CHAPTER 4

Comparison of Photocatalytic Properties of Composited Bismuth Vanadate with Titanium Dioxide, Tungsten Trioxide and Cerium Dioxide

4.1 Introduction

Bismuth vanadate (BiVO₄) has been attracted more attention in recent years especially in the field of photocatalysis due to its narrow band gap energy of 2.4 eV, which allows to be activated by visible-light irradiation [1]. Thus, it has been used in the photocatalytic degradation of organic dyes in aqueous solution and splitting of water for oxygen evolution under sunlight irradiation [1–4]. However, one of limitations of the photocatalytic efficiency in pure BiVO₄ is the fast recombination of photogenerated electrons and holes [4, 5]. In order to enhance the photocatalytic activity of BiVO₄, the essential requirement is to fabricate an electronic barrier of the photocatalysts, which contribute to the separation of the photogenerated electrons and holes. These charge separations prevent the electrons and holes from recombination. Thus, the electrons and holes have more opportunities to participate in reduction and oxidation reactions for the degradation of the organic dye on their surface [4-6]. Many attempts have been performed, such as doping these semiconductors with metal and nonmetals and sensitizing composite with other metal oxide semiconductors [4, 7, 8]. Thus, the coupling BiVO₄ with different metal oxides (TiO₂, CeO₂ and WO₃) was studied in this work.

Recently, some publications of coupled BiVO₄ with other metal oxides such as BiVO₄/Bi₂O₃ [9, 10], V₂O₅/BiVO₄ [11, 12], BiVO₄/TiO₂ [13–15], BiVO₄/WO₃ [6, 16–19], BiVO₄/CdS [19], BiVO₄/CuCr₂O₄ [20] and BiVO₄/CuWO₄ [21] have been reported in water purification and water spitting applications. Li *et al.* [9] reported that Bi₂O₃/BiVO₄ sub-micrometer sphere composite was sythesized by two steps processes of a simple decomposition reaction for monoclinic Bi₂O₃ at 600°C for 6 h, and homogeneous precipitation method at room temperature for tetragonal BiVO₄. There is

another report on the synthesis of the porous peanut-like Bi₂O₃/BiVO₄ composite with heterojunctions synthesized by a one-step mixed solvothermal method with the assistance of a L-lysine template [10]. They also investigated the photocatalytic degradation of organic dyes (rhodamine B and methylene blue), and the composite catalysts exhibited higher photocatalytic activities.

Jiang et al. [11] reported that $V_2O_5/BiVO_4$ composite photocatalysts with orthorhombic and monoclinic structures of V_2O_5 and $BiVO_4$, respectively were synthesized by a one-step solution combustion synthesis method. The 9 mol% $V_2O_5/BiVO_4$ composite photocatalyst annealed at 500°C for 4 h exhibited the best photocatalytic degradation activities of methylene blue.

Hu *et al.* [14] reported that the BiVO₄/TiO₂ heterostructure was synthesized by a sol-gel method with optimum content of BiVO₄:TiO₂ as 1:200 (mass ratio), which could enhanced photocatalytic degradation of benzene under visible light irradiation. Zhang *et al.* [15] also synthesized BiVO₄/TiO₂ composite photocatalysts with heterojunction structures of monoclinic BiVO₄ and anatase TiO₂ by a one-step of combined microwave and hydrothermal method at 200°C for 30 min, and the 20%TiO₂/BiVO₄ showed the best photocatalytic activity for degradation of Rhodamine B.

Furthermore, Chatchai *et al.* [16] studied the photocatalytic and photoelectrocatalytic properties of WO₃/BiVO₄ photoanode for degradation of methylene blue, which the composite electrode was fabricated by electrodeposition technique. The photoelectrocatalytic system of WO₃/BiVO₄ photoanode with Cu₂O photocathode modified with Ag showed higher performance for methylene blue degradation under visible light irradiation than the individual photocatalytic system.

For all photocatalytic degradation of organic pollutants of the above composites, it could be similarly observed that the composite semiconductor photocatalysts were more photocatalytically active than its individual catalysts. Thus, the possible mechanisms of the coupled BiVO₄/TiO₂, BiVO₄/CeO₂ and BiVO₄/WO₃ systems for degradation of MB dye in aqueous solution under visible light irradiation were also studied in this research. Moreover, X-ray photoelectron spectroscopy (XPS) and Transmission electron microscopy (TEM) were also employed to characterize these composite photocatalysts.

4.2 Experimental section

4.2.1 Chemicals

The chemicals was used for synthesizing pure BiVO₄, TiO₂ and BiVO₄/TiO₂ composites by a coupling of precipitation and sol-gel methods, and WO₃ and BiVO₄/WO₃ composites by precipitation method are as shown in Table 4.1.

Table 4.1 Chemicals for synthesis of pure BiVO₄, WO₃, TiO₂, BiVO₄/WO₃ and BiVO₄/TiO₂ composites.

Chemicals	Purity	Molecular formula	Molecular Weight (g/mol)	
Ammonium hydroxide	25.0 wt.% in water	NH ₄ OH	17.00	Merck
Ammonium metavanadate	99.9%	NH ₄ VO ₃	116.98	Aldrich
Bismuth (III)nitrate pentahydrate	98.0%	Bi(NO ₃) ₃ .5H ₂ O	485.07	Sigma- Aldrich
Citric acid	99.0%	C ₆ H ₈ O ₇	192.12	Ajax
Ethanol absolute	100%	C ₂ H ₅ OH	46.08	Ajax
Ethylene glycol	99.5%	C ₂ H ₆ O ₂	62.07	Fluka
Hydrochloric acid	37.0 wt.% in water	HCl	36.46	Merck
Nitric acid	70.0 wt.% in water	HNO ₃	63.01	Ajax
Sodium tungstate (VI)dihydrate	99.0%	Na ₂ WO ₄ . 2H ₂ O	329.85	Sigma- Aldrich
Titanium(IV) isopropoxide	97.0%	C ₁₂ H ₂₈ O ₄ Ti	284.22	Sigma- Aldrich

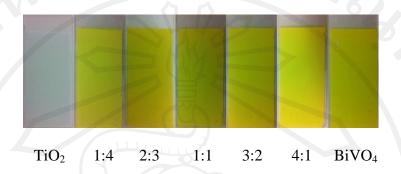
4.2.2 Equipment

The synthesized TiO₂, WO₃, BiVO₄, BiVO₄/TiO₂ and BiVO₄/WO₃ composite powders and films were characterized using the equipment as the following list.

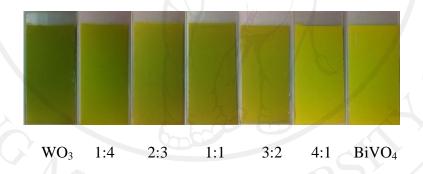
- Brunauer-Emmett-Teller (BET) analysis (Autosorb 1 MP, Quantachrome)
- Profilometer (Dektak 150, Veeco)
- Raman spectroscopy (JOBIN YVON, HORIBA)
- Scanning electron microscope (JSM-7500FA, JEOL)
- Transmission electron microscope (JSM-2010, JEOL)
- UV-Vis spectrophotometer (UV-3600, Shimadzu) with an integrating sphere attachment (ISR-3100, Shimadzu).
- UV-Vis spectrophotometer (8453 UV-Vis Diode Array System, Agilent Technologies)
- X-ray diffraction spectrometer (Philip X' Pert PRO PW 3719)
- X-ray photoelectron spectroscope (AXIS Ultra DLD, Kratos Analytical)
- Visible-light source (50 W, SOLUX Halogen lamp, with a 400 nm cut off filter).

4.2.3 Synthesis of BiVO₄/TiO₂ composites

BiVO₄/TiO₂ nanocomposite catalysts with different mole ratios between BiVO₄ and TiO₂ were synthesized by coupling a homogeneous precipitation and sol-gel methods [22, 23]. First, pure BiVO₄ powder was synthesized by the homogeneous precipitation method as previously described in Chapter 2. The sol-gel method reported by Wetchakun et al. [23] was used for the synthesis of pure TiO₂ and the BiVO₄/TiO₂ nanocomposite with different mole ratios. Typically, 20 mL titanium tetraisopropoxide (TTIP) was dissolved in 250 mL 6 M nitric acid solution and mixed until a homogeneous solution was obtained. The mixture of TTIP and nitric acid solution was put into a cellophane membrane and then placed in solution containing a 1:1 v/v ratio (350 mL) of absolute ethanol and deionized water with 0.5-1%concentrated (25%) ammonia. Then, the as-synthesized BiVO₄ powder with different amount of mole ratios was subsequently added to the above mixture in the cellophane pouch to synthesize BiVO₄/TiO₂ composite powders. The mixture inside the cellophane pouch was kept stirring with magnetic stirrer bar and heated temperature at 80°C for 1 h. After the


completion of the dialysis process, the suspension was centrifuged at 5000 rpm for 10 min, washed with deionized water and then dried in an oven at 60°C for 24 h. The obtained powder was finally calcined in a furnace at the temperature in the range of 450°C for 2 h. For control experiments, pure TiO₂ photocatalyst was also synthesized by the procedure described above.

4.2.4 Synthesis of BiVO₄/WO₃ composites


BiVO₄/WO₃ nanocomposite catalysts with different mole ratios between BiVO₄ [22] and WO₃ were synthesized by precipitation method. Firstly, pure WO₃ powder was synthesized by dissolving 5 g of sodium tungstate dihydrate (Na₂WO₄.2H₂O) in solution containing 10 g of citric acid, 75 mL of ethylene glycol and 25 mL of deionized water under continuous stirring. The solution was heated at 70°C, and then 25 mL of 1M hydrochloric acid (HCl) was added to the above solution (pH as approximately 1). The mixed solution was kept under continuous stirring and maintaining a constant temperature until the formation of a yellow-green precipitate. Finally, the powder was separated by centrifugation, washed with deionized water and ethanol several times, dried at 60°C for 24 h, and then calcined at 450°C for 1 h. The co-precipitation method for synthesis of the pure BiVO₄ as discussed in Chapter 2 was used to synthesize BiVO₄/WO₃ composite powders with different mole ratios. One difference, the WO₃ powder with different mole ratios was put in the mixed precursors before adjusting pH with ammonium hydroxide. The BiVO₄/WO₃ composite powders were calcined again at 450°C for 1 h to remove ethylene glycol after washing with deionized water and drying overnight at 60°C.

Furthermore, all synthesized catalysts in film forms were fabricated by doctor blading on glass substrates and their photocatalytic activities were also investigated by degradation of methylene blue in aqueous solution as an organic pollutant model under visible light irradiation with the same experimental as previously described in Chapter 2 [24, 25]. For thicknesses of all fabricated films in this research were controlled to be about 2 μ m as

discussed previously in Chapter 3 the effect of film thicknesses to photocatalytic activities. The films were measured by using a profilometer (Veeco Dektak 150). Photographs of the as-prepared BiVO₄/TiO₂ composite films and the as-prepared BiVO₄/WO₃ composite films with different mole ratios are illuminated in Figure 4.1 and Figure 4.2, respectively.

Figure 4.1 Photographs of TiO₂, 1:4BiVO₄/TiO₂, 3:2BiVO₄/TiO₂, 1:1BiVO₄/TiO₂, 2:3BiVO₄/TiO₂, 4:1BiVO₄/TiO₂ composite and BiVO₄ films on plain glass substrates after annealing at 500°C for 1 h.

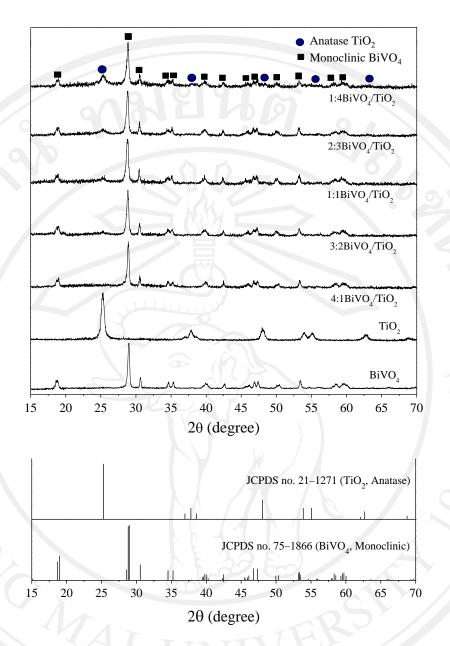


Figure 4.2 Photographs of WO₃, 1:4BiVO₄/WO₃, 3:2BiVO₄/WO₃, 1:1BiVO₄/WO₃, 2:3BiVO₄/WO₃, 4:1BiVO₄/WO₃ composite and BiVO₄ films on plain glass substrates after annealing at 500°C for 1 h.

4.3 Results and discussion for BiVO₄/TiO₂ composites

4.3.1 Characterization of BiVO₄/TiO₂ composite powders

The phase transition and crystallinity of the BiVO₄/TiO₂ composite powders synthesized by the coupled precipitation and sol-gel methods with different ratio of BiVO₄:TiO₂ were analyzed by X-ray diffraction (a Philip X' Pert

Figure 4.3 XRD patterns of pure BiVO₄ powder, pure TiO₂ powder and BiVO₄/TiO₂ composite powder with different mole ratios.

PRO PW 3719 XRD) using CuK α radiation (λ = 0.154 nm) at 2 θ = 15–70° with a step size of 0.06° and a scanning speed of 0.72°/min. Figure 4.3 shows the XRD patterns of pure BiVO₄, TiO₂ and BiVO₄/TiO₂ composite powders with mole ratios of 4:1, 3:2, 1:1, 2:3 and 1:4. For the XRD pattern of pure BiVO₄ powder, all peaks could be confirmed to be the monoclinic phase of BiVO₄, which matched well with the JCPDS file no. 75–1866 and the diffraction peaks correspond to monoclinic BiVO₄ phase are at 2 θ =

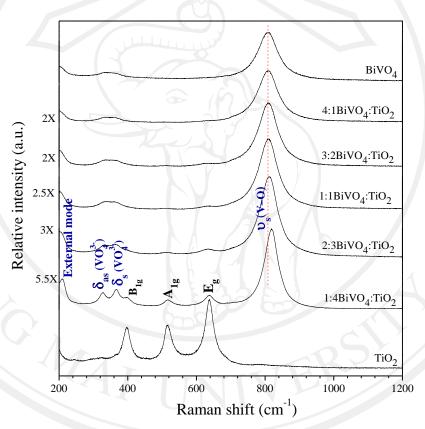

28.8°, 30.55°, 34.5°, 35.2°, 39.8°, and 42.5°. On the other hand, matching the XRD patterns of pure TiO_2 powder could be identified as the JCPDS file no. 21–1272, and the diffraction peaks correspond to tetragonal TiO_2 (anatase) are at $2\theta = 25.3^{\circ}$, 37.8°, 48.0°, 53.9°, 55.0° and 62.7°. In XRD patterns of composite powders, it was obviously seen that the XRD patterns of the $BiVO_4/TiO_2$ composites with 3:2, 1:1, 2:3 and 1:4 mole ratios showed the formation of two phases of monoclinic $BiVO_4$ and tetragonal TiO_2 , $BiVO_4$ as a major phase with higher crystallinity and TiO_2 as a minor phase, and the TiO_2 phase increased with increasing amount of TiO_2 ratio. Furthermore, the TiO_2 phase was not appeared in the $BiVO_4/TiO_2$ composite with 4:1 mole ratio, which was possibly because that the amount of TiO_2 was too low, the size of TiO_2 particles was too small and the crystallinity of the $BiVO_4$ phase was high affecting to TiO_2 peaks nonappearance.

Table 4.2 Comparison of phase composition and crystalline size of BiVO₄/TiO₂ composite powders with different mole ratios.

Samples	Phase com	nposition (%)	Crystalline size (nm)		
	BiVO ₄	TiO ₂	BiVO ₄	TiO ₂	
BiVO ₄	100	3.1.1-1	18.84	Y ///	
4:1BiVO ₄ /TiO ₂	100	30 60	16.65	-	
3:2BiVO ₄ /TiO ₂	95.05	4.95	17.15	9.85	
1:1BiVO ₄ /TiO ₂	91.86	8.14	16.65	7.02	
2:3BiVO ₄ /TiO ₂	87.46	12.54	16.65	5.97	
1:4BiVO ₄ /TiO ₂	80.47	19.53	14.15	6.61	
TiO ₂	-	100	-	9.06	

The percentage of the tetragonal TiO₂ phase could be calculated by the normalised ratios of relative intensities for the (101) peak of tetragonal TiO₂ and (200) peak of monoclinic BiVO₄, as shown in Equation (3.1) in Chapter 3, and the average crystalline sizes of BiVO₄ and TiO₂ particles in the composites were also estimated from the Scherrer equation as shown in Equation (3.2) in Chapter 3.

The summarized phase compositions and crystalline sizes of the BiVO₄/TiO₂ composite powders with different mole ratios are shown in Table 4.2. It was found that BiVO₄ in the BiVO₄/TiO₂ composite had higher crystallinity even loading with similar or lower ratios (1:1, 2:3 and 1:4 BiVO₄/TiO₂ composite), and crystalline size of BiVO₄ was observed to be bigger than TiO₂. Furthermore, Figure 4.3 clearly revealed that the intensity of the crystalline BiVO₄ gradually decreased with increasing of the amount of TiO₂ ratio, possibly because the TiO₂ nanoparticles were more covered on the surface of the BiVO₄ particle in the BiVO₄/TiO₂ composite.

Figure 4.4 Raman spectra of pure BiVO₄, pure TiO₂ and BiVO₄/TiO₂ composite powder with different mole ratios.

The Raman spectra for the $BiVO_4/TiO_2$ and bare TiO_2 photocatalyst are shown in Figure 4.4. The characteristic spectra of the pure TiO_2 powder at 398.2 (B_{1g}), 516.5 (A_{1g}), 634.1 cm⁻¹ (E_g) were attributed to the Raman active bands of the anatase TiO_2 , similar to the results reported by Miao *et al.* [26] and Xue *et al.* [27]. For the pure $BiVO_4$ powder, Raman spectra at 208.7,

331.9, 357.7 and 808.9 cm⁻¹ were observed, which are typical vibrational bands of monoclinic BiVO₄ (the label in Figure 4.4) in agreeing well with the reported works by Gotić *et al.* [28] and Zhang *et al.* [29]. The two Raman spectra at 331.9 and 357.7 cm⁻¹ were assigned to the asymmetric and the asymmetric and symmetric bending vibrations of VO₄³⁻ tetrahedron, respectively. The Raman peak at 808.9 cm⁻¹ corresponded to the symmetric V–O stretching mode.

Additionally, the Raman spectrum at lower wave number at 208.7 cm⁻¹ was assigned to external vibration modes. For the BiVO₄/TiO₂ composites, characteristic Raman spectra for both BiVO₄ and TiO₂ were found in 2:3 and 1:4 BiVO₄/TiO₂ composites, and the peak intensities belonged to TiO₂ were increased when the mole ratio of TiO₂ to BiVO₄ increased. This could be attributed to a lower coverage of TiO₂ particles on the BiVO₄ surface. Appealingly, the dominated and strong spectrum of the BiVO₄/TiO₂ composites at 810.5 cm⁻¹ was gradually shifted to higher wavelength comparing to the pure BiVO₄, and their spectrum intensities were obviously decreased when increasing the mole ratio of BiVO₄. This could possibly suggest that it was not the simple metal oxide mixture but the chemical interaction between the monoclinic BiVO₄ and the anatase TiO₂ existing in the composites, clearly seen in the 1:4BiVO₄/TiO₂ composite, leading to the decrease of the symmetry of the anatase TiO₂ molecules [30, 31].

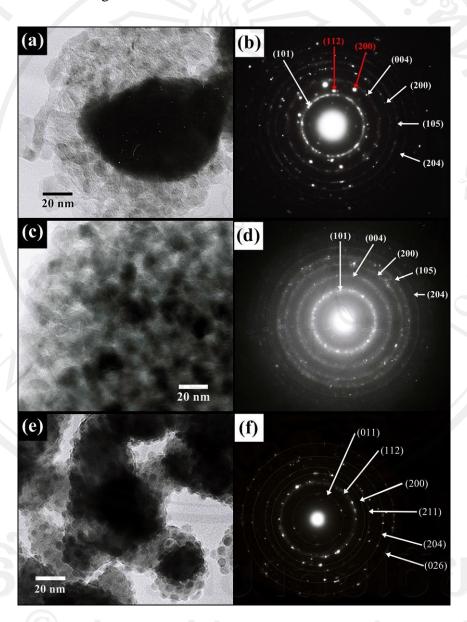
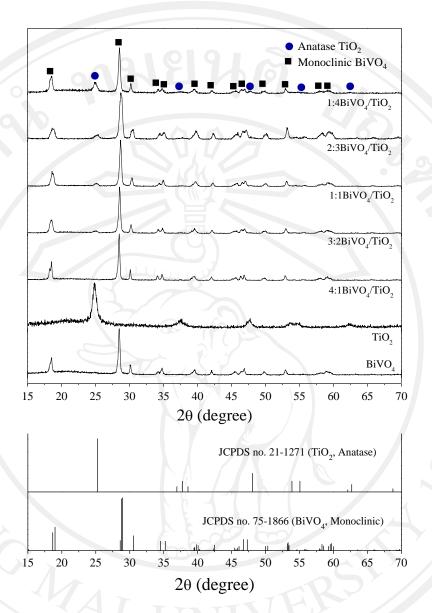

In order to confirm the composition of the BiVO₄/TiO₂ composite and to take a more detailed look at the interactions between TiO₂ and BiVO₄ particles, the 1:1BiVO₄/TiO₂ composite was also characterized by XPS and compared with pure TiO₂ and BiVO₄. As shown in Figure 4.5, the XPS spectra of the (a) survey, (b) Bi 4f, V 2p, Ti 2p and 1s regions for the 1:1BiVO₄/TiO₂ composite compared to pure TiO₂ and BiVO₄. Figure 4.5(a) represents typical XPS survey spectra for the TiO₂, BiVO₄ and 1:1BiVO₄/TiO₂ composite. As expected in the composite catalysts the spectrum displayed the peaks of Bi, V, O, Ti and C. The binding energy of

Figure 4.5 XPS survey spectra of the TiO₂, BiVO₄ and 1:1BiVO₄/TiO₂ composites, high-resolution XPS spectrum of (b) Bi 4f, (c) V 2p, (d) Ti 3d and (e) O 1s regions.


the C 1s transition at 284.6 eV was used as a reference to calibrate the binding energies of other elements. The high resolution XPS spectra of 1:1BiVO₄/TiO₂ composite showed the binding energy spectra splitting of Bi $4f_{7/2}$ and Bi $4f_{5/2}$ at 159.4 and 164.7 eV, respectively (Figure 4.5(b)), which was assigned to Bi³⁺ of BiVO₄ presented in separate phase [10]. The two symmetric spectra of V 2p_{1/2} and V 2p_{3/2} in the 1:1BiVO₄/TiO₂ composite at binding energies of 524.4 and 516.9 eV, respectively (shown in Figure 4.5(c)), were characteristic of V^{5+} ions [10]. In Figure 4.5(d), the 1:1BiVO₄/TiO₂ composite presented two spectra of Ti 2p at 458.9 and 464.6 eV assigned to Ti 2p_{3/2} and Ti 2p_{1/2}, respectively. The spectrum separation between Ti 2p3/2 and Ti 2p1/2 was 5.7 eV, which was the expected oxidation state of Ti⁴⁺ [27, 32]. No indicated peaks as reduced Ti³⁺ was observed in the spectra. The O 1s spectrum was located at 530.1 eV with an asymmetric pattern as in showed Figure 4.5(d). The primary spectrum at 530.1 eV indicated the O²⁻ ion, while the additional shoulders at higher energies assigned to surface OH groups and/or chemisorbed H₂O [33].

Moreover, to further investigate the formation of TiO₂ on BiVO₄ of the 1:1BiVO₄/TiO₂ composite, which were performed with transmission electron microscopy (TEM) and TEM images are shown in Figure 4.6. Figure 4.6 (a) shows TEM image of 1:1BiVO₄/TiO₂ composite, it was found that small nanoparticles of TiO₂ with the average size of 10–30 nm are completely covered onto the surface of the BiVO₄ with a size of 80 nm. The diffraction rings of corresponding selected area electron diffraction (SAED) pattern of 1:1BiVO₄/TiO₂ composite in Figure 4.6 (b) can be indexed as (112) and (200) lattice planes of BiVO₄, which came along with (101), (004), (200), (105) and (204) lattice planes of TiO_2 . To confirm the morphologies of TiO2 and BiVO4 in the 1:1BiVO4/TiO2 composite, TEM images of pure TiO₂ and BiVO₄ nanoparticles and their corresponding SAED pattern were also investigated. It could be observed that the TEM image of pure TiO₂ (Figure 4.6 (c)) revealed a small nanoparticle with similar to the small particles in Figure 4.6 (a). In the case of pure BiVO₄, it showed a large aggregated particle related to the BiVO₄ particles in the composites as shown in Figure 4.6 (a). However, this large particle also consisted of lots of nanoparticles with a size about 5–40 nm as shown in Figure 4.6 (e). The SAED patterns of the pure TiO₂ (Figure 4.6 (d)) and BiVO₄ (Figure 4.6 (f)) indicated that they were polycrystalline and could be indexed to tetragonal TiO₂ (JCPDS 21–1271) and monoclinic BiVO₄ (JCPDS 75–1866), respectively, which agreed well with the XRD results in Figure 4.3.

Figure 4.6 TEM images and corresponding SAEDs (a) and (b) of 1:1BiVO₄/TiO₂ composite, (c) and (d) of TiO₂ nanoparticles, and (e) and (f) of BiVO₄ particles, respectively.

4.3.2 Characterization of BiVO₄/TiO₂ composite films

Figure 4.7 XRD patterns of pure BiVO₄, pure TiO₂ and BiVO₄/TiO₂ composite films with different mole ratios annealed at 500°C for 1 h.

In order to solve the catalysts separation issue for studying their photocatalytic activities, the photocatalysts (BiVO₄, TiO₂ and BiVO₄/TiO₂ composites with different mole ratios) in film forms were fabricated by a doctor blading technique on glass substrates. Figure 4.7 shows the XRD patterns of the BiVO₄ films fabricated on glass substrate by doctor blading method using the above photocatalysts and annealed at 500°C for 1 h. XRD patterns exhibited characteristic diffraction peaks of both monoclinic

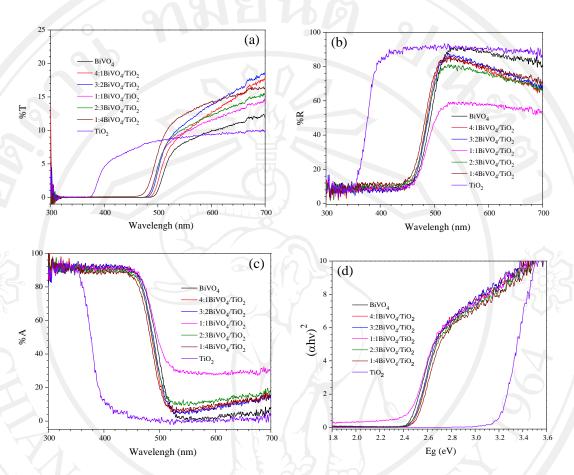

BiVO₄ (JCPDS 75–1688) and tetragonal TiO₂ (JCPDS 21–1271) crystalline phases similarly with the XRD results of the composite powders and no evidence of any third phase. Moreover, the XRD patterns of all prepared films (TiO₂, BiVO₄, and BiVO₄/TiO₂ composites) obtained sharper than the XRD patterns of their powders (Figure 4.3) indicating higher crystalline sizes as shown in Table 4.3.

Table 4.3 Comparison of phase composition and crystalline size of BiVO₄/TiO₂ composite films with different mole ratios after annealing at 500°C for 1 h.

Samples	Phase composition (%)		Crystalline size (nm)	
	BiVO ₄	TiO ₂	BiVO ₄	TiO ₂
BiVO ₄	100		18.09	30
4:1BiVO ₄ /TiO ₂	100	103	18.84	-5-10g
3:2BiVO ₄ /TiO ₂	95.56	4.44	10.48	7.59
1:1BiVO ₄ /TiO ₂	93.73	6.27	15.09	7.02
2:3BiVO ₄ /TiO ₂	90.88	9.12	15.73	6.10
1:4BiVO ₄ /TiO ₂	81.27	18.73	23.55	8.26
TiO ₂	- 1	100	<u> </u>	6.68

Light adsorption properties of the BiVO₄/TiO₂ composites with different mole ratios were also investigated by UV-vis diffuse reflectance spectroscopy, which are presented in Figure 4.8 (a) transmission, (b) refraction and (c) absorption spectra in the range of 300–700 nm. Comparing to the pure BiVO₄, the absorption edges of all BiVO₄/TiO₂ composite films showed lower wavelengths of about 440–460 nm. There was no such tendency for the BiVO₄/TiO₂ composite films when increasing the mole ratio of BiVO₄. The experimentally determined band gaps were calculated according to the Equation (2.1). The band gaps of the as-prepared composite films estimated from the intercept of the plots of $(\alpha h v)^2$ versus hv illustrated in Figure 4.8 (d) and Table 4.3. It was found that the 1:1BiVO₄/TiO₂ composite showed high adsorption in visible region (520–700 nm) and its band gap (2.43 eV) was closeness to the pure BiVO₄ (2.45

eV). These results indicated that the optimum mole ratio of the BiVO₄/TiO₂ composite was for good visible light adsorption was 1:1, which agreed well with the photocatalytic test results.

Figure 4.8 UV-vis diffuse (a) the transmission, (b) refraction and (c) absorption in the range of 300–700 nm absorption spectra and (d) the plots of $(\alpha h v)^2$ versus photon energy (hv) of pure BiVO₄, pure TiO₂ and BiVO₄/TiO₂ composite films with different mole ratio after annealing at 500°C for 1 h.

4.2.3 Photocatalytic activities of BiVO₄/TiO₂ composite films

The photocatalytic activities of the BiVO₄/TiO₂ composite films were evaluated by a degradation of MB aqueous solution (50 μM) under visible light irradiation (<400 nm) as a test reaction according to the literature [11, 13, 22, 24]. The degradation of MB was monitored by examining in decreases of its concentration, which measured the changes in maximal absorption of UV-vis spectra at 664.5 nm. As shown in Figure 4.9, the

maximum absorption peak of MB decreased gradually under visible light irradiation for 120 min in the presence of the BiVO₄/TiO₂ composite film. Figure 4.10 shows the adsorptive and photocatalytic efficiencies of the BiVO₄/TiO₂ composite films with different mole ratios for MB degradation was defined as C_t/C₀, where C₀ and C_t are the initial concentration and the concentration of MB during the reaction time, respectively. Moreover, the experiments of MB direct photolysis (without catalyst), pure TiO₂ and pure BiVO₄ films were also conducted to compare with the BiVO₄/TiO₂ composite films. It was found that the adsorptive efficiencies of all BiVO₄/TiO₂ composite films with different mole ratios were quite similar together corresponding to total surface are of the films calculated from the Brunauer Emmett Teller (BET) specific surface areas results as shown in Table 4.4.

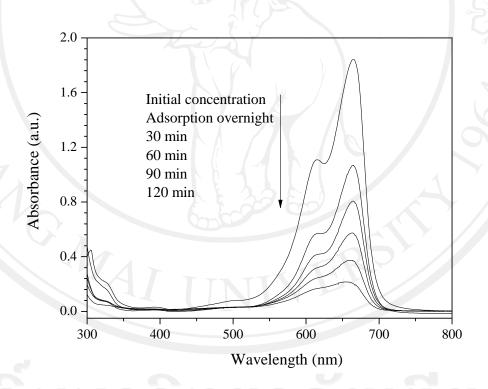
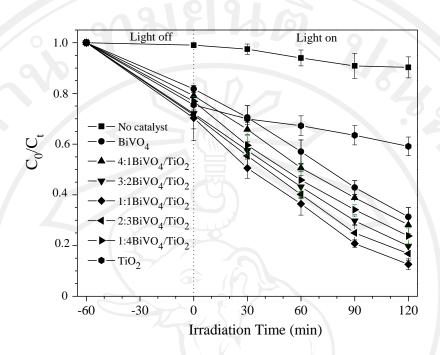



Figure 4.9 UV-vis spectra of MB with 1:1BiVO₄/TiO₂ composite film.

For the photocatalytic degradation of MB in the presence of $BiVO_4/TiO_2$ composite films demonstrated higher than the values obtained for pure TiO_2 (40%) and $BiVO_4$ (68%) films after irradiating for 120 min, which were 76%, 82%, 88%, 80% and 71% in the presence of

1:4BiVO₄/TiO₂, 2:3 BiVO₄/TiO₂, 1:1BiVO₄/TiO₂, 3:2 BiVO₄/TiO₂ and 4:1BiVO₄/TiO₂ composite films, respectively.

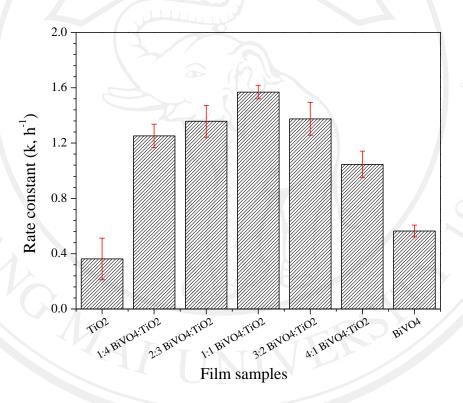
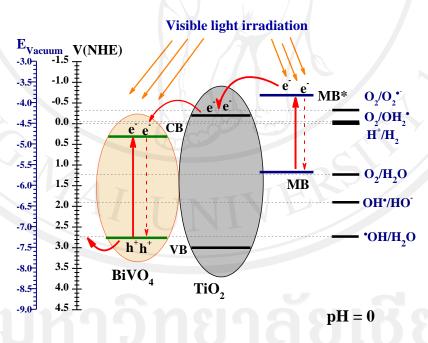


Figure 4.10 Photocatalytic efficiencies of BiVO₄/TiO₂ films with different ratios.

Table 4.4 The relationship between band gap energies (E_g), BET surface areas (S_{BET}), total area and degradation rate constant (k_{app}) of MB solution over BiVO₄/TiO₂ composite films with different mole ratios.

Sample films		Properties					
	E _g (eV)	S _{BET} (m ² g ⁻¹)	total area (cm²)	k _{app} (h ⁻¹)			
BiVO ₄	2.45	15.40	1540	0.564 ± 0.043			
4:1BiVO ₄ /TiO ₂	2.48	5.77	577	1.046 ± 0.095			
3:2BiVO ₄ /TiO ₂	2.47	13.57	1357	1.375± 0.116			
1:1BiVO ₄ /TiO ₂	2.43	27.88	2788	1.569 ± 0.049			
2:3BiVO ₄ /TiO ₂	2.48	32.01	3201	1.358 ± 0.119			
1:4BiVO ₄ /TiO ₂	2.49	49.86	4986	1.253 ± 0.085			
TiO ₂	3.20	71.05	7105	0.362 ± 0.150			

In order to quantitatively understand photocatalytic degradation of MB, the pseudo-first order kinetic model as displayed by Equation (1.35) in Chapter 1 was applied for all of synthesized composite films. The pseudo-first order rate constants for the pure TiO_2 , pure $BiVO_4$, 1:4 $BiVO_4$ / TiO_2 , 2:3 $BiVO_4$ / TiO_2 , 1:1 $BiVO_4$ / TiO_2 , 3:2 $BiVO_4$ / TiO_2 and 4:1 $BiVO_4$ / TiO_2 composite films were 0.362 \pm 0.150, 0.564 \pm 0.043, 1.253 \pm 0.085, 1.358 \pm 0.119, 1.569 \pm 0.049, 1.375 \pm 0.116, and 1.046 \pm 0.095 h⁻¹, respectively, as shown in Figure 4.11. From the comparison of the pseudo-first order rate constants, it could be concluded that optimum condition for synthesis the composite photocatalyst of BiVO₄/TiO₂ for degradation of MB was 1:1.


Figure 4.11 First order rate constants of photodegradation of MB by using BiVO₄, BiVO₄, TiO₂ and BiVO₄/TiO₂ composite films with different mole ratio under irradiation of visible light.

Based on the enhanced photocatalytic activity of the BiVO₄/TiO₂ composite photocatalyst for degradation of MB under visible light irradiation, a possible mechanism of photogenerated charge separation at the interface of heterojunction BiVO₄/TiO₂ composite and its photocatalytic process can be

proposed as presented in Figure 4.12. The conduction band (CB) and valence band (VB) positions can be determined by using the following Equation (4.1) which is similar to the Equation (2.3) in Chapter 2 [34].

$$E_{CB} = \chi - E_e - 0.5E_g$$
 (4.1)

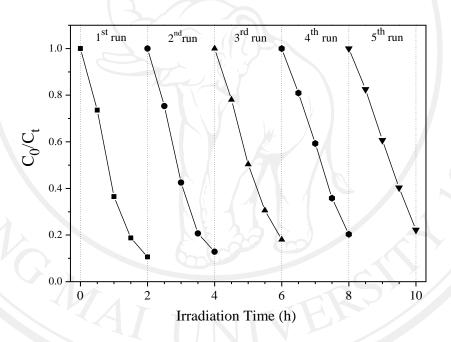
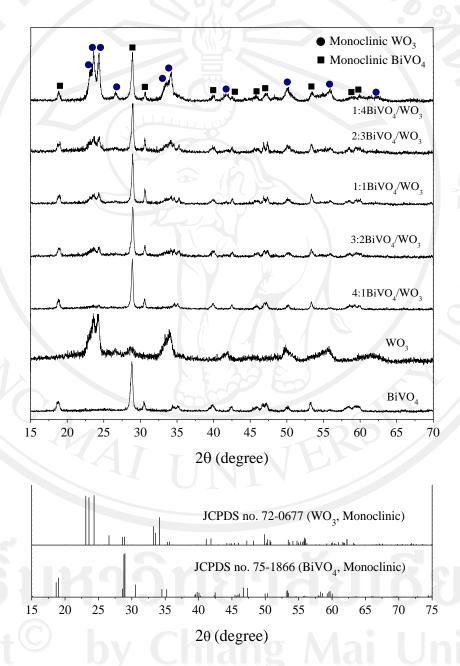

where E_{CB} denotes the CB edge potential, χ is the absolute electronegativity of the semiconductor (5.90 eV [35] and 6.04 eV [36] for TiO₂ and BiVO₄, respectively), E_e is the energy of free electrons on the hydrogen scale (about 4.5 eV) and E_g is the band gap of the semiconductor (3.20 and 2.45 eV for TiO₂ and BiVO₄, respectively). The position of the VB edge is determined by $E_{VB} = E_{CB} + E_g$. The calculated CB and VB of TiO₂ were -0.20 and 3.00 eV, and of BiVO₄ were 0.31 and 2.76 eV, respectively, which agreed well to the mechanism of BiVO₄/TiO₂ heterojunction reported clearly by Hu *et al.* [14] and Zhang *et al.* [15].

Figure 4.12 Schematic diagram of charge separation of BiVO₄/TiO₂ heterostructure photocatalysts under visible light irradiation at pH 0.

Under visible light irradiation, MB can adsorb the visible light and then generate the exited MB*. Thus, the higher rates of MB degradation were

recorded due to the increase of electron transfer from the exited MB* to the CB of TiO₂ and then the electrons at CB of TiO₂ will then be transferred to the oxygen molecules adsorbed on the surface of TiO₂ [37]. Simultaneously, BiVO₄ can be activated by visible light and generated electron and hole pairs. However, there are excess electrons at the CB of BiVO₄ with transferred from the CB of TiO₂, lead to increase recombination rate between electrons and holes in BiVO₄. Therefore, the main reaction to produce strong oxidizing radicals is the reduction of surface chemisorbed O₂ to O₂. by the electron at the CB of TiO₂, which these strong oxidizing radicals can degrade the MB molecules to finally H₂O, CO₂, NO₃, and SO₄. [38].


Figure 4.13 Recycling runs of methylene blue solution in the photodegradation on 1:1BiVO₄/TiO₂ photocatalytic film.

In order to evaluate the photostability of the 1:1BiVO₄/TiO₂ composite film, the experiments were carried out for five runs in the same experimental conditions. After each photocatalytic reaction, the 1:1BiVO₄/TiO₂ composite film was annealed at 250°C for 1 h to remove the adsorbed organic contaminants on the photocatalyst surface. The result (Figure 4.13) clearly revealed that the photocatalytic efficiency did not show significant

loss after five recycles, indicating that the 1:1BiVO₄/TiO₂ composite film was high stability and not photocorroded during the whole degradation processes.

4.4 Results and discussion for BiVO₄/WO₃ composites

4.4.1 Characterization of BiVO₄/WO₃ composite powders

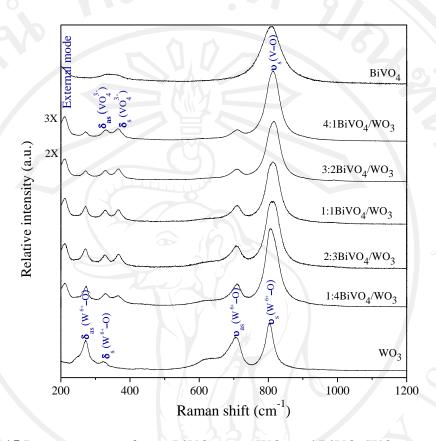

Figure 4.14 XRD patterns of pure BiVO₄ powder, pure WO₃ powder and BiVO₄/WO₃ composite powder with different mole ratios after calcination.

Table 4.5 Comparison of phase compositions and crystalline sizes of BiVO₄/WO₃ composite powders with different mole ratios.

Sample	Phase composition (%)		Crystalline size (nm)	
	BiVO ₄	WO ₃	BiVO ₄	WO ₃
BiVO ₄	100	0/5	18.84	1
4:1BiVO ₄ /WO ₃	94.38	5.62	42.24	21.40
3:2BiVO ₄ /WO ₃	84.39	15.61	42.24	19.48
1:1BiVO ₄ /WO ₃	80.76	19.24	40.25	17.88
2:3BiVO ₄ /WO ₃	73.96	26.04	38.45	20.22
1:4BiVO ₄ /WO ₃	48.94	51.06	40.25	17.77
WO_3	- 6	100	-	23.08

The crystalline structure of the synthesized BiVO₄/WO₃ composite powders with different mole ratios of 1:4, 2:3, 1:1, 3:2, and 4:1 were determined using XRD compared to pure WO₃ and BiVO₄ as shown in Figure 4.14. For the XRD pattern of pure BiVO₄ powder, all peaks could be confirmed to be the monoclinic phase of BiVO₄, which matched well with the JCPDS file no. 75–1866. The XRD pattern of pure WO₃ powder was demonstrated that the diffraction peaks at 23.57°, 24.24°, 26.57°, 28.71°, 34.08°, 41.95°, 49.71°, 55.63° and 61.58° could be indexed to (020), (200), (120), (112), (202), (222), (400), (402) and (340) of the monoclinic WO₃ phase, respectively, which positions and their relative intensities were in good agreement with the standard diffraction data (JCPDS: 72-0677). XRD patterns of BiVO₄/WO₃ composite powders, it was obviously seen that the XRD peaks belonging to monoclinic BiVO₄ displayed as a major phase in all composite catalysts, and the XRD peaks belonging to monoclinic WO₃ was increased when increasing mole ratio of WO₃ as corresponded with the calculated percentage of phase composition and crystalline size in Table 4.5. It was revealed that the percentage of phase composition of BiVO₄ in the BiVO₄/WO₃ composites with mole ratios of 4:1, 3:2, 1:1 and 2:3 had higher

than of WO₃ indicating more high cystallinity in BiVO₄ than WO₃. For the crystalline size, the pure BiVO₄ showed smaller that the BiVO₄ of the composites, this probably due to the covered WO₃ particles on the surface of the BiVO₄ particles.

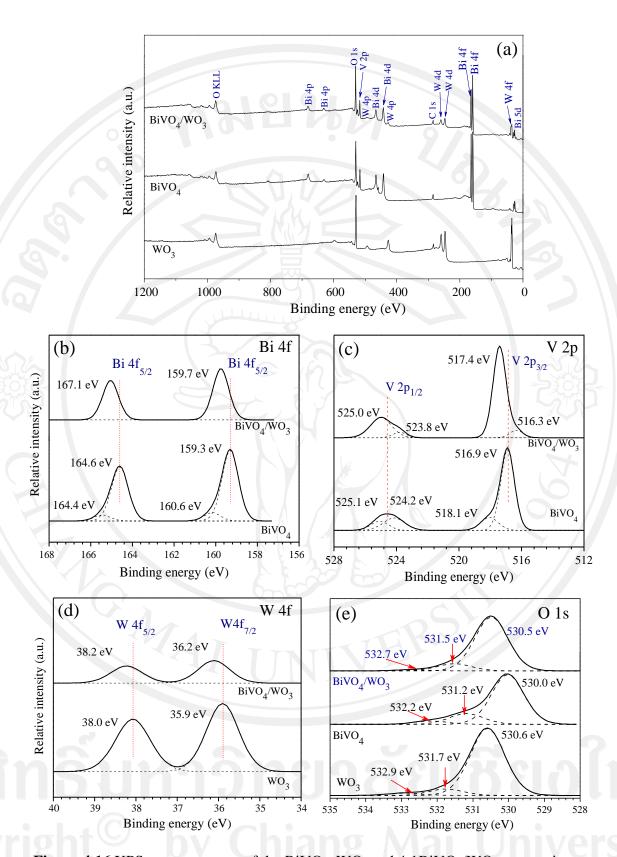
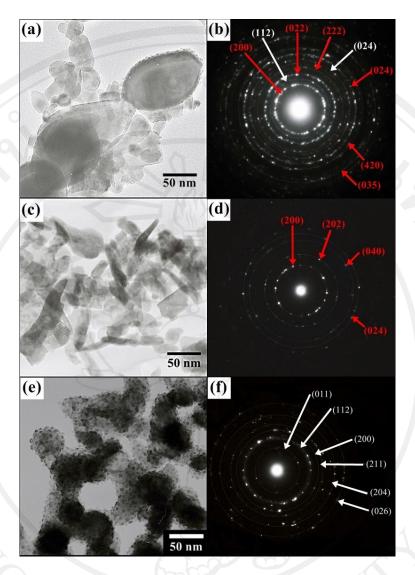


Figure 4.15 Raman spectra of pure BiVO₄, pure WO₃ and BiVO₄/WO₃ composite powder with different mole ratios.


Raman spectroscopy was used to further confirmation of the obtained both structures (BiVO₄ and WO₃) in the BiVO₄/WO₃ composite. As shown in Figure 4.15 shows Raman spectra the BiVO₄/WO₃ composites with different mole ratios of 4:1, 3:2, 1:1, 2:3 and 1:4 compared to pure BiVO₄ and WO₃. The pure WO₃ powder shows characteristic vibration modes of Raman spectra at 271.4, 324.0, 705.9 and 806.8 cm⁻¹ [37]. The observed spectra at 271.4 and 324.0 cm⁻¹ were attributed to the asymmetric and symmetric bending vibration of O–W–O, respectively, whereas, the spectra at 705.9 and 806.8 cm⁻¹ were attributed to the asymmetric O–W–O stretching vibrations respectively [37, 39]. All these spectra were the the characteristic features of

monoclinic WO₃. For the pure BiVO₄ powder, all Raman spectra were vibrational bands of monoclinic BiVO₄ agreeing well with the reported works [28, 29]. Obviously in the BiVO₄/WO₃ composites, the spectrum belonging to BiVO₄ at 810.5 cm⁻¹ overlapped with WO₃ at 806.8 cm⁻¹, which lead to the boarded spectrum in this position. Thus, the Raman analyse confirmed the presence of WO₃ in the BiVO₄/WO₃ composites agreeing with the XRD results, which indicated that WO₃ was present as a separated crystalline phase.

Furthermore, the surface composition and the chemical state of the 1:4BiVO₄/ WO₃ composite of was analysed by XPS to be compared with pure WO₃ and BiVO₄. Figure 4.16 (a) shows the comparison of survey XPS spectra of pure WO₃ and pure BiVO₄ and 4:1BiVO₄/WO₃ composite, which can observe the spectra corresponding to Bi, W, C, V and O. For the 4:1 BiVO₄/WO₃composite, the Bi 4f spectra with the binding energy peaks splitting at 159.7 and 167.1 eV were attributed to be o Bi $4f_{7/2}$ and Bi $4f_{5/2}$, respectively, which is assigned to Bi³⁺ of BiVO₄ present in separate phase (Figure 41.6(b)) [10]. The two symmetric spectra of V $2p_{1/2}$ and V $2p_{3/2}$ in the 4:1BiVO₄/WO₃ composite at binding energies of 525.0 and 517.4 eV respectively (shown in Figure 4.16(c)), are characteristic of V⁵⁺ ions [10]. The spectra of W at 35.9 and 38.0 eV which are shown in Figure 4.16(d) can be attributed to the W $4f_{7/2}$ and W $4f_{5/2}$ binding energies, respectively, which was suggested that W⁶⁺ was deposited in the form of WO₃ agreeing with the reported literature values [6] and [40]. When compared with the pure BiVO₄ and pure WO₃ the Bi 4f, V 2p and W 4f spectra of the 4:1BiVO₄/WO₃ composite slightly shifted to the high binding energies, indicating an interaction between the BiVO₄ and WO₃ on the surface of the composite. The O1s binding energies of the pure BiVO₄, pure WO₃, and 4:1BiVO₄/WO₃ composite are shown in Figure 4.16(e) located at 529.85, 529.85 and 530.05 eV, respectively. Compared to the pure BiVO₄ and pure WO₃, the O1s became broader and there was a slight increase in binding energy in the 1:1BiVO₄/WO₃ composite. This positive shift inferred the W–O–Bi linkage which contains contributions from both the Bi-O and W-O, respectively [40, 41].

Figure 4.16 XPS survey spectra of the BiVO₄, WO₃ and 4:1BiVO₄/WO₃ composites, high-resolution XPS spectrum of (b) Bi 4f, (c) V 2p, (d) W 3d and (e) O 1s regions.

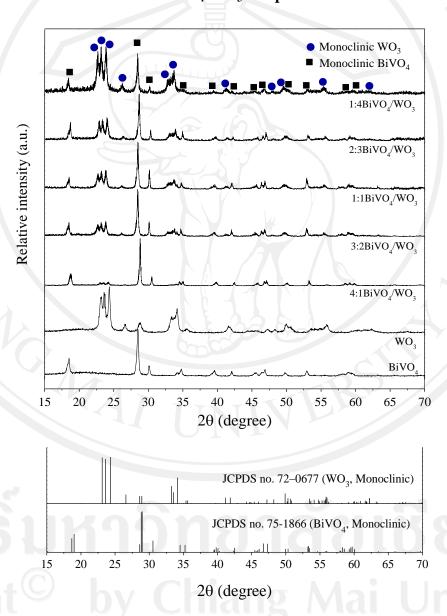


Figure 4.17 TEM images and corresponding SAEDs of (a) and (b) 4:1BiVO₄/WO₃ composite, (c) and (d) WO₃, and (e), (f) BiVO₄ nanoparticle, respectively.

The TEM characterization results on the 4:1BiVO₄/WO₃ composite and its corresponding SAED are shown in Figure 4.17(a) and Figure 4.17(b), respectively compared to the pure WO₃ (Figure 4.17(c) and Figure 4.17(d)) and pure BiVO₄ Figure 4.17(e) and Figure 4.17(f). The 1:1BiVO₄/WO₃composite in Figure 4.17(a) revealed large particles of BiVO₄ with diameter in the range of 60–100 nm, which related to the particles of pure BiVO₄ in Figure 4.17(e). Additionally, there were some smaller uninform particles (spherical-, rod- and plate-like) with particle size in the range of 10–60 nm contacted on the surface of BiVO₄ in the

composite sample, corresponded to the obtained particles of pure WO₃ in Figure 4.17(c). In Figure 4.17(b), the corresponding SAED of 1:1BiVO₄/WO₃ composite was composed of two sets of diffraction patterns including monoclinic BiVO₄ (JCPDS: 75–1866) and monoclinic WO₃ (JCPDS: 72–0677), which agreed well with the XRD results. Thus, it was confirmed that the formation of this material was a composite of two metal oxides rather than doping materials.

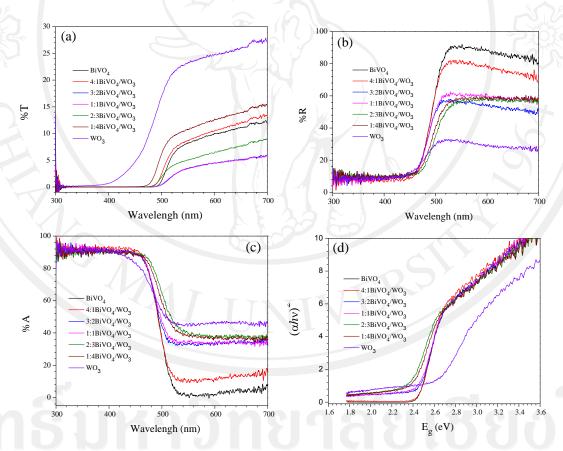

4.4.2 Characterization of BiVO₄/WO₃ composite films

Figure 4.18 XRD patterns of pure BiVO₄, pure WO₃ and BiVO₄/WO₃ composite films with different mole ratios annealed at 500°C for 1 h.

Table 4.6 Comparison of phase compositions and crystalline sizes of BiVO₄/WO₃ composite films with different mole ratios.

Sample	Phase composition (%)		Crystalline size (nm)	
	BiVO ₄	WO ₃	BiVO ₄	WO ₃
BiVO ₄	100	- ·	18.09	-
4:1BiVO ₄ /WO ₃	93.29	6.71	24.63	13.35
3:2BiVO ₄ /WO ₃	76.16	23.84	29.06	15.53
1:1BiVO ₄ /WO ₃	71.54	28.46	31.40	17.51
2:3BiVO ₄ /WO ₃	67.17	32.83	28.30	16.49
1:4BiVO ₄ /WO ₃	46.87	53.13	31.20	14.01
WO_3	1 -	100	-	16.49

Figure 4.19 UV-vis diffuse absorption spectra of pure BiVO₄, pure WO₃ and BiVO₄/WO₃ composite films with different mole ratio after annealing at 500°C for 1 h of (a) the transmission, (b) refraction and (c) absorption in the range of 500–800 nm and (d) the plots of $(\alpha h v)^2$ versus photon energy (h v).

Figure 4.19 shows (a) transmission, (b) refraction and (c) absorption spectra in the range of 300–700 nm of the pure WO₃, pure BiVO₄ and BiVO₄/WO₃ composites containing of 1:4, 2:3, 1:1, 3:2 and 4:1 mole ratios, which were investigated by UV-vis spectrophotometer. It was found that the absorption edges of all BiVO₄/WO₃ composite films were similar to pure BiVO₄ with in the range of 500–560 nm. Moreover, the band gap energies of all samples were evaluated using the Equation (2.1) as previously reported in Chapter 2, in which the intercept of the plots of $(\alpha h v)^2$ versus h v were estimated as band gap energies of the photocatalysts films as illustrated in Figure 4.19(d) and Table 4.7. It is showed that the band gap energies of BiVO₄/WO₃ composite films were decreased with increasing the mole ratios of BiVO₄ loading.

4.4.3 Photocatalytic activities of BiVO₄/WO₃ composite films

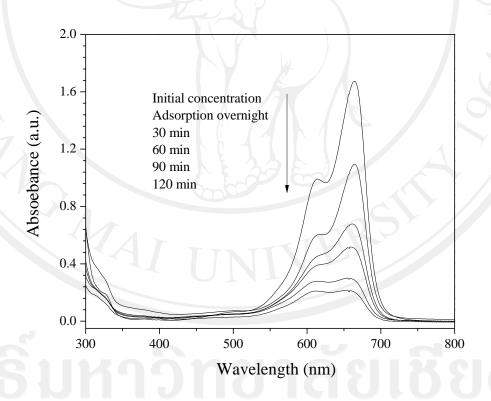


Figure 4.20 UV-vis spectra of MB with 4:1BiVO₄/WO₃ composite film.

The photocatalytic activities of the BiVO₄/WO₃ composite films with different mole ratios were also evaluated by a degradation of MB aqueous

solution (50 µM) with the catalyst loading of ~0.1 g/L under visible light irradiation and compared to the pure WO₃ and BiVO₄ films. The time dependent absorption spectrum for the photocatalytic degradation of MB by 4:1BiVO₄/WO₃ composite film under visible light irradiation is presented in Figure 4.20, which is clearly seen that the absorption of MB decrease when increasing irradiation time. Figure 4.21 shows the adsorptive and photocatalytic efficiencies of the pure WO₃ and pure BiVO₄ and BiVO₄/WO₃ composite films with different mole ratios for MB degradation. It was found that the adsorptive efficiency of the pure WO₃ was the highest due to showing more negatively charged surface (IEP = 1.67) than the pure BiVO₄ (IEP = 3.74) which was favored by cationic dye such as MB, and the adsorptive efficiencies of the BiVO₄/WO₃ composite films were also increased with increasing mole ratio of WO₃ and corresponding to their total surface area as shown in Table 4.7. In contrast, the photocatalytic efficiency of BiVO₄/WO₃ composite films was increased when increasing the mole ratio of BiVO₄, the 4:1 BiVO₄/WO₃ composite films exhibited the highest photocatalytic efficiency. Since, visible light can be harvested by the BiVO₄, corresponding to the estimated band gap of 2.45 eV as shown in Figure 4.19(d), which thus leads to higher harvest efficiency of sunlight, compared to the WO₃. Moreover, the pseudo-first order kinetic model as shown in Equation (1.35) in Chapter 1 was applied for all of synthesized composite films. The comparison of pseudo-first order rate constants for the pure WO₃, pure BiVO₄, 1:4, 3:2, 1:1, 2:3 and 4:1 mole ratio of the BiVO₄/WO₃ composite films were summarized as the bar graphs in Figure 4.22 and Table 4.7, which 4:1BiVO₄/WO₃ composite also showed the highest rate constant of 0.693±0.064 for degradation of MB under visible light irradiation

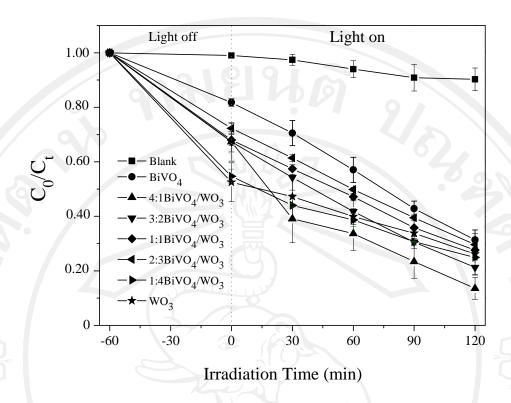
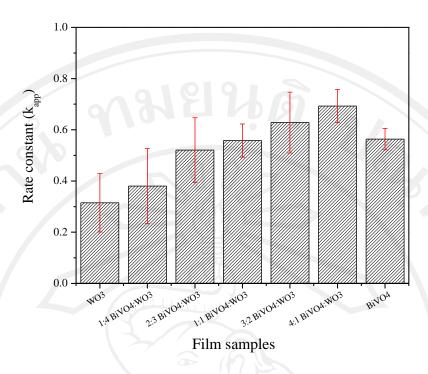



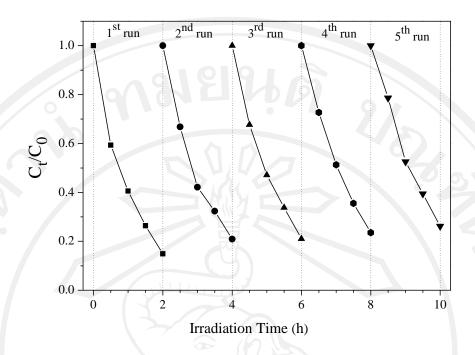
Figure 4.21 Photocatalytic efficiencies of composite films with different mole ratios.

Table 4.7 The relationship between BET surface areas (S_{BET}), band gap energies (E_g) and degradation rate constant (k_{app}) of methylene blue solution over BiVO₄/WO₃ composite films with different mole ratios.

Sample films	Properties				
	E_g (eV)	S_{BET} (m ² g ⁻¹)	total area (cm²)	k_{app} (h ⁻¹)	
BiVO ₄	2.45	15.40	1540	0.564 ± 0.021	
4:1BiVO ₄ / WO ₃	2.39	8.61	861	0.693 ± 0.064	
3:2BiVO ₄ / WO ₃	2.41	10.00	1000	0.628 ± 0.119	
1:1BiVO ₄ / WO ₃	2.43	14.61	1461	0.558 ± 0.065	
2:3BiVO ₄ / WO ₃	2.44	15.98	1598	0.521 ± 0.130	
1:4BiVO ₄ / WO ₃	2.47	18.06	1806	0.380 ± 0.147	
WO ₃	2.58	26.36	2636	0.315 ± 0.114	

Figure 4.22 First order rate constants of photodegradation of MB by using BiVO₄, WO₃ and BiVO₄/WO₃ composite films with different mole ratios under visible light irradiation.

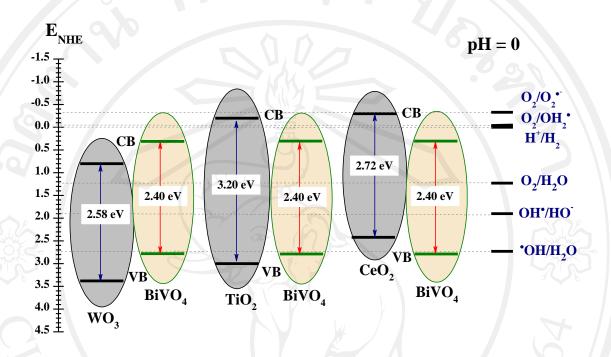
In order to understand more about the mechanism of the 4:1BiVO₄/WO₃ photocatalyst for degradation of MB, the proposed diagram for their energy band edges and separation of electron-hole pairs are illustrated in Figure 4.23. It was believed that the enhancement of photocatalytic activity of the 4:1BiVO₄/WO₃ composite was attributed to charge transfer at the heterojunction interfaces between BiVO₄ and WO₃ with matching band potentials, which consequently favoured an effective photoexcited electron hole separation in the two materials. Thus, the estimated CB and VB positions were 0.31 and 2.76 eV of BiVO₄ and 0.80 and 3.38 eV of WO₃, respectively, which were calculated from the Equation (2.3) in Chapter 2 with χ and E_g of 6.04 eV [36] and 2.45 eV for BiVO₄ and 6.59 eV [42] and 2.58 eV for WO₃, respectively. These results were in good agreement with the previous reports [36, 42].


As shown in Figure 4.23, MB can be activated by the visible light irradiation to generate the MB* and inject electron to CB of BiVO₄ [37]. Simultaneously, BiVO₄ and WO₃ particles can also absorb the visible light

and generate electron and hole pairs. When the BiVO₄/WO₃ composite is irradiated with visible light, photoexited electrons can be generated in the CB of the BiVO₄, which can be inject to the CB of WO₃ easily due to the potential difference. Alternatively, photogenerated holes in the VB of WO₃ can transfer to the VB of BiVO₄. The potential at VB of BiVO₄ will then react with the adsorbed water molecules on their surface to produce hydroxyl radicals, and the adsorbed MB molecules can be oxidized by theses hydroxyl radicals [36, 37, 42].

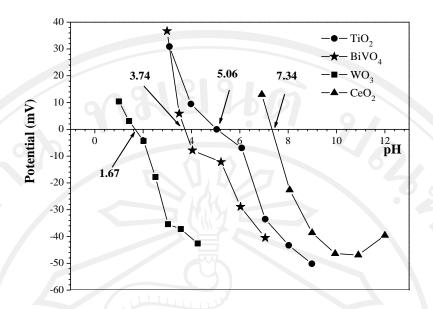
Figure 4.23 Schematic diagram of charge separation of BiVO₄/WO₃ heterostructure photocatalysts under visible light irradiation at pH 0.

For applying to practical applications, the stability of photocatalysts is the important point to study. In this research, the stability and recyclability of the 4:1BiVO₄/WO₃ composite film for degradation of MB dye was studied with the same experimental conditions during each run the film was annealed at 250°C for 1 h to remove the organic contaminants from the surface of catalyst film. Figure 4.24 shows the 4:1BiVO₄/WO₃ composite film was reused five times. It was found that after five recycles the photocatalytic activity had no significant changes for the photodegradation of MB over of the catalyst film under visible light irradiation.


Figure 4.24 Recycling runs of methylene blue solution in the photodegradation on 4:1BiVO₄/WO₃ photocatalytic film.

4.5 Comparative photocatalytic activity of BiVO₄/CeO₂, BiVO₄/TiO₂ and BiVO₄/WO₃ composites

Considerations of coupling between two semiconductors with different appropriate energy levels of BiVO₄/WO₃, BiVO₄/TiO₂ and BiVO₄/CeO₂ at pH 0 are presented in Figure 4.25, which corresponded to photocatalytic activities for MB degradation that of the BiVO₄/CeO₂ composite exhibited higher than those of the BiVO₄/TiO₂ and BiVO₄/WO₃ composites. These can be described that the mechanisms of the three different composites as follows:


When the coupled BiVO₄/CeO₂ is irradiated with visible light, BiVO₄ and CeO₂ in the composite can be activated. Since BiVO₄ has the CB and VB potential edges more positive than CeO₂ (Figure 4.25), the excited electrons in CB of CeO₂ can be injected to the CB of BiVO₄, whereas the photogenerated holes at the VB of BiVO₄ can be transferred the VB of CeO₂. The adsorbed oxygen molecules on the surface of the CeO₂ can be reduced by electrons at its CB to generate finally hydroxyl radicals, and the absorbed water molecules on the surface of the BiVO₄ can be oxidized by potential at its

VB to produce hydroxyl radicals. Thus, there are two main mechanisms of the BiVO₄/CeO₂ composite to degrade MB, which favour to adsorb on the surface of a high negative surface charge of BiVO₄ at pH 7 (Figure 4.26), leading this composites showed the highest photocatalytic activity for degradation of MB.

Figure 4.25 The possible band edge positions of coupled BiVO₄/WO₃, BiVO₄/TiO₂ and BiVO₄/CeO₂ at pH 0.

For BiVO₄/TiO₂ composite, the CB and VB of BiVO₄ are located between the CB and VB of TiO₂, in which the band gap energy of BiVO₄ (2.4 eV) is smaller than TiO₂ (3.2 eV). Under visible light irradiation, MB molecule in aqueous solution can adsorb the visible light to generate the MB* and inject electron to CB of TiO₂. The electron from the more negative CB of TiO₂ can reduce surface chemisorbed O₂ to O₂. which showed the main mechanism of this system. According to the TiO₂ nanoparticles covered on the surface of BiVO₄ particles, and also TiO₂ provided high surface area with negatively surface charge at pH 7 (Figure 4.26) which MB molecules favour to adsorb on the TiO₂ surface. Thus, the BiVO₄/TiO₂ composite showed lower photocatalytic activity than that of BiVO₄/CeO₂ composite.

Figure 4.26 pH dependence of zeta potential of the BiVO₄, TiO₂, WO₃ and CeO₂ in an aqueous solution.

In the BiVO₄/WO₃ composite, the CB and VB potential edges of BiVO₄ are more negative than those of WO₃, which is the opposite configuration to the BiVO₄/CeO₂ composite. The BiVO₄ and WO₃ can be activated by visible light irradiation and generated electron and hole pairs. The electrons at the CB of BiVO₄ then transfer to the CB of WO₃, but they cannot reduce absorbed O₂ to radical species due to both CB potentials are more positive than redox potential of reduction of O₂ to O₂^{-*} and OH₂^{*}. On the other hand, the photogenerated holes at the VB of WO₃ can transfer to the CB of BiVO₄, which can oxidize H₂O to OH^{*}. It is found that only one mechanism in this composite system at VB of BiVO₄ produce the hydroxyl radicals for degrading MB but they preferably adsorb on the surface of WO₃ than BiVO₄. As in Figure 4.21, WO₃ film showed highest adsorptive efficiency with corresponding to zeta potential data in Figure 4.26. Therefore, the BiVO₄/WO₃ composite exhibited the lowest photocatalytic activity as compared to the BiVO₄/CeO₂ and BiVO₄/TiO₂ composites.

4.6 Conclusions

BiVO₄/TiO₂ composite powders with mole ratios of 4:1, 3:2, 1:1, 2:3 and 1:4 were successfully synthesized by a coupling of the precipitation and sol-gel methods. Based on the characterization results of XRD, Raman, XPS, TEM, UV-vis DRS and N₂ adsorption-desorption, the influence of coupling BiVO₄ with TiO₂ on the crystal phase, morphology, band structure, surface element composition, morphology, optical absorption and surface area of the synthesized composites were investigated. The results showed that the high surface area of the composites, which composed of the minor phase of anatanse TiO₂ nanoparticles attached on the surface of the major phase of monoclinic BiVO₄ particles to form the heterostructure with the chemical interaction. The synthesized BiVO₄/TiO₂ composite powders were also fabricated on glass substrates used for photodegradation of MB dye under visible light irradiation, and all the as-prepared composite films exhibited the enhanced photocatalytic activities, which the composite film with mole ratio of 1:1 exhibited the highest photocatalytic activity. Their enhanced photocatalytic activities could be attributed to the transfer of electron, and the separation of electrons and holes was efficiently improved, which could be favorable for the enhancement of photocatalytic activity. It was also found that the photocatalytic reaction followed the pseudo first order kinetic model in the presence of all synthesized photocatalyst. The possible mechanism of reduction process at the CB of TiO₂ produced oxidizing radicals for degradation of MB under visible light irradiation.

BiVO₄/WO₃ composites with different ratios were successfully synthesized by a coprecipitation method, and characterized by XRD Raman, XPS, TEM, UV-vis DRS and N₂ adsorption-desorption. XRD and Raman analyses revealed that the two phases were composed of the monoclinic BiVO₄ and monoclinic WO₃. The XPS and TEM results confirmed that the formation of WO₃ particles attracted BiVO₄ particles of the BiVO₄/WO₃ composites with chemical interactions. The specific surface areas increased with increasing mole ratio of WO₃, which could enhance their photocatalytic activity. On the other hand, the photocatalytic activities of the BiVO₄/WO₃ composites increased, when the absorption edges of BiVO₄/WO₃ composites showed more red shift to visible region with increasing the mole ratio of BiVO₄. Thus, the BiVO₄/WO₃ composites displayed much higher photocatalytic activities on the degradation of than

the pure WO₃ under visible light irradiation, and the BiVO₄/WO₃ molar ratio of 4:1 showed the highest photocatalytic activity for degradation of MB. In this system of the BiVO₄/WO₃ composite, the main reaction for photocatalytic activity was oxidation process at the VB of BiVO₄, which generated active radicals to degrade MB.

4.7 References

- [1] Kudo A. Photocatalyst materials for water splitting, *Catal. Surv. Asia*, 2003, **7**, 31–38.
- [2] Bhatkhande D.S., Pangarkar V.G., Beenackers A.C.M. Photocatalytic degradation for environmental applications a review, *J. Chem. Technol. Biotechnol.*, 2002,77, 102–116.
- [3] Wang D.E., Li R.G., Zhu J., Shi J.Y., Han J.F., Zong X. Photocatalytic water oxidation on BiVO₄ with the electrocatalyst as an oxidation cocatalyst: Essential relations between electrocatalyst and photocatalyst, *J. Phys. Chem. C*, 2012, **116**, 5082–5089.
- [4] Pelaez M., Nolan N.T., Pillai S.C., Seery M.K., Falaras P., Kontos A.G. A review on the visible light active titanium dioxide photocatalysts for environmental applications, *Appl. Catal. B*, 2012, **125**, 331–349.
- [5] Feng H., Zhang M.H., Yu L.E. Hydrothermal synthesis and photocatalytic performance of metal-ions doped TiO₂, *Appl. Catal. A*, 2012, **413–414**, 238–44.
- [6] Chatchai P., Murakami Y., Kishioka S., Nosaka A.Y, Nosaka Y. Efficient photocatalytic activity of water oxidation over WO₃/BiVO₄ composite under visible light irradiation, *Electrochim. Acta*, 2009, **54**, 1147–1152.
- [7] Gupta S., Tripathi M. A review of TiO₂ nanoparticles, *Chinese Sci. Bull.*, 2011, **56**, 1639–57.
- [8] Ahmed S., Rasul M.G., Martens W.N., Brown R., Hashib M.A. Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments, *Desalination*, 2010, **261**, 3–18.

- [9] Li L., Yan B. BiVO₄/Bi₂O₃ submicrometer sphere composite: Microstructure and photocatalytic activity under visible-light irradiation, *J. Alloy. Compd.*, 2009, 476, 624–628.
- [10] Chen L., Zhang Q., Huang R., Yin S.F., Luo S.L., Au C.T. Porous peanut-like Bi₂O₃-BiVO₄ composites with heterojunctions: One-step synthesis and their photocatalytic properties, *Dalton Trans.*, 2012, **41**, 9513–9518.
- [11] Jiang H.Q., Nagai M., Kobayashi K. Enhanced photocatalytic activity for degradation of methylene blue over V₂O₅/BiVO₄ composite, *J. Alloy. Compd.*, 2009, **479**, 821–827.
- [12] Su J., Zou X.X., Li G.D., Wei X., Yan C., Wang Y.N. Macroporous V₂O₅-BiVO₄ composites: Effect of heterojunction on the behavior of photogenerated charges. *J. Phys. Chem. C*, 2011, **115**, 8064–8071.
- [13] Ji T.H., Yang F., Zhou J.Y., Du H.Y., Sun J.Y. Visible-light responding BiVO₄/TiO₂ nanocomposite photocatalyst, *Spectros. Spect. Analys.*, 2010, **30**, 1944–1947.
- [14] Hu Y., Li D., Zheng Y., Chen W., He Y., Shao Y. BiVO₄/TiO₂ nanocrystalline heterostructure: A wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene, *Appl. Catal. B*, 2011, **104**, 30–36.
- [15] Zhang L., Tan G., Wei S., Ren H., Xia A., Luo Y. Microwave hydrothermal synthesis and photocatalytic properties of TiO₂/BiVO₄ composite photocatalysts, *Ceram. Int.*, 2013, **39**(8), 8597–8604
- [16] Chatchai P., Nosaka A.Y., Nosaka Y. Photoelectrocatalytic performance of WO₃/BiVO₄ toward the dye degradation, *Electrochim. Acta*, 2013, **94**, 314–319.
- [17] Hong S.J., Lee S., Jang J.S., Lee J.S. Heterojunction BiVO₄/WO₃ electrodes for enhanced photoactivity of water oxidation, *Energy Environ. Sci.*, 2011, **4**, 1781–1787.

- [18] Su J., Guo L., Bao N., Grimes C.A. Nanostructured WO₃/BiVO₄ heterojunction films for efficient photoelectrochemical water splitting, *Nano Lett.*, 2011, **11**, 1928–1933.
- [19] Jiang J, Wang M, Li R, Ma L, Guo L. Fabricating CdS/BiVO₄ and BiVO₄/CdS heterostructured film photoelectrodes for photoelectrochemical applications, *Int. J. Hydrogen Energ.*, 2013, **38**, 13069–13076.
- [20] Bajaj R., Sharma M., Bahadur D. Visible light-driven novel nanocomposite (BiVO₄/CuCr₂O₄) for efficient degradation of organic dye, *Dalton Trans.*, 2013, 42, 6736–6744.
- [21] Pilli S.K., Deutsch T.G., Furtak T.E., Brown L.D., Turner J.A., Herring A.M. BiVO₄/CuWO₄ heterojunction photoanodes for efficient solar driven water oxidation, *Phys. Chem. Chem. Phys.*, 2013, **15**, 3273–3278.
- [22] Yu J., Zhang Y., Kudo A. Synthesis and photocatalytic performances of BiVO₄ by ammonia co-precipitation process, *J. Solid State Chem.*, 2009, **182**, 223–228.
- [23] Wetchakun N., Incessungvorn B., Wetchakun K., Phanichphant S. Influence of calcination temperature on anatase to rutile phase transformation in TiO₂ nanoparticles synthesized by the modified sol–gel method, *Mater. Lett.*, 2012, 82, 195–198.
- [24] Wetchakun N., Chaiwichain S., Inceesungvorn B., Pingmuang K., Phanichphant S., Minett A.I., Chen J. BiVO₄/CeO₂ Nanocomposites with high visible-light-induced photocatalytic activity, *ACS Appl. Mater. Interfaces*, 2012, **4**, 3718–3723.
- [25] Nattestad A., Ferguson M., Kerr R., Cheng Y.B., Bach U. Dye-sensitized nickel(II)oxide photocathodes for tandem solar cell applications, *Nanotechnology*, 2008, **19**, 295304.
- [26] Miao L., Tanemura S., Toh S., Kaneko K., Tanemura M. Fabrication, characterization and Raman study of anatase-TiO₂ nanorods by a heating sol-gel template process, *J. Cryst. Growth*, 2004, **264**, 246–252.

- [27] Xue X., Ji W., Mao Z., Mao H., Wang Y., Wang X. Raman investigation of nanosized TiO₂: Effect of crystallite size and quantum confinement, *J. Phys. Chem. C*, 2012, **116**, 8792–8797.
- [28] Gotić M., Musić S., Ivanda M., Šoufek M., Popović S. Synthesis and characterisation of bismuth(III) vanadate, *J. Mol. Struct.*, 2005, **744–747**, 535–540.
- [29] Zhang A., Zhang J., Cui N., Tie X., An Y., Li L. Effects of pH on hydrothermal synthesis and characterization of visible-light-driven BiVO₄ photocatalyst, *J. Mol. Catal. A*, 2009, 304, 28–32.
- [30] Xiaodan Y., Qingyin W., Shicheng J., Yihang G. Nanoscale ZnS/TiO₂ composites: Preparation, characterization, and visible-light photocatalytic activity, *Mater. Charact.*, 2006, **57**, 333–341.
- Obregon S., Colon G. A ternary Er³⁺-BiVO₄/TiO₂ complex heterostructure with excellent photocatalytic performance. *RSC Advances*, 2014, 4, 6920–6926.
- [32] Uddin M.T., Nicolas Y., Olivier C., Toupance T., Müller M.M., Kleebe H.J. Preparation of RuO₂/TiO₂ mesoporous heterostructures and rationalization of their enhanced photocatalytic properties by band alignment investigations, *J. Phys. Chem. C*, 2013, **117**, 22098–22110.
- [33] Kim C., Kim K.S., Kim H.Y., Han Y.S. Modification of a TiO₂ photoanode by using Cr-doped TiO₂ with an influence on the photovoltaic efficiency of a dyesensitized solar cell, *J. Mater. Chem.*, 2008, **18**, 5809–5814.
- [34] Nethercot A.H. Prediction of fermi energies and photoelectric thresholds based on electronegativity concepts, *Phys. Rev. Lett.*, 1974, **33**, 1088–1091.
- [35] Tian J., Sang Y., Zhao Z., Zhou W., Wang D., Kang X. Enhanced photocatalytic performances of CeO₂/TiO₂ nanobelt heterostructures, *Small*, 2013, **9**, 3864–3872.

- [36] Jiang H., Endo H., Natori H., Nagai M., Kobayashi K. Fabrication and efficient photocatalytic degradation of methylene blue over CuO/BiVO₄ composite under visible-light irradiation, *Mater. Res. Bull.*, 2009, **44**,700–706.
- [37] Seema H., Kemp K.C., Chandra V., Kim K.S. Graphene-SnO₂ composites for highly efficient photocatalytic degradation of methylene blue under sunlight, *Nanotechnology*, 2012, **23**, 355705.
- [38] Kohtani S., Yoshida K., Maekawa T., Iwase A., Kudo A., Miyabe H. Loading effects of silver oxides upon generation of reactive oxygen species in semiconductor photocatalysis, *Phys. Chem. Chem. Phys.*, 2008, **10**, 2986–2992.
- [39] Djaoued Y., Balaji S., Beaudoin N. Erratum to: Sol-gel synthesis of mesoporous WO₃-TiO₂ composite thin films for photochromic devices. *J. Sol-Gel Sci. Technol.*, 2013, **68**, 516–525.
- [40] Leghari S.A.K., Sajjad S., Chen F., Zhang J. WO₃/TiO₂ composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst, *Chem. Eng. J.*, 2011, **166**, 906–915.
- [41] Zhang S., Li H., Zhong Q. Promotional effect of F-doped V₂O₅-WO₃/TiO₂ catalyst for NH₃-SCR of NO at low-temperature, *Appl. Catal. A*, 2012, **435–436**, 156–162.
- [42] Shifu C., Lei J., Wenming T., Xianliang F. Fabrication, characterization and mechanism of a novel Z-scheme photocatalyst NaNbO₃/WO₃ with enhanced photocatalytic activity, *Dalton Trans.*, 2013, **42**, 10759–10768.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved