	Page
Acknowledgements	iii
Abstract (English)	iv
Abstract (Thai)	vii
List of Tables	xvii
List of Figures	xviii
Abbreviations and Symbols	xxii
Chapter 1 Introduction	1
Chapter 2 Literature review	
2.1 Fungi	5
2.2 The studies of fungi in Thailand	6
2.3 Fungal metabolites	7
2.4 Sourcing natural products from endophytic microbes	9
2.4.1 Endophytes and natural products	9
2.4.2 Endophytic fungal product as antibiotics	9
2.4.3 Antiviral compounds from endophytes	10
2.4.4 Endophytic fungal products as anticancer agents	e 11
2.4.5 Endophytic fungal products as immunosuppressive compounds	12
2.5 Polyketides from fungi	12
2.6 Polyketide synthases	13

	Page
2.6.1 Diels-alder cyclizations	16
2.6.2 Polyketide synthase: macrolides	18
2.6.3 Polyketide synthase: aromatic	18
2.6.4 Post-PKS modification	19
2.7 Screening for bioactive metabolites	20
2.7.1 Primary screening assays	21
2.7.1.1 Brine shrimp lethality test	21
2.7.1.2 Bioassays for antibiotic activity	21
2.7.1.3 Bioautography	22
2.7.2 Specialized screening assays	22
2.8 Modern strategies for drug discovery	23
2.8.1 Dereplication	24
2.8.2 Biological screening	25
2.8.3 Chemical screening	26
2.8.4 Genetic screening	27
2.9 Isolation and separation	26
2.9.1 Extraction	26
2.9.2 Dry biological material	26
2.9.3 Fresh material	27
2.9.4 Liquid culture broth	27
2.9.5 Extraction of water-soluble metabolites	27

	Page
2.9.6 Removal of fatty material	28
2.10 Chromatographic methods for the analysis of metabolites	28
2.10.1 Planar chromatography	29
2.10.2 Preparative thin layer chromatography	29
2.10.3 Colum chromatography	30
2.10.4 Preparative column chromatography	30
2.10.5 Flash chromatography	31
2.10.6 High performance liquid chromatography	32
2.11 Methods for the structural elucidation	32
Chapter 3 Classical and chemical strategies for screening	
secondary metabolites in selected fungi	
3.1 Introduction	35
3.2 Materials and methods	
3.2.1 Selected strains for biological and chemical screening approach	37
3.2.2 Pre-chemical screening for secondary metabolites in selected fungus	37
3.2.3 Pre-biological screening for antimicrobial-producing strains	38
3.2.5 Fermentation and purification of endophytic fungus,	
Leiosphaerella amomi BCC4065	41
3.3 Results	
3.3.1 Taxonomy of <i>Leiosphaerella amomi</i> BCC4065	42

	Page
3.3.2 Pre-chemical screening for secondary metabolites in selected fungus	43
3.3.3 Pre-biological screening for antimicrobial-producing strains	43
3.3.4 Fermentation and purification of endophytic fungus,	
Leiosphaerella amomi BCC4065	45
3.4 Discussion	
3.4.1 Pre-chemical screening for secondary metabolites in	
Leiosphaerella amomi BCC4065	49
3.4.2 Pre-biological screening for antimicrobial-producing strains	51
3.4.3 Fermentation and purification of endophytic fungus,	
Leiosphaerella amomi BCC4065	52
Chapter 4 Genetic strategies for screening of polyketide synthase	
genes from selected fungi	
4.1 Introduction	55
4.2 Materials and methods	
4.2.1 Fungal strains and genomic DNA isolation	58
4.2.2 Amplification of KS domains	58
4.2.3 Cloning and sequencing of PCR fragments	59
4.2.4 Sequence and phylogenetic analysis	60
4.3 Results	
4.3.1 Diversity of polyketide synthase from novel ascomycetes fungi	60

	Page
4.3.1.1 Amplification and analysis of KS domain sequences	61
4.3.1.2 Clustering of fungal <i>pks</i> genes	61
4.3.2 Diversity of fungi related to pks gene and potential PK production	63
4.3.2.1 PCR detection of <i>pks</i> gene fragments using KA-series primer	65
4.3.2.2 KS-AT phylogeny and prediction of PK structure	65
4.4 Discussion	
4.4.1 Diversity of polyketide synthase from novel ascomycetes fungi	72
4.4.2 Diversity of fungi related to pks gene and potential PK production	74
Chapter 5 Isolation and characterization of bioactive compounds	
from selected fungi	
5.1 Introduction5.2 Material and methods	77
5.2.1 Fungal strains	79
5.2.2 Fermentation, extraction and isolation	79
5.2.2.1 Eupenicillium shearii	80
5.2.2.2 Gaeumannomyces amomi	82
5.2.2.3 Emarcea castanopsidicola	83
5.2.2.4 Myrothecium pandanicola	84
5.2.3 Experimental procedures	86
5.2.4 MSTFA derivatization of sugars	86

	Page
5.2.5 X-ray study	87
5.2.6 Biological assays	87
5.3 Results	
5.3.1 Structure elucidation of compounds	88
5.3.1.1 Eupenicillium shearii	88
5.3.1.2 Gaeumannomyces amomi	92
5.3.1.2.1 X-ray of 2-butyl-5-pentylbenzene-	
1,3-diol (stemphol, 6)	97
5.3.1.2.2 MSTFA derivatization of sugars	103
5.3.1.3 Emarcea castanopsidicola	104
5.3.1.4 Myrothecium pandanicola	109
5.3.4 Bioassays	111
5.4 Discussion	
5.4.1 Eupenicillium shearii	114
5.4.2 Gaeumannomyces amomi	115
5.4.3 Emarcea castanopsidicola	117
5.4.4 Myrothecium pandanicola	118
5.4.5 Natural product from endophytic fungi	e 118
Chanter 6 Ceneral discussion and conclusion	122

	Page
References 98818186	131
Appendices	164
Appendix A	165
Appendix B	166
Appendix C	169
Appendix D	175
Appendix E	176
Curriculum Vitae	193

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table	Page
2.1 Characteristic features of type I, II and III PKS (Wiessman, 2009)	14
3.1 Qualitative antimicrobial activity of active fungal isolates	
cultivated in five fermentation media	44
4.1 PCR reaction and thermal cycling condition	59
4.2 Characterization of ten polyketide synthases	
identified from ascomycetes fungi	62
4.3 Characterization of twelve polyketide synthases	
identified from endophytic fungi	66
4.4 Characterization of elveven polyketide synthases	
identified from saprobic fungi	67
5.1 Fungal strains used in this investigation.	79
5.2 Hydrogen-bond geometry (Å,°)	97
5.3 Retention times of silylated sugars for comparison	104
5.5 Eleven compounds were investigated from	
endophyte and saprobic in this study.	119

xviii

LIST OF FIGURES

Figure	Page
2.1 Structures of selected fungal polyketide metabolites	
(Weissman and Leadlay, 2005)	14
2.2 Schematic of the three types of PKS (Weissman, 2009)	15
2.3 Schematic of the iterative PKS involved in the biosynthesis of lovastatin	
(Hertweck, 2010).	16
2.4 Lovastatin biosynthesis pathway and functional domain of reducing	PKSs
(Dewick, 2009)	17
2.5 The general processes to produce aromatics and macrolides	
which are catalysed by PKSs (Dewick, 2009)	19
2.6 Post-polyketide-synthase elaboration of a polyketide library	
(Weissman and Leadlay, 2005)	20
2.7 Novelty evolution. Striped arrows indicate iterative tasks that may	
or may not be performed on all hits (Donadio et al., 2009).	24
3.1 Scheme shows the pre-screening of secondary metabolites investigation.	39
3.2 Cultivation and isolation of secondary metabolites from	
Leiosphaerella amomi	41
3.3 Molecular ion peak of lovastatin at m/z 405.1 for [M+H] ⁺	
corresponding with the molecular formula C ₂₄ H ₃₆ O ₅	43
3.4 Culture and metabolite analysis of <i>Leiosphaerella amomi</i> BCC4065	45
3.5 Isolation of metabolites from <i>Leiosphaerella amomi</i> mycelium	46
3.6 ¹ H NMR spectrum of compound 1 in CDCl ₃ at 500 MHz	47

LIST OF FIGURES (CONTINUED)

Figure	Page
3.7 Chromatograms and molecular ion peak of compound 2 and 3	47
3.8 ¹ H NMR spectrum of compound 2 in CDCl ₃ at 500 MHz	48
3.9 ¹ H NMR spectrum of compound 3 in CDCl ₃ at 500 MHz	49
4.1 Neighbor-joining phylogenetic tree of deduced amino acid sequences	
of 10 fungal KS domain fragments and other known non-reducing and	
reducing fungal PKSs in the NCBI database. Bootstrap analysis using	
neighbor-joining was conduct with 1,000 replicates, and bootstrap	
values greater than 50% are given at node.	64
4.2 Neighbor joining phylogenetic tree of deduced amino acid	
sequences of 23 fungal KS domain fragments and other known	
reducing and non-reducing fungal PKSs in the NCBI database.	
Bootstrap analysis using NJ was conduct with 1,000 replicates,	
and values of $\geq 50\%$ are given at node.	68
4.3 Summary of reactions catalyzed by ORAS as	
2'-oxoalkylresorcyclic acid synthase (Funa et al., 2007)	73
5.1 Work-up of the strain <i>Eupenicillium shaerii</i>	81
5.2 Work-up of the strain <i>Gaeumannomyces amomi</i>	83
5.3 Work-up of the strain <i>Emarcea castanopsidicola</i>	84
5.4 Work-up of the strain Myrothecium pandanicola	85
5.5 Schematic diagram showed isolation procedure of <i>Eupenicillium shearii</i>	89
5.6 ¹ H NMR spectrum of <i>p</i> -hydroxyphenopyrrozin (1) in CD ₃ OD at 300 MHz	90

LIST OF FIGURES (CONTINUED)

Figure	Page
5.7 ¹ H NMR spectrum of phenopyrrozin (2) in CD ₃ OD at 300 MHz	91
5.8 ¹ H NMR spectrum of kojic acid (3) in CD ₃ OD at 300 MHz	92
5.9 Schematic diagram showed isolation procedure of <i>Gaeumannomyces amomi</i>	93
5.10 ¹ H NMR spectrum of ergosterol (4) in CDCl ₃ at 300 MHz	94
5.11 ¹ H NMR spectrum of indol-3-carboxylic acid (5) in CD ₃ OD at 300 MHz	95
5.12 ¹ H NMR spectrum of stemphol (6) in CD ₂ Cl ₂ at 300 MHz	97
5.13 Molecular view of the compound 6 with atom labeling scheme.	
Displacement ellipsoids are drawn at the 50% probability level.	
H atoms are represented as small spheres of arbitrary radii.	98
5.14 The crystal packing of the title molecule, viewed down the b axis,	
showing the molecule connected by O—H···O hydrogen bonds	
in dotted lines. H atoms not involved in hydrogen bonding have	
been omitted for clarity.	98
5.15 The crystal packing of the title molecule, viewed down the <i>a</i> axis,	
showing the segregration between alkyl chains and resorcinol	
moieties; H atoms are omitted for clarity.	98
5.16 ¹ H NMR spectrum of stemphol 1- <i>O</i> -β-D-galactopyranoside (7)	
in CD ₃ OD at 300 MHz	99
5.17 ¹³ C NMR spectrum of compound 7 in CD ₃ OD at 125 MHz	100
5.18 HMBC spectrum of compound 7 in CD ₃ OD at 300 MHz	102
5.19 Key HMBC and ¹ H- ¹ H COSY correlations observed for compound 7	102

LIST OF FIGURES (CONTINUED)

Figure	Page
5.20 Total Ion Current (TIC) chromatograms of silylated sugars	103
5.21 Schematic diagram shows isolation procedure	
of Emarcea castanopsidicola	105
5.22 ¹ H NMR spectrum of linoleic acid (8) in CDCl ₃ at 300 MHz	106
5.23 ¹ H NMR spectrum of sitosterol (9) in CDCl ₃ at 300 MHz	107
5.24 ¹ H NMR spectrum of 4-hydroxybenzoic acid (10) in CDCl ₃ at 300 MHz	108
5.25 Schematic diagram showed isolation procedure	
of Myrothecium pandanicola	109
5.26 ¹ H NMR spectrum of 2,3-dihydro-5-methoxy-2-methylchromen-	
4-one (11) in CDCl ₃ at 300 MHz	110
5.27 Formulation of the naturally occurring methyl ether 11.	118

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS AND SYMBOLS

α	alpha
β	beta 2 2 6
δ	chemical shift
°C	degree Celsius
calcd	calculated
	coupling constant
mA	milliampare
mg	microgram
μl	microliter
μΜ	micromolar
mg	milligram
ml	milliliter
mm	millimeter
M^{+}	molecular radical ion
MIC	minimum inhibitory concentration
min	minute 8 6 8 1 0 8 0 1 M.U.
Myright [©] b	molar (mol/liter)
m/z	mass to charge ratio
nm	nanometer
OD	optical density
TMS	tetramethylsilane
UV	ultraviolet