-cyclopentanone adduct (±)-60-i	18
Table 4	Data of spiro-cyclopentanone adduct (±)-60-ii	20
Table 5	Data of y-lactone-cyclopentanone adduct (±)-62-i	26
Table 6	Data of y-lactone-cyclopentanone adduct (±)-62-ii	28
Table 7	Data of hydroxyl cyclopentanone adduct (±)-63-i	30
Table 8	Data of monoacid (±)-64	33
Table 9	Data of compound (–)-(11 <i>S</i>)-65- <i>i</i>	35
Table 10	Data of compound (-)-(11 <i>R</i>)-65-ii	37
Table 11	Data of dimethyl-2,2-dimethylsuccinate (59)	41
Table 12	Data of compound (±)-61-i	43
Table 13	Data of compound (±)-61-ii	45
Table 14	Data of compound (±)-66-i	47
Table 15	Data of compound (±)-67-i	49
Table 16	¹ H-NMR data of spiro-cyclopentanone adducts (±)-60-i	
	and (±)-60-ii	_55
Table 17	Tandem Michael-Dieckmann condensation reactions	
	with additive	61

		Page
Table 18	¹ H-NMR data of γ -lactone-cyclopentanone adducts of (±)-62- i	
	and (±)-62-ii	63
Table 19	¹ H-NMR data of compound (±)-63-i	69
Table 20	¹ H-NMR data of compounds (\pm)-61- i and (\pm)-61- ii	77
Table 21	¹ H-NMR data of compounds (±)-66- <i>i</i> and (±)-67- <i>ii</i>	81
Table 22	The IC ₅₀ value for against to strains of P. falciparum	
	and cytotoxicity	86

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

		Page
Figure 1	The cycles of malaria disease	2
Figure 2	Quinolinemethanol groups	3
Figure 3	4-Aminoquinoline and aryl amino alcohol groups	4
Figure 4	8-Aminoquinoline groups	4
Figure 5	Diaminopyrimidine groups	5
Figure 6	Biguanide and dihydrotriazine groups	5-7
Figure 7	Sulfonamide and sulfone groups	6
Figure 8	Artemisinin and its derivatives groups	6
Figure 9	Antibiotic groups	6
Figure 10	Chemical structures of piperine (32), piperanine (33),	
	piperettine (34), dipiperamide (35), isopiperolein B (36)	
	and piperidine (37)	8
Figure 11	Structure of dipiperamides A (38), B (39) and C (40)	8
Figure 12	Structure of chabamide	9
Figure 13	Structure of dihydroethanoanthracenic (DEA) derivatives	11
Figure 14	¹ H-NMR spectral data of spiro-cyclopentanone adduct (±)-60-i	56
Figure 15	¹ H-NMR spectral data of spiro-cyclopentanone adduct (±)-60-ii	56
Figure 16	X-ray crystallographic picture of adduct (±)-60-i by ORTEP	
	technique	57
Figure 17	X-ray crystallographic picture of adduct (±)-60-ii by PLATON	
	technique	57

		Page
Figure 18	¹ H-NMR spectral data of compound (±)-62-i	65
Figure 19	¹ H-NMR spectral data of compound (±)-62-ii	65
Figure 20	¹ H-NMR spectral data of compound (±)-63-i	70
Figure 21	¹ H-NMR spectral data of compound (±)- 61 - <i>i</i>	78
Figure 22	¹ H-NMR spectral data of compound (±)-61-ii	78
Figure 23	¹ H-NMR spectral data of compound (±)-66-i	82
Figure 24	¹ H-NMR spectral data of compound (±)-67-ii	83

xvii

LIST OF SCHEMES

		Page
Scheme 1	Synthesis of dimethyl itaconate anthracene adduct (42)	9
Scheme 2	Application of dimethyl itaconate anthracene adduct (42)	10
Scheme 3	Synthesis of dimethyl 2,2-dimethylsuccinate (59)	11
Scheme 4	Synthesize the cyclopentanone-anthracene adducts (60)	
	and cyclopentanone adduct (61) from piperine (32)	12
Scheme 5	Tandem Michael addition-Dieckmann condensation reactions	54
Scheme 6	Mechanism of tandem Michael addition-Dieckmann	
	condensation reactions	58
Scheme 7	Transition state of adducts (\pm) -60- iii – (\pm) -60- ν from	
	tandem Michael addition-Dieckmann condensation reactions	59
Scheme 8	Transition state of adducts (\pm) -60- νi – (\pm) -60- νiii from	
	tandem Michael addition-Dieckmann condensation reactions	60
Scheme 9	Lithium enolate anion complexed with TMEDA or HMPA	61
Scheme 10	Oxidation reaction of spiro-cyclopentanone adduct (±)-60-i	62
Scheme 11	The oxidation reaction of compound (±)-60-i with m-CPBA	66
Scheme 12	Rearrangement of epoxide cyclopentanone-anthracene	
	adduct (±)-60-iii	67
Scheme 13		
	adduct (±)-62-iv	68
Scheme 14	Oxidation reaction of compound (±)-62-ii with m-CPBA	70
Scheme 15	Rearrangement of epoxide cyclopentanone-anthracene adduct 88	71

		Page
Scheme 16	Resolution of optically pure dimethyl itaconate-anthracene	
	adducts (+)-(11S)-42 and (-)-(11R)-42	73
Scheme 17	Tandem Michael addition-Dieckmann condensation reactions	
	of piperine (32) and the optically active compounds	
	(+)-(11S)-42 and (-)-(11R)-42	74
Scheme 18	Tandem Michael addition-Dieckmann condensation reactions	76
Scheme 19	Mechanism of tandem Michael addition-Dieckmann condensation	
	reactions	79
Scheme 20	The oxidation reaction of compound (±)-61-i with m-CPBA	84
Scheme 21	Rearrangement of epoxide cyclopentanone adduct 99	84
Scheme 22	Rearrangement of epoxide cyclopentanone adduct 98	85
Scheme 23	Tandem Michael addition-Dieckmann condensation reactions	
	of piperine (32) and dimethyl itaconate anthracene adducts	
	((±)-42, (+)-42 and ()-42)	88
Scheme 24	Products from oxidation reaction of cyclopentanone adducts	
	(\pm) -60- <i>i</i> and (\pm) -60- <i>ii</i>	89
	(\pm) -60- <i>i</i> and (\pm) -60- <i>ii</i>	

ABBREVIATIONS AND SYMBOLS

Ar aryl

b.p. boiling point

n-BuLi *n*-butyllithium

c concentration

calc. calculated

d doublet (spectral)

dd double of doublets (spectral)

ddd double of double doublets (spectral)

d.e. diastereomeric excess

dq double of quartets (spectral)

DMAP 4-(N,N'-dimethylamino)pyridine

DMF N,N-dimethylformamide

e.e. enantiomeric excess

EtOAc ethyl acetate

J coupling constant

hr (s) hour (s)

HMPA hexamethylphosphoramide or

hexamethylphosphoric triamide

Hz hertz

IR infrared radiation

lit. literature

LDA lithium diisopropylamide

m multiplet (spectral)

m-CPBA m-chloroperbenzoic acid

min minute (s)

ml millilitre

m.p. melting point

Me methyl

MHz megahertz

NMR nuclear magnetic resonance

MOESY nuclear overhauser enhancement spectroscopy

MW molecular weight

ppm parts per million (in NMR)

PLC preparative layer chromatography

RT = rt room temperature (°C)

s singlet (spectral)

t triplet (spectral)

r temperature (°C)

THF tetrahydrofuran

TLC thin layer chromatography

TMEDA N,N,N',N'-tetramethylethylene diamine

 $[\alpha]$ specific optically rotation

v wave number (cm⁻¹)

 δ chemical shift (ppm)

 λ wave number (cm⁻¹)

 μ l microlitre

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved