CHAPTER I

INTRODUCTION

The ERICACEAE is a large plant family consisting of more than 125 genera and 4000 spicies. The genus *Agapetes* belonging to this family comprises 80 species distributed in east Himalayas through southwest China and Indochina to southeast Asia. In Thailand, 10 species have been recorded including *A. hosseana* (Saphao lom), A. lobbii (Sa mek), A. parishii (Khaao yen), A. saxicola (Ngao nam thip), A. megacarpa (Prathat doi), A. bracteata (Sa mek khao), A. macrostemon (Prathat Kra reang), A. mannii (Prathat kheaw), A. variegata (Prathat yai) and A.thailandica (Prathat suthep). Some species have been used as traditional medicine for example, A. saxicola, A.thailandica, A. lobbii, A. hosseana and A. megacarpa. In china, A.neriifolia has been used in Chinese medicinal paste for treating fracture.

Agapetes megacarpa W.W. Smith (in Thailand commonly known as Prathat doi) in the ERICACEAE family. It has a restricted distribution with a few records from Yunan. In Thailand, it is widely distributed in the North especially, Doi Tung (Chiang Rai), Doi Phukha (Nan), Doi Angkang (Chiang Mai) and Doi Inthanon (Chiang Mai). Prathat doi is a tree, shrub or epiphytic shrub, up to 7 m in height (Figure 1). The leaves have long apex acuminate, base rounded, margin entire, mid rib evident on both sides, petiole very short. Its flowers are reddish and the umbella-like racemens with 3-9 flowers and peduncle of 2-10 mm long, receptacle turbinate, 5-6 mm in diameter, pedicels 2-2.5 cm long, fruit a burry, ca. 10 x 8 mm, greenish.⁶

(Photo: R. Pooma, Doi Tung, Chiang Rai)

Figure 1. Morphological illustration of Agapetes megacarpa

A. megacarpa has not been reported on the chemical constituents and biological activities. However, phytochemical investigations on Agapetes genus have been reported as below.

In 1990, Huong and co-workers reported the isolation of three sterols, β -sitosterol (1), daucosterol (2), β -sitosterol glucutonide (3) and two pentacyclic triterpenes, friedelin (4) and fernenal (5) from *Agapetes obuata*. The structures of which are shown in Figure 2.

Figure 2. The structure of isolated compounds from Agapetes obuata

In 1991, Deng and Chen reported the chemical constituents of *Agapetes hosseana* Diels.⁸ They found seven triterpenes and sterols, identified as fernenol (6), 3β -friedelanol (7), urs-12-en- 2β -ol-28-oic acid (8), 6β -hydroxyursolic acid (9), β -sitosterol(1), daucosterol (2) and β -sitosterol glucutonide (3) as shown in Figure 3.

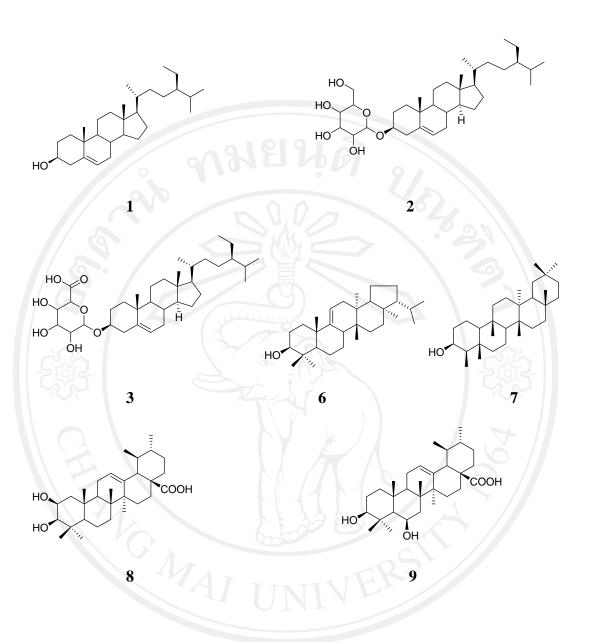


Figure 3. The structure of isolated compounds from Agapetes hosseana Diels

Literature search has been carried out and focused on *A. megacarpa* constituents and their biological activities obtained from ERICACEAE family as well as other families. The information are shown in Table 1.

Our preliminary study on *A. megacarpa* revealed the presence of pentacyclic triterpenoids, sterols, xanthone and cinnamic ester derivatives.

Since, 2,7-dihydroxyxanthone constituted in *A. megacarpa*. Although, there has been no report on biological activity of this compound, but biological activity of the related xanthones have been investigated and the literature searchs are summaried in Table 2.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Compounds	Sources	Family	Part of plant	Biological activities	References
<u>Sterols</u>	Vaccinium ashei	ERICACEAE	Fruit	Inactive against lung (PC-12) and colon (HCT116) cancer cell lines	Ono et al., 20049
	Euphorbia segetalis	EUPHORBIACEAE	Whole plant	Inactive against Herpes simplex virus (HSV-2) and African swine fever virus (ASFV)	Madureira et al., 200
	Plumbago zeylanica	PLUMBAGINACEAE	Aerial parts	Cytotoxicity against Bowes cancer cell lines (IC ₅₀ = 36.5 μ M)	Nguyen <i>et al.</i> , 2004 ¹¹
	Cyrtandra cupulata	GESNERIACEAE	Leaves	Induces apoptosis in human breast (MCF-7) cancer cell lines	Chai et al., 2008 ¹²
$oldsymbol{eta}$ -sitosterol (1)	Rhus sylvestris	ANACARDIACEAE	Stems and leaves	- Cytotoxicities against Hela and MCF-7 cancer cell lines (IC $_{50}$ = 46.22 and 42.10 μ M) - Anti-inflammatory activity for the IL-6 inflammatory cytokine secretion	Ding et al., 2009 ¹³
	Pereskia bleo	CACTACEAE	Leaves N	Cytotoxicities against CasKi, MCF-7 and A549 carcinoma cell lines (IC ₅₀ = 72, 62 and 78 μ g/ml, respectively)	Malek et al., 2009 ¹⁴

Compounds	Sources	Family	Part of plant	Biological activities	References
β -sitosterol (1)				Induces apoptosis in SGC-7901 human stomach cancer cell	Zhao et al., 2009 ¹⁵
	Alchornea latifolia	EUPHORBIACEAE	Leaves	7 8 /	Setzer <i>et al.</i> , 2000 ¹⁶
<u>Triterpenes</u>	Mallotus apelta	EUPHORBIACEAE	Leaves	/ 8 //	Kiem et al., 2004 ¹⁷
	Celastrus punctatus	CELASTRACEAE	Stems	Inactive against KB, COLO-205, Hepa-3B and Hela cancer cell lines (ED ₅₀ = $> 20 \mu g /ml$)	Kuo et al., 2001 ¹⁸
Friedelin (4)	Allanblackia monticola	GUTTIFERAE	Leaves	Inactive against <i>Plasmodium</i> falciparum (no antimalarial activity)	Azebaze et al., 2007 ¹⁹

Copyright[©] by Chiang Mai University All rights reserved

Table 1. (Continued)

Compounds	Sources	Family	Part of plant	Biological activities	References
×	Alchornea latifolia	EUPHORBIACEAE	Leaves	3	Setzer et al., 2000 ¹⁶
HO	Mallotus laapelta	EUPHORBIACEAE	Leaves	- \ S	Kiem et al., 2004 ¹⁷
3α-friedelanol (10)	Drynaria quercifolia	DRYNARIACEAE	Rhizomes	900	Ramesh et al., 2001 ²⁰
, ,	Vitis trifolia	VITACEAE	Whole plant	Antitumor activity in a potato discs bioassay	Kundu et al., 2000 ²¹
	Dichapetalum barteri	DICHAPETALACEAE	Stem bark	/ S //	Ivan et al., 2007 ²²
	Pterocarpus santalinus	FABACEAE	Stem	SIT	Krishnaveni and Rao, 2000 ²³
3-ketooleanane (11)	อินสิท	อ้าเหตุถึง	າເເດລັດ	แห็ดภใหม่	

Copyright[©] by Chiang Mai University All rights reserved

Compounds	Sources	Family	Part of plant	Biological activities	References
	Celastrus punctatus	CELASTRACEAE	Stems	Inactive against KB, COLO- 205, Hepa-3B and Hela cancer cell lines (ED ₅₀ = > 20 μ g/ml)	Kuo et al., 2001 ¹⁸
	Euphorbia segetalis	EUPHORBIACEAE	Whole plant	Antiviral activities against Herpes simplex virus (HSV-1 and HSV-2 with plaque reduction = 5.2 and 5.3)	Madureira et al., 2003 ¹⁰
Lupenone (12)	Acacia mellifera	LEGUMINOSAE	Stem bark	Inactive against NSCLC-N6 cancer cell line	Mutai et al., 2004 ²⁴
	Diospyros mespilifomis	EBENACEAE	Stem bark	α-glucosidase enzyme inhibitory activity	Mohamed <i>et al.</i> , 2009 ²⁵
$=$ \cdot ₁ \cdot	Vaccinium ashei	ERICACEAE	Fruit	Inactive against lung (PC-12) and colon (HCT116) cancer cell lines	Ono et al., 2004 ⁹
Lupeol (13)	Calendula officinalis	CALENDULEAE	Flowers	Anti-inflammatory activity against TPA induced inflammation in mice ($ID_{50} = 0.6$ mg per ear)	Akihisa <i>et al.</i> , 1996 ²⁶
	Copyrig	nt ^e by C	hiang M	ai University	

Table 1. (Continued)

Compounds	Sources	Family	Part of plant	Biological activities	References
	Celastrus punctatus	CELASTRACEAE	Stems	Inactive against KB, COLO- 205, Hepa-3B and Hela cancer cell lines (ED ₅₀ = >20 μ g/ml)	Kuo et al., 2001 ¹⁸
				human Topoisomerase II inhibitory activity (IC ₅₀ = $10.4 \mu M$)	Wada et al., 2001 ²⁷
	Acacia mellifera	LEGUMINOSAE	Stem bark	Cytotoxicity against NSCLC- N6 cancer cell line (IC ₅₀ = $>30 \mu g/ml$)	Mutai <i>et al.</i> , 2004 ²⁴
Lupeol (13)	Bursera graveolens	BURSERACEAE	Stems	Cytotoxicity against human HT1080 fibrosarcoma cells (ED ₅₀ = 16.7 μ g/ml)	Nakanishi <i>et al.</i> , 2005 ²⁸
	Crataeva nuruala	MAII	Stem bark	Protective effect against cyclophosphamide-induced cardiac mithocondria toxicity	Sudharson et al., 2006 ²⁹

ลิขสิทธิมหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Table 1. (Continued)

Compounds	Sources	Family	Part of plant	Biological activities	References
=/	Celastrus punctatus	CELASTRACEAE	Stems	Inactive against KB, COLO- 205, Hepa-3B and Hela cells	Kuo et al., 2001 ¹⁸
Lupeol (13)	Diospyros mespilifomis	EBENACEAE	Stem bark	α-glucosidase enzyme inhibitory activity	Mohamed <i>et al.</i> , 2009 ²⁵
	Himatanthus articulata	APOCYNACEAE	Bark	131	Sabarreto et al., 1998 ³⁰
<u></u>	Himatanthus sucuuba	APOCYNACEAE	Bark	97	Wood et al., 2001 ³¹
	Plumbago zeylanica	PLUMBAGINACEAE	Aerial parts	A -//	Nguyen et al., 2004 ¹¹
Lupeol acetate (14)	Alstonia scholaris	APOCYNACEAE	Stem bark	Inhibited spermatogenesis and ultimately induced infertility in male rats	Gupta et al., 2005 ³²
	Eupatorium macrocephalum	ASTERACEAE	Aerial part	- 0	Vega et al., 2008 ³³
	Acetylation of lupeol	ธิมหาวิท	ายาลัย	α-glucosidase enzyme inhibitory activity	Mohamed <i>et al.</i> , 2009 ²⁵

Copyright by Chiang Mai University

Table 1. (Continued)

Compounds	Sources	Family	Part of plant	Biological activities	References
	Craibiodendron henryi	ERICACEAE	Roots	3	Huang et al., 2007 ³⁴
	Alchornea latifolia	EUPHORBIACEAE	Leaves	1151	Setzer <i>et al.</i> , 2000 ¹⁶
	Mallotus apelta	EUPHORBIACEAE	Leaves	-	Kiem et al., 2004 ¹⁷
Taraxerone (15)	Sebastiania adenophora	EUPHORBIACEAE	Leaves	Phytotoxic effects on barn yard grass	Rubalcava et al., 2007
	Rhus alata	ANACARDIACEAE	Leaves	/ 8 //	Parveena et al., 2008 ³⁶
	Craibiodendron henryi	ERICACEAE	Roots	/ A ~-//	Huang et al., 2007 ³⁴
Taraxerol (16)	Cosmos bipinnatus	HELIANTHEAE	Flowers	Anti-inflammatory activity against TPA induced inflammation in mice ($ID_{50} = 0.4$ mg per ear)	Akihisa <i>et al.</i> , 1996 ²⁶
	Rhizophora mangle	RHIZOPHORACEAE	Leaves and stems	Insecticidal activity against adult <i>Cylas formicaruis</i> (LC ₅₀ = 1.82 mg/g)	William., 1999 ³⁷
	Alchornea latifolia	EUPHORBIACEAE	Leaves	ai University	Setzer et al., 2000 ¹⁶

Table 1. (Continued)

Compounds	Sources	Family	Part of plant	Biological activities	References
	Sebastiania adenophora	EUPHORBIACEAE	Leaves	Phytotoxic effects on barn yard grass	Rubalcava et al., 2007 ³
Taraxerol (16)	Alnus hirsuta	BETULACEAE	Stem bark	Inactive against HIF-1 in AGS cells	Jin et al., 2007 ³⁸
	Vaccinium ashei	ERICACEAE	Fruit	Inactive against lung (PC-12) and colon (HCT116) cancer cell lines	Ono et al., 2004 ⁹
α-amyrin (17)	Cosmos bipinnatus	HELIANTHEAE	Flowers	Anti-inflammatory activity against TPA induced inflammation in mice ($ID_{50} = 0.2 \text{ mg per ear}$)	Akihisa <i>et al.</i> , 1996 ²⁶
HO TO	Vaccinium ashei	ERICACEAE	Fruit	Cytotoxicity against lung (PC-12) and colon (HCT116) cancer cell lines (IC ₅₀ = 1.0 and $3.1\mu g/ml$)	Ono et al., 2004 ⁹
<i>β</i> -amyrin (18)	Copyrig		niang M	ai University	

Table 1. (Continued)

Compounds	Sources	Family	Part of plant	Biological activities	References
	Craibiodendron henryi	ERICACEAE	Roots	6	Huang et al., 2007 ³⁴
HO	Helianthus annuus	HELIANTHEAE	Flowers	Anti-inflammatory activity against TPA induced inflammation in mice ($ID_{50} = 0.4 \text{ mg per ear}$)	Akihisa <i>et al.</i> , 1996 ²⁶
<i>β</i> -amyrin (18)	Drynaria quercifolia	DRYNARIACEAE	Rhizomes	500	Ramesh <i>et al.</i> , 2001 ²¹
	Rhus alata	ANACARDIACEAE	Leaves	1 26	Parveena <i>et al.</i> , 2008 ³⁶
	Befaria racemosa	ERICACEAE	Leaves (benzylation of fraction)	SIII	Ueda et al., 1961 ³⁹
Lupeol benzoate (19)		ď o	U	a ?	

Copyright[©] by Chiang Mai University All rights reserved

Table 1. (Continued)

Compounds	Sources	Family	Part of plant	Biological activities	References
=	Himatanthus articulata	APOCYNACEAE	Bark	3	Sabarreto et al., 1998 ³⁰
Lupeol cinnamate (20)	Rhizophora mangle	RHIZOPHORACEAE	Leaves and stems	Insecticidal activity against adult <i>Cylas formicaruis</i> $(LC_{50} = 1.37 \text{ mg/g})$	William., 1999 ³⁷
	Himatanthus sucuuba	APOCYNACEAE	Bark	12	Wood et al., 2001 ³¹
<u>Xanthone</u>	Mammea acuminata	GUTTIFERAE	Stems and bark	/ 3 //	Tosa et al., 1997 ⁴⁰
HO OH 2,7dihydroxyxanthone(21)	Araucaria angustifolia	ARAUCARIACEAE	Cells cultures	S ¹	Fonseca et al., 2000 ⁴¹
Cinnamate derivatives OCH2(CH2)16CH3 OCH3	Esterification of ferulic acid and octadecanol	ธิ์มหาวิท	ายาลัย	Antioxidant activity (DPPH Radical Scavenging, $IC_{50} = 24.97 \mu M$)	Anselmi et al., 2004 ⁴²
cis-octadecyl ferulate (22)	Copyrig	ht [©] by Cl	niang M	ai University	
	AII	right	s re	served	

Table 2. The biological activities of xanthones

Xanthones	Sources	Biological activities	References	
ОН	Cratoxylum sumatranum (GUTTIFERAE)	Cytotoxicity against KB cancer cell line (ED ₅₀ = $4.3 \mu g/ml$)	Seo et al., 2002	
Cratoxyarborenone A (23)	景へ		3 \\	
OH O OH	Cratoxylum sumatranum (GUTTIFERAE)	Cytotoxicity against KB cancer cell line (ED ₅₀ = $1.0 \mu g/ml$)	Seo et al., 2002	
Cratoxyarborenone B (24)))	-	
OCH ₃ OH OH OH	Cratoxylum sumatranum (GUTTIFERAE)	Cytotoxicity against KB cancer cell line (ED ₅₀ = $1.5 \mu g/ml$)	Seo et al., 2002	
Cratoxyarborenone C (25)	111-	TERS		
OH HO O OH	Cratoxylum sumatranum (GUTTIFERAE)	Cytotoxicity against KB cancer cell line (ED ₅₀ = $1.7 \mu g/ml$)	Seo et al., 2002	
Cratoxyarborenone D (26)				
ovright	by Chians	g Mai Un	versit	
H ₃ CO O OH	Cratoxylum sumatranum (GUTTIFERAE)	Cytotoxicity against KB cancer cell line (ED ₅₀ = $4.3 \mu g/ml$)	Seo et al., 2002	

Table 2. (Continued)

Xanthones	Sources	Biological activities	References	
HO OH Cratoxyarborenone F (28)	Cratoxylum sumatranum (GUTTIFERAE)	Cytotoxicity against KB cancer cell line (ED ₅₀ = $4.1 \mu g/ml$)	Seo et al., 2002 ⁴³	
Vismione (29)	Cratoxylum sumatranum (GUTTIFERAE)	Cytotoxicity against KB cancer cell line (ED ₅₀ = $1.3 \mu g/ml$)	Seo et al., 2002 ⁴³	
Celebixanthone (30)	Cratoxylum cochinchinense (GUTTIFERAE)	Cytotoxicity against NCI-H187 lung cancer cell line (IC ₅₀ = 5.2 μ g/ml) -Antimalarial activity against <i>Plasmodium</i> falciparum (IC ₅₀ = 4.9 μ g/ml)	Laphookhieo et al., 2006 ⁴⁴	
Cochinchinone A (31)	Cratoxylum cochinchinense (GUTTIFERAE)	Cytotoxicity against NCI-H187 lung cancer cell line (IC ₅₀ = 0.65 µg/ml)	Laphookhieo et al., 2006 ⁴⁴	
H_0 CO OH OH OH α -Mangostin (32)	Cratoxylum cochinchinense (GUTTIFERAE)	Cytotoxicity against NCI-H187 lung cancer cell line (IC ₅₀ = 2.4 μ g/ml)	Laphookhieo et al., 2006 ⁴⁴	

Table 2. (Continued)

Xanthones	Sources	Biological activities	References	
β - Mangostin (33)	Cratoxylum cochinchinense (GUTTIFERAE)	- Cytotoxicity against NCI-H187 lung cancer cell line (IC ₅₀ = 1.7 µg/ml) - Antimalarial activity against Plasmodium falciparum (IC ₅₀ = 7.2 µg/ml)	Laphookhieo et al., 2006 ⁴⁴	
Paeciloxanthone (34)	Paecilomyces sp.(fungus)	Cytotoxicity against hepG2 (IC ₅₀ = $1.08 \mu g/ml$)	Wen et al., 2008 ⁴⁵	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Due to the uses of *A. megacarpa* in Thailand in Thai traditional medicine, especially the study on the chemical constituents and biological activities of *A. megacarpa* has not been carried out. So, it is interesting to explore every part of the plant. Whole parts of this plant were collected from Doi Phahompok, Chiang Mai, Thailand for study. The extracts of the rhizomes, stems and leaves of *A. megacarpa* were preriminary subjected to some biological assays, such as antimycobacterial, antifungal, antioxidant and cytotoxicities against cancer cell lines. The results are summarized in Table 3-4.

Table 3. The results of antimycobacterial, antifungal and antioxidant activities of crude extracts of *A. megacarpa*

Part of plant	Crude extracts	Anti-TB	Antifungal	Antioxidant (IC ₅₀ , μg/ml)	
	<i>n</i> -Hexane	Inactive	Inactive	Inactive	
Rhizomes	Ethyl acetate	Inactive	Inactive	6.01	
	n-Butanol	Inactive	Inactive	5.16	
Twigs	<i>n</i> -Hexane	Inactive	Inactive	Inactive	
	Ethyl acetate	Inactive	Inactive	14.78	
	<i>n</i> -Butanol	Inactive	Inactive	1.97	
Leaves	<i>n</i> -Hexane	hiang	Mai 11	Inactive	
	Ethyl acetate	mang	vidi U	12.14	
	<i>n</i> -Butanol	S - r	ese	10.55	

 $IC_{50} > 50 \mu g/ml$ is considered inactive.

Table 4. The results of cytotoxicities of crude extracts of *A. megacarpa*

Part of plant	Crude	Cytotoxicities (IC ₅₀ , μg/ml)				
	extracts	NCI-H1299	A549	MDA- MB-231	MCF-7	Vero cell
Rhizomes	<i>n</i> -Hexane	Inactive	Inactive	Inactive	4.1	Inactive
	Ethyl acetate	39.9	29.8	Inactive	3.2	Inactive
	<i>n</i> -Butanol	13.0	24.3	Inactive	0.9	Inactive
Twigs	<i>n</i> -Hexane	41.95	Inactive	Inactive	Inactive	Inactive
	Ethyl acetate	Inactive	Inactive	Inactive	Inactive	Inactive
	<i>n</i> -Butanol	33.9	Inactive	Inactive	Inactive	Inactive
Leaves	Methanol	-	5.9	12.1	7-8	// -

 $IC_{50} > 50 \mu g/ml$ is inactive.

MCF-7 and MDA-MB-231 = human breast cancer cell lines

NCI-H1299 and A549 = human lung cancer cell lines

Vero cell = African green monkey kidney

According to biological activities screening of crude extracts from all parts of *A. megacarpa*, we found that the crude extracts from the rhizomes showed strong cytotoxicity against MCF-7, breast cancer cell line and strong antioxidant activity by DPPH assay. Therefore, the objective of this research is to extract and isolate of active constituents with anticancer and antioxidant activities from the rhizomes of *A. megacarpa*.