

CHAPTER 7

Efficient photocatalytic degradation of Rhodamine B by a novel CeO₂/Bi₂WO₆ composite film

Chapter seven describes the results, discussions and conclusions of CeO₂/Bi₂WO₆ composite film for Rhodamine B (RhB) degradation under visible light irradiation. As previously my published paper [1], the 0.4CeO₂/0.6Bi₂WO₆ composite powder shows a high photocatalytic activity. Accordingly, we choose this ratio to fabricate film. The pure CeO₂, pure Bi₂WO₆ and 0.4CeO₂/0.6Bi₂WO₆ composite films were prepared using a doctor blading method. The films were characterized for their physicochemical properties based upon X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), Photoluminescence (PL) and UV-vis Spectroscopy techniques. The photocatalytic activity of pure CeO₂, pure Bi₂WO₆ and 0.4CeO₂/0.6Bi₂WO₆ composite films were examined by studying degradation of RhB under visible light irradiation.

7.1 Physical appearance

All films show the smooth surface with different color. The Bi₂WO₆ presents the pale yellow color of film, as shown in Figure 7.1a. The CeO₂ and 0.4CeO₂/0.6Bi₂WO₆ composite films appear the light yellow color (Figure 7.1b) and pale yellow color (Figure 7.1c), respectively. The average weight of all samples was found to be 4-6 mg.

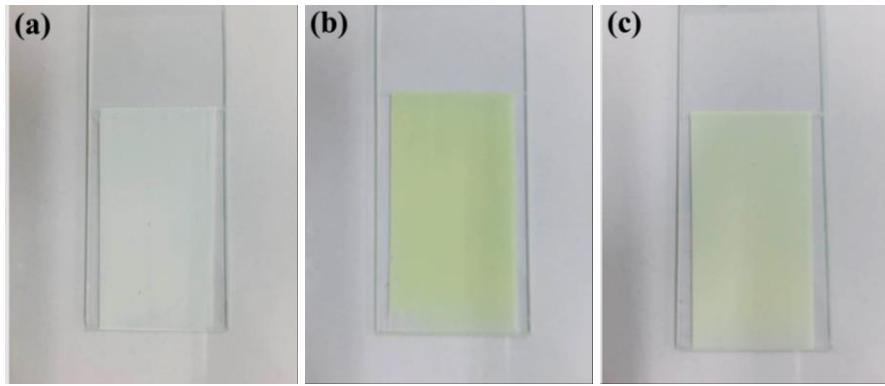


Figure 7.1 The physical appearance of (a) pure Bi_2WO_6 , (b) pure CeO_2 and (c) $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ films.

7.2 X-ray Diffraction (XRD)

The X-ray diffraction patterns of the one-layered Bi_2WO_6 , CeO_2 and $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite films are shown in Figure 7.2. The diffraction peaks of Bi_2WO_6 film are located at 2θ of 28.27° , 32.92° , 47.11° and 55.85° , which can be indicated as the (131), (002), (202) and (331) planes. The XRD peaks of Bi_2WO_6 film displayed orthorhombic phase conforming to JCPDS files no. 39-0256. The CeO_2 film exhibited a cubic fluorite phase with the diffraction peaks at 2θ of 28.45° , 33.06° , 47.43° and 56.04° , which can be identified by JCPDS files no. 34-0394 to the (111), (200), (220) and (311) planes. The $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite film exposed the diffraction peaks of cubic fluorite and orthorhombic structure of CeO_2 and Bi_2WO_6 , respectively. The average crystallite size of pure CeO_2 , pure Bi_2WO_6 and $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite films were calculated to be 4.30, 9.35 and 6.16 nm, respectively.

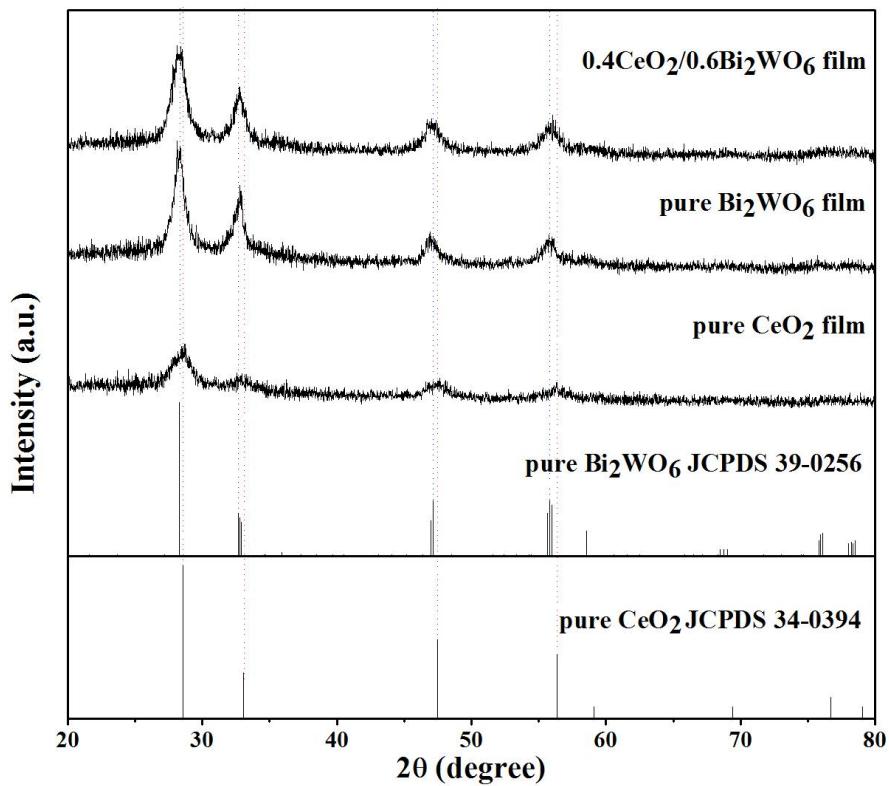


Figure 7.2 XRD patterns of pure Bi_2WO_6 , pure CeO_2 and $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite films.

7.3 Scanning Electron Microscopy (SEM)

Figure 7.3 shows the morphologies of pure CeO_2 , pure Bi_2WO_6 and $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite films. The one, two and three layers of pure CeO_2 film displayed a spherical-like particle with an average diameter in the range of 5-20 nm (Figure 7.3a-c). The morphology of Bi_2WO_6 film for one, two and three layers is presented in Figure 7.3d-f. SEM images of Bi_2WO_6 (1-3 layers) show a plate-like shape with the width in the range of 200-300 nm and length in the length of 300-700 nm. The $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite film shows the spherical-like particle of pure CeO_2 and plate-like shape of pure Bi_2WO_6 , as presented in Figure 7.3g-i. The cross-sectional images of pure CeO_2 , pure Bi_2WO_6 and $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite films in one, two and three layers are exhibited in Figure 7.4. The cross-sectional thickness of pure CeO_2 film increased with increasing the thickness layer from 1 layer to 3 layers. The thicknesses of CeO_2 in 1-3 layers were measured about 0.8-1.1 μm as shown in Figure 7.4a-c. The cross section of pure Bi_2WO_6 and $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite films in

1-3 layers (Figure 7.4d-i) displayed the thickness in the range of 3-4 μm . The average thickness from three pieces of films in one, two and three layered of pure CeO_2 , pure Bi_2WO_6 and 0.4CeO₂/0.6Bi₂WO₆ films are observed in Figure 7.5. The thickness of the CeO_2 film is measured in the average range of 0.7, 1.0 and 1.3 μm for one, two and three layers, respectively. The Bi_2WO_6 and 0.4CeO₂/0.6 Bi₂WO₆ composite films were found the average thickness ranging from 3-4 μm .

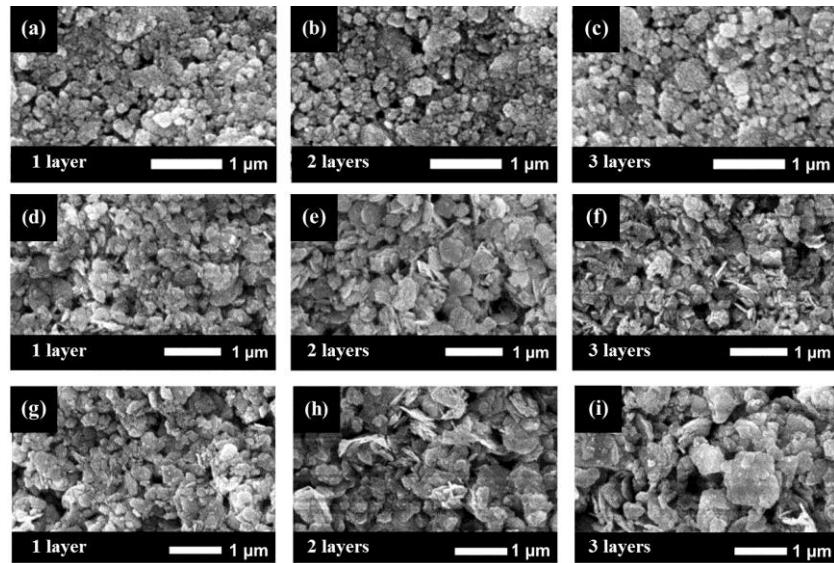


Figure 7.3 The morphological SEM images of (a-c) pure CeO_2 , (d-f) pure Bi_2WO_6 and (g-i) 0.4CeO₂/0.6Bi₂WO₆ composite films with the thickness of 1, 2 and 3 layers.

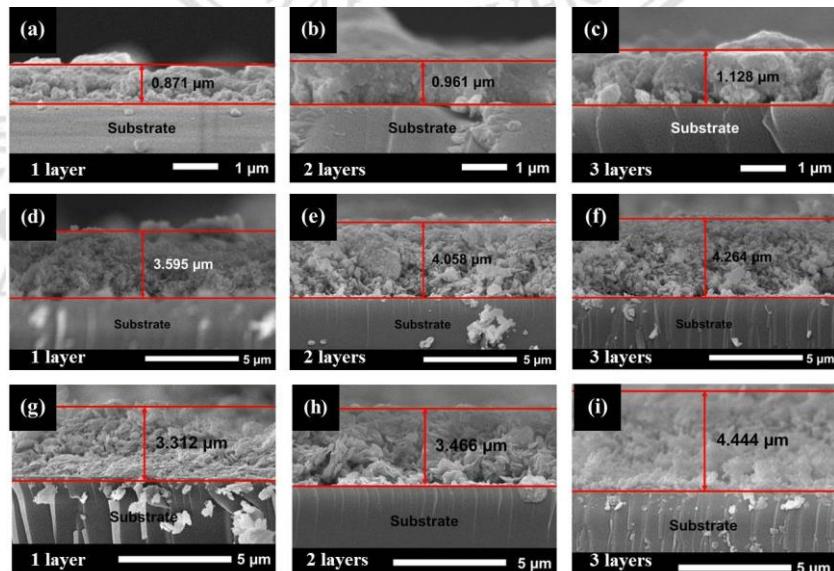


Figure 7.4 The cross-sectional SEM images of pure CeO_2 (a-c), pure Bi_2WO_6 (d-f) and 0.4CeO₂/0.6Bi₂WO₆ composite (g-i) films with the thickness of 1, 2 and 3 layers.

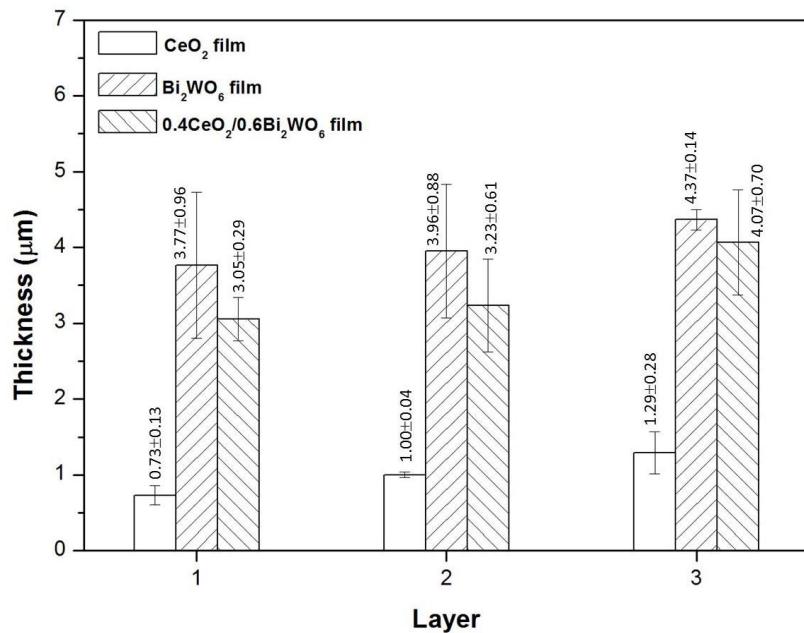


Figure 7.5 The average thickness of pure CeO₂, pure Bi₂WO₆ and 0.4CeO₂/0.6 Bi₂WO₆ composite films.

7.4 X-ray Photoelectron Spectroscopy (XPS)

The chemical states and element compositions of all films were investigated by X-ray photoelectron spectroscopy (XPS). The binding energies of Bismuth (Bi), Tungsten (W), Cerium (Ce) and Oxygen (O) are shown in Figure 7.6. The Bi 4f_{5/2} and Bi 4f_{7/2} peaks of pure Bi₂WO₆ and 0.4CeO₂/0.6Bi₂WO₆ composite film are shown in Figure 7.6a. The main peaks of Bi 4f_{5/2} and Bi 4f_{7/2} were located at about 164.00 and 159.00 eV, which assigned to Bi³⁺ species in Bi₂WO₆ [2,3]. The binding energy peaks of 165.43 and 160.08 eV for Bi 4f_{5/2} and Bi 4f_{7/2}, respectively, indicate to higher electropositive Bi appearing in the monolayers [4,11]. The XPS peaks of pure Bi₂WO₆ and 0.4CeO₂/0.6Bi₂WO₆ composite film were found at about 37.00 and 35.00 eV. These refers to W 4f_{5/2} and W 4f_{7/2} of W⁶⁺ (high spin) species in Bi₂WO₆ [2,3], as shown in Figure 7.6b. The binding energy of W 4f_{5/2} and W 4f_{7/2} at about 38.00 and 36.00 eV indicates the oxidation state of W⁵⁺ (low spin) [5]. The Ce 3d_{5/2} and 3d_{3/2} peaks of pure CeO₂ and 0.4CeO₂/0.6Bi₂WO₆ composite film were shown in Figure 7.6c. The binding energy of v, v'' and v''' are located at about 882.00, 888.00 and 898.00 eV, respectively, that is attributed to Ce⁴⁺ 3d_{5/2}. The binding energies at about 901.00, 907.00 and 916.00 eV, correspond to u, u'' and u''' of Ce⁴⁺ 3d_{3/2} [6,7]. The Bi 4f, W 4f and Ce 3d peaks of

0.4CeO₂/0.6Bi₂WO₆ composite film are shifted to a high binding energy due to stronger chemical bonds in composite [8]. Figure 7.6d shows the binding energy of O 1s of all films. The lattice oxygen in the metal oxides is located the peak at about 529 eV. The peak at 530-531 eV is defined to chemisorbed oxygen or weakly bonded oxygen species. The O1s peaks at binding energies of about 532-536 eV is determined to surface oxygen by hydroxyl species or adsorbed water species on the surface of photocatalyst material [9-11].

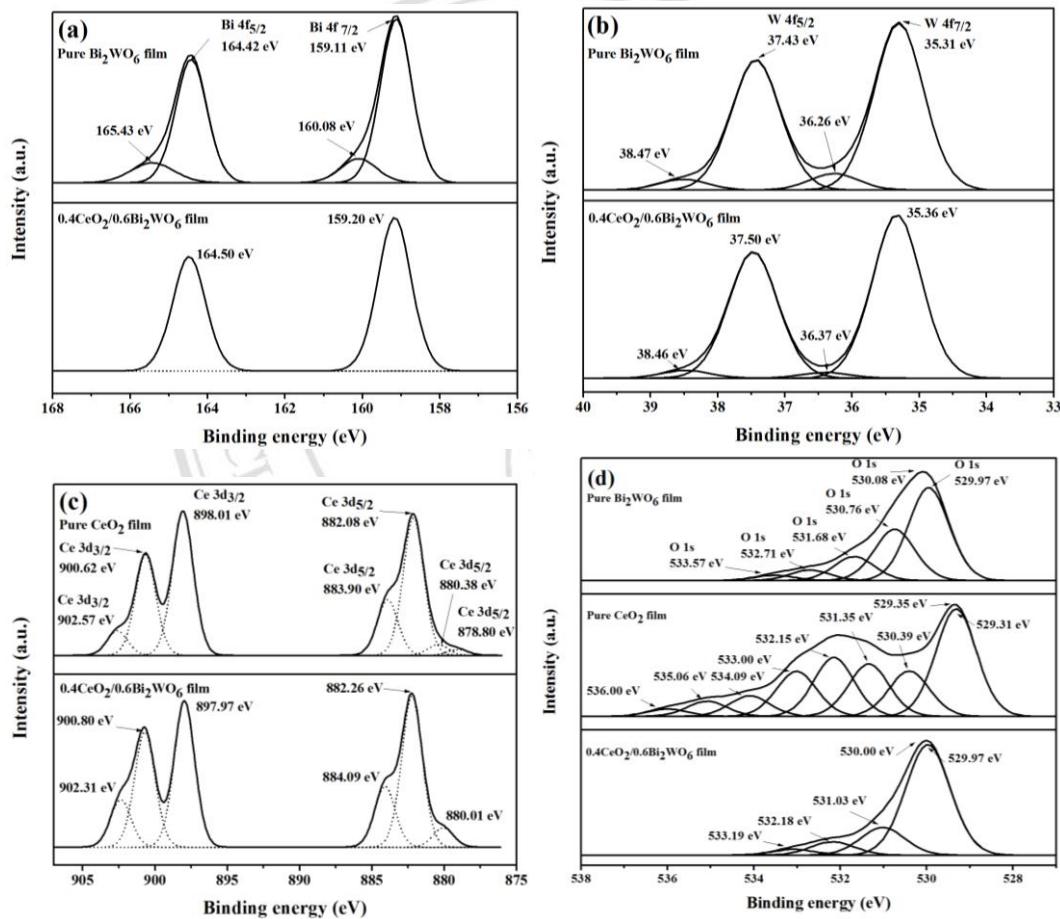


Figure 7.6 XPS spectra of (a) Bi 4f (b) W 4f (c) Ce 3d and (d) O 1s in the three-layered CeO₂, Bi₂WO₆ and 0.4CeO₂/0.6Bi₂WO₆ composite films.

7.5 UV-vis spectroscopy

The UV-vis spectra of one layer of pure Bi₂WO₆, pure CeO₂ and 0.4CeO₂/0.6Bi₂WO₆ composite films are presented in Figure 7.7. The absorption peaks of pure Bi₂WO₆, pure CeO₂ and 0.4CeO₂/0.6Bi₂WO₆ composite films were found to be

418, 459 and 448 nm. The band gaps of pure Bi_2WO_6 , pure CeO_2 and 0.4 CeO_2 /0.6 Bi_2WO_6 composite films were found to be 2.97, 2.70 and 2.77 eV, respectively.

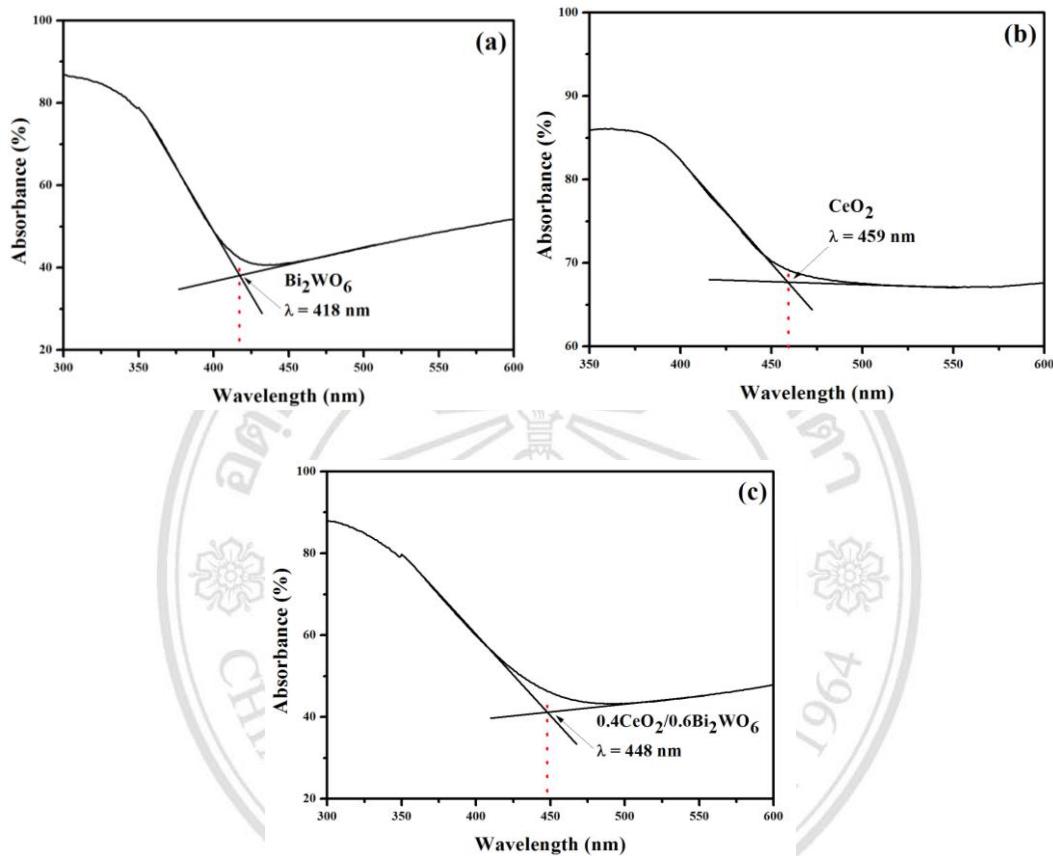


Figure 7.7 The absorption band edge of (a) pure Bi_2WO_6 , (b) pure CeO_2 and (c) 0.4 CeO_2 /0.6 Bi_2WO_6 composite films.

7.6 Photocatalytic activity

All photocatalyst films in one, two and three layers were applied for RhB degradation under visible light irradiation. The photodegradation performance of pure CeO_2 , pure Bi_2WO_6 and 0.4 CeO_2 /0.6 Bi_2WO_6 composite films are exhibited in Figure 7.8. The three layers of 0.4 CeO_2 /0.6 Bi_2WO_6 composite film were found the highest photoactivity of 44.40%. The k value of 0.4 CeO_2 /0.6 Bi_2WO_6 composite film in 3 layers was established to be 0.00397 min^{-1} . Figure 7.9 displays the comparison photocatalytic efficiency of all samples.

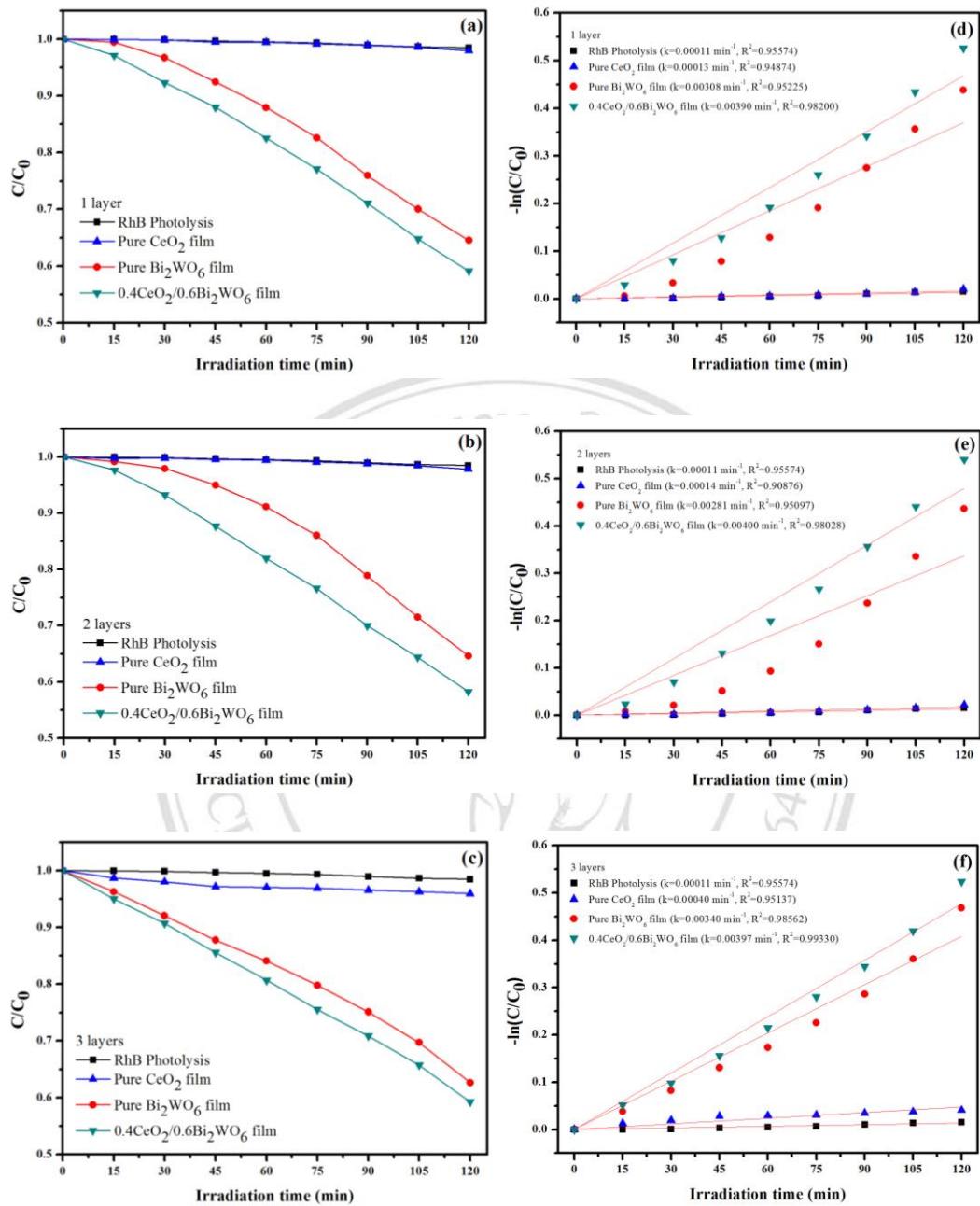


Figure 7.8 Photocatalytic activities and the reaction rate of pure CeO_2 , pure Bi_2WO_6 and $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite films in one, two and three layers for RhB degradation.

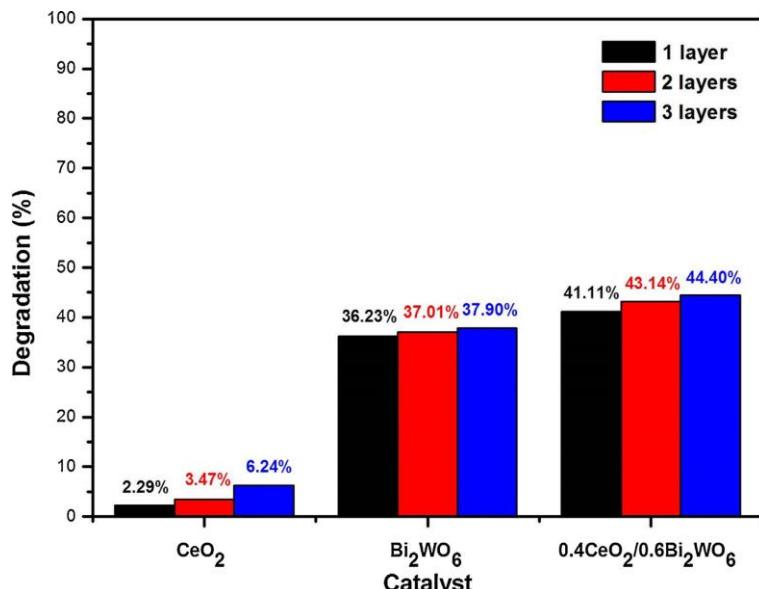


Figure 7.9 The photocatalytic activity comparison of pure CeO_2 , pure Bi_2WO_6 and $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite films in one, two and three layers for RhB degradation.

7.7 Photocatalytic stability

The photocatalytic stability of three-layered $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite film was evaluated by repeating the photocatalytic experiment to confirm the stability efficiency. The circulating runs of three-layered $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite film of RhB degradation is presented in Figure 7.10a. Figure 7.10b shows the reaction rate constants (k) of three-layered $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite film. The three-layered $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite film exhibits the high photocatalytic performance after five recycle runs. The photocatalytic efficiency of $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite film for RhB degradation was observed to be 44.23%, 41.05%, 40.74%, 37.49% and 35.67%.

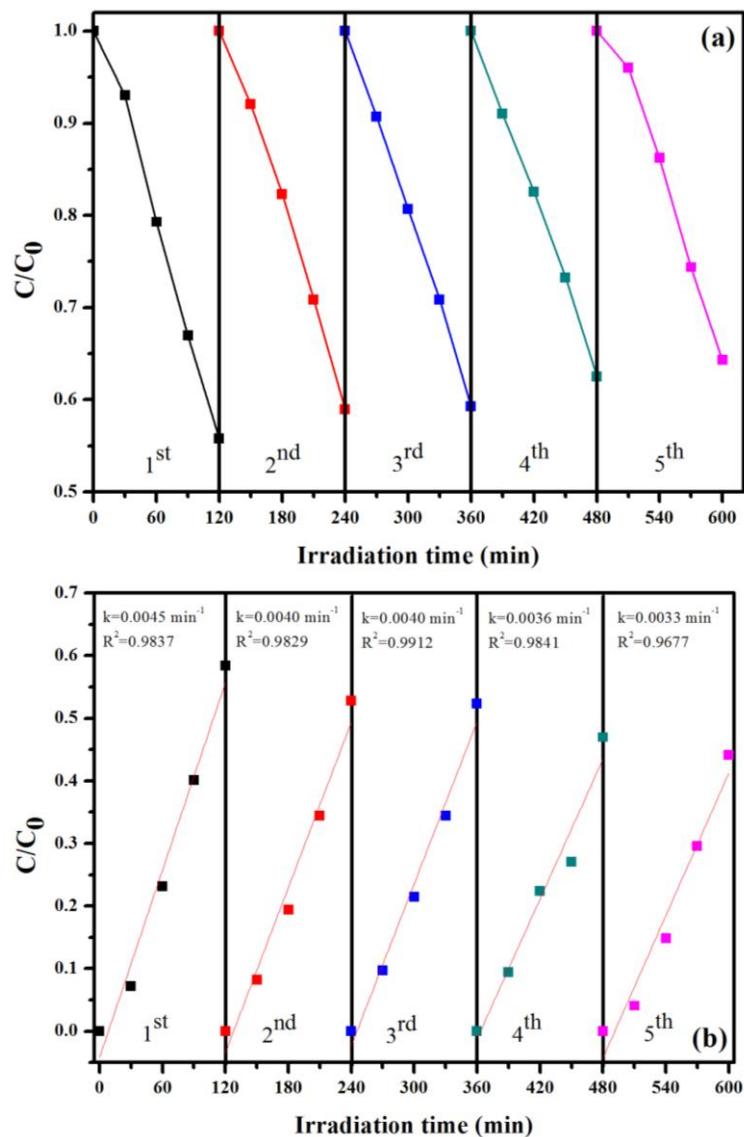


Figure 7.10 (a) the recycling runs of photocatalytic activity and (b) the reaction rate constant of 0.4CeO₂/0.6Bi₂WO₆ composite films in three layers for RhB degradation.

7.8 Photoluminescence (PL)

Photoluminescence technique was applied to detect the electron-hole pair recombination. Figure 7.11 shows the PL spectra of pure CeO₂, pure Bi₂WO₆ and 0.4CeO₂/0.6Bi₂WO₆ composite films. The lowest PL intensity was found in the pure CeO₂ film. This implies the low electron-hole pair recombination [12]. Nevertheless, the highest photocatalytic efficiency for degrading RhB was found in 0.4CeO₂/0.6Bi₂WO₆ composite film. This might be depended on many factors such as size, morphology, and crystallinity of the film.

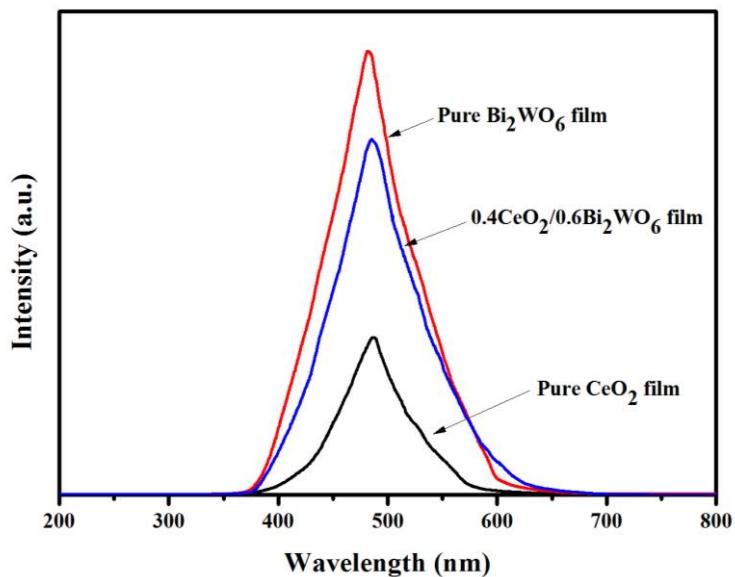


Figure 7.11 The photoluminescence spectra of pure CeO_2 , pure Bi_2WO_6 and $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite films.

The formation of $\cdot\text{OH}$ radicals was measured during the photocatalytic reaction in the RhB solution over the $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite film under visible light irradiation. The photoluminescence spectra of 2-hydroxyterephthalic acid were shown in Figure 7.12. The PL peak is increased with increasing irradiation time, implying that the increasing of $\text{TA}-\text{OH}\cdot$ on the surface of the $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite film [8].

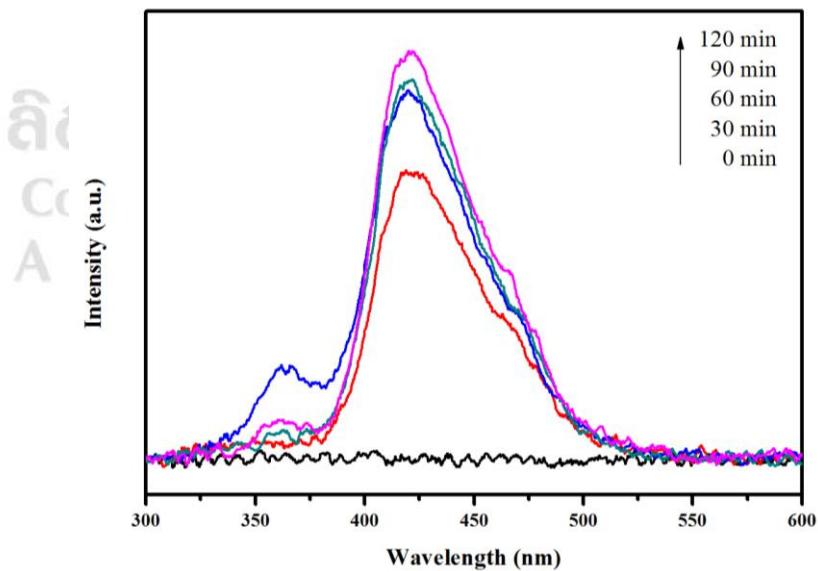


Figure 7.12 The fluorescence spectra of $\text{TA}-\text{OH}\cdot$ over $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite film.

7.9 The photocatalytic mechanism of $\text{CeO}_2/\text{Bi}_2\text{WO}_6$ composite film

Figure 7.13 presents the photocatalytic mechanism of $\text{CeO}_2/\text{Bi}_2\text{WO}_6$ composite film. The conduction band of CeO_2 and Bi_2WO_6 were calculated to be -0.28 and $+0.38$ V, respectively. The valence band of CeO_2 and Bi_2WO_6 were calculated to be $+2.42$ and $+3.35$ V, respectively. In photocatalysis process, the electron-hole pair was generated from the activation of photon energy in photocatalyst film. The photogenerated electrons from the conduction band of CeO_2 can transfer to the conduction band of Bi_2WO_6 . The photogenerated hole from the valence band of Bi_2WO_6 can transfer to the valence band of CeO_2 . The photogenerated electrons are oxidized by oxygen (O_2) to form superoxide anion radical ($\cdot\text{O}_2^-$). The photogenerated holes are reduced by H_2O or hydroxyl bond (OH^-) to generate hydroxyl radical ($\cdot\text{OH}$). However, the standard redox potentials (E_0) of $\text{O}_2/\cdot\text{O}_2^-$, $\cdot\text{OH}/\text{OH}^-$, and $\cdot\text{OH}/\text{H}_2\text{O}$, are located at -0.33 , $+1.99$, and $+2.27$ V, respectively. The holes in the valence band of CeO_2 and Bi_2WO_6 can be formed hydroxyl radical ($\cdot\text{OH}$) by oxidation reaction with OH^- or H_2O because the valence band potentials are more positive than the standard redox potentials of $\cdot\text{OH}/\text{OH}^-$ and $\cdot\text{OH}/\text{H}_2\text{O}$. Moreover, the electrons in the conduction band of CeO_2 and Bi_2WO_6 cannot react with $\cdot\text{O}_2^-$ and $\cdot\text{OH}$ because the conduction band potentials are more positive than the standard redox potentials of $\text{O}_2/\cdot\text{O}_2^-$ [12].

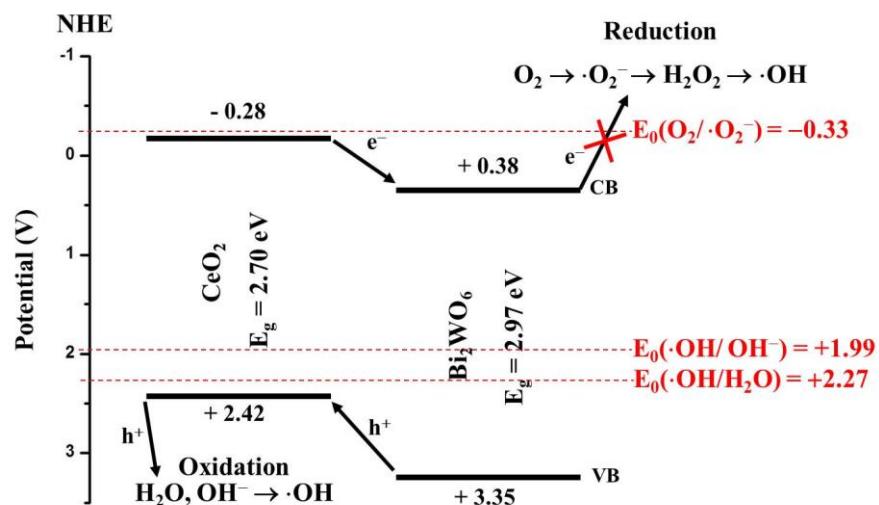
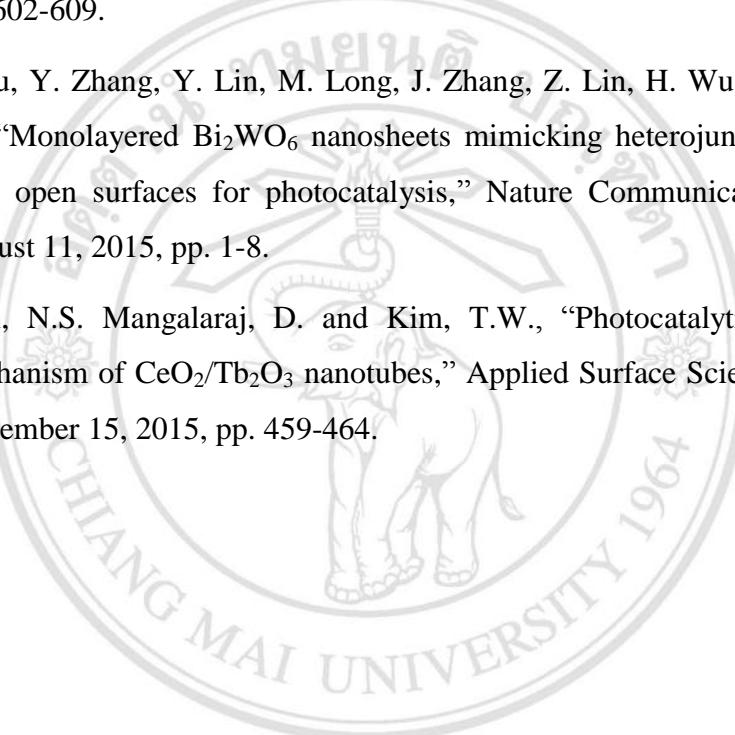


Figure 7.13 The probable photocatalytic mechanism of $\text{CeO}_2/\text{Bi}_2\text{WO}_6$ composite film.

7.10 Conclusions

The pure CeO_2 , pure Bi_2WO_6 and $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite films in one, two and three layers were successfully fabricated using a doctor blading method. The crystal structure of CeO_2 and Bi_2WO_6 are cubic fluoride and orthorhombic structure, respectively. The crystallite size of Bi_2WO_6 is bigger than CeO_2 . The morphology of CeO_2 shows the spherical-like shape and Bi_2WO_6 presents the plate-like shape. The chemical compositions of $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite film consist of Cerium (Ce), Bismuth (Bi), Tungsten (W) and Oxygen (O). The band gap energies of pure Bi_2WO_6 , pure CeO_2 and $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite films were found to be 2.97, 2.70 and 2.77 eV, respectively. The $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite film of 3 layers exhibits the highest photocatalytic activity and stability of RhB degradation for 120 minutes under visible light irradiation. It is expect that the $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite film can reduce the recombination of electron-hole pairs, which makes the highest photocatalytic activity. In addition, the $0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ composite film promoted the $\cdot\text{OH}$ radicals during the photocatalytic reaction.

Table 7.1 The summary of physicochemical properties and photocatalytic efficiency of $\text{CeO}_2/\text{Bi}_2\text{WO}_6$ composite film.


Properties	CeO_2 film (3 layers)	Bi_2WO_6 film (3 layers)	$0.4\text{CeO}_2/0.6\text{Bi}_2\text{WO}_6$ film (3 layers)
Structure	cubic	orthorhombic	cubic/orthorhombic
Crystallite size	4.30 nm	9.35 nm	6.16 nm
Morphology	sphere-like	plate-like	sphere/plate
Thickness	1.29 ± 0.28 μm	4.37 ± 0.14 μm	4.07 ± 0.70 μm
Band gap	2.70 eV	2.97 eV	2.77 eV
Photocatalytic performance (RhB)	6.24%	37.90%	44.40%

7.11 References

- [1] Issarapanacheewin, S. Wetchakun, K. Phanichphant, S. Kangwansupamonkon, W. and Wetchakun, N., "A novel CeO₂/Bi₂WO₆ composite with highly enhanced photocatalytic activity," Materials Letters, Vol. 156, October 1, 2015, pp. 28-31.
- [2] Gui, M. S. Zhang, W. D. Su, Q. X. and Chen, C. H., "Preparation and visible light photocatalytic activity of Bi₂O₃/Bi₂WO₆ heterojunction photocatalysts," Journal of Solid State Chemistry, Vol. 184, Issue 8, August 2011, pp. 1977-1982.
- [3] Duan, F. Zheng, Y. and Chen, M. Q., "Flowerlike PtCl₄/Bi₂WO₆ composite photocatalyst with enhanced visible-light-induced photocatalytic activity," Applied Surface Science, Vol. 257, Issue 6, January 1, 2011, pp. 1972-1978.
- [4] Ding, X. Zhao, K. and Zhang, L., "Enhanced photocatalytic removal of sodium pentachlorophenate with self-doped Bi₂WO₆ under visible light by generating more superoxide ions," Environmental Science and Technology, Vol. 48, April 30, 2014, pp. 5823-5831.
- [5] Guo, C. Yin, S. Dong, Q. and Sato, T., "The near infrared absorption properties of W₁₈O₄₉," RSC Advances, Vol. 2, Issue 12, March 5, 2012, pp. 5041-5043.
- [6] Anandan, C. and Bera, P., "XPS studies on the interaction of CeO₂ with silicon in magnetron sputtered CeO₂ thin films on Si and Si₂N₄ substrates," Applied Surface Science, Vol. 283, October 15, 2013, pp. 297-303.
- [7] Bêche, E. Charvin, P. Perarnau, D. Abanades, S. and Flamant, G., "Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (Ce_xTi_yO_z)," Surface and Interface Analysis, Vol. 40, January 21, 2008, pp. 264-267.
- [8] Cui, Y. Li, H. Hong, W. Fan, S. and Zhu, L., "The effect of carbon content on the structure and photocatalytic activity of nano-Bi₂WO₆ powder," Powder Technology, Vol. 247, October 2013, pp. 151-160.
- [9] Liu, H. Wang, M. Wang, Y. Liang, Y. Cao, W. and Su, Y., "Ionic liquid-templated synthesis of mesoporous CeO₂-TiO₂ nanoparticles and their

enhanced photocatalytic activities under UV or visible light," Journal of Photochemistry and Photobiology A: Chemistry, Vol. 223, Issue 2-3, September 25, 2011, pp. 157-164.

- [10] Wang, Y. Wang, F. Chen, Y. Zhang, D. Li, B. Kang, S. Li, X. and Cui, L., "Enhanced photocatalytic performance of ordered mesoporous Fe-doped CeO₂ catalysts for the reduction of CO₂ with H₂O under simulated solar irradiation," Applied Catalysis B: Environmental, Vol. 147, April 5, 2014, pp. 602-609.
- [11] Zhou, Y. Zhang, Y. Lin, M. Long, J. Zhang, Z. Lin, H. Wu, J. and Wang, X., "Monolayered Bi₂WO₆ nanosheets mimicking heterojunction interface with open surfaces for photocatalysis," Nature Communications, Vol. 6, August 11, 2015, pp. 1-8.
- [12] Arul, N.S. Mangalaraj, D. and Kim, T.W., "Photocatalytic degradation mechanism of CeO₂/Tb₂O₃ nanotubes," Applied Surface Science, Vol. 349, September 15, 2015, pp. 459-464.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved