CHAPTER 8

Photodegradation of Rhodamine B using Ag-doped Bi,WOg/Bi,W,0,;

composite film fabricated by a chemical deposition method

Chapter eight is mentioned the characterization and photocatalytic activity of Ag-
doped Bi,WO¢/Bi14W,0,7 composite film, which fabricated by a chemical deposition
method. The physicochemical of Ag-doped Bi,WOg/BiisW;0,; composite film were
characterized by X-ray Diffraction (XRD), Raman Spectroscopy, Scanning Electron
Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), X-ray Photoelectron
Spectroscopy (XPS), UV-vis Spectroscopy and Photoluminescence (PL) techniques.
The photocatalytic activity was studied using RhB as organic compounds at the

concentration of 0.125x10™> mol/L under visible light irradiation for 7 hours.
8.1 Physical appearance

The films were prepared by a chemical deposition method on glass slide substrate. Figure 8.1
shows pure Bi,WOs, 0.2% Ag-doped Bi,WOg/Bi1sW-O,7, 0.5% Ag-doped Bi,WOg/Bi1sW-Oy7,
1.0% Ag-doped Bi,WOg¢/Bi1sW,0y7, 3.0% Ag-doped BiWOs/Bi1sW-0,7, 5.0% Ag-doped
Bi,WOg/Bi1sW-0,7, 6.0% Ag-doped Bi,WOg/Bi1,W-0,7and 10.0% Ag-doped Bi,WOg/Bi1sW-0,7
composite films. The Bi,WO;s film displays a white color. The Ag-doped Bi;WOg/Bis W02,

composite films were changed the color to yellow and purple with increasing the mole of silver ion
(A).
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Figure 8.1 The physical appearance of (a) pure Bi;WOs, (b) 0.2% Ag-doped Bi;WOg/Bi1sW-027,
(c) 0.5% Ag-doped Bi;WOg/Bi1aW-:0y7, (d) 1.0% Ag-doped Bi,WOs/Bi1sW:07, () 3.0% Ag-
doped Bi,WOg/BiisW,0z7, () 5.0% Ag-doped Bi,WOg/BiisW-027, (g) 6.0% Ag-doped
Bi,WOg/Bi1,W,0,7 and (h) 10.0% Ag-doped Bi,WOg/Bi1,W,0,7 composite films.

8.2 X-ray Diffraction (XRD)

Figure 8.2 and 8.3 show XRD patterns of all films for unwashed and washed film
by DI water, respectively. The diffraction peaks at 20 of 28.28°, 32.78°, 47.08° and
55.82° that correspond to the orthorhombic structure of pure Bi,WOg (JCPDS no. 39-
0256). The peaks were indexed to the (131), (200), (202) and (331) planes, respectively.
The Ag-doped Bi,WOg/Bi1sW20,7 composite films exhibit the Bi,WOg and BisW,02;
phases. The BijsW;0,7 peaks at 20 of 27.51°, 31.96°, 45.76° and 54.28°, which can be
conformed to (312), (420), (424) and (552) planes, respectively. The diffraction pattern
of BiisW,0,; shows tetragonal structure (JCPDS no. 39-0061). The BiysW,0,7 phase
can be observed in the XRD patterns when the 0.2%, 1.0%, 3.0%, 5.0%, 6.0% and
10.0% of Ag were doped into the reaction system (Figure 8.2) [1]. The Ag-doped
Bi,WO¢/Bi1sW,0,7 composite films (0.5%Ag-doped Bi,WO¢/BiisW,0,7, 1.0%Ag-
doped Bi,WOg/Bi1sW20,7, 3.0%Ag-doped Bi,WOg/Bi1sW,0,7, 5.0%Ag-doped
Bi,WOg/Bi1sW,0,7 and 10.0%Ag-doped Bi,WO¢/Bi1sW,0,7; composite films) exhibit
the impurity peaks at about 37° and 43°. Nevertheless, the 5.0%Ag-doped
Bi,WOg/Bi1sW,0,7 composite film does not show the impurity after washing by DI
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water (Figure 8.3). The crystallite size of Bi,WOQg can be calculated using the Scherrer’s
equation at the plane of (131). The unwashed pure Bi;WOs 0.2% Ag-doped
Bi,WOg/Bi14W,07, 0.5% Ag-doped Bi,WOs/Bi1sW,04;, 1.0% Ag-doped Bi,WOg/BiisW-0,7,
3.0% Ag-doped Bi,WOg/BiisW-02, 5.0% Ag-doped Bi,WOs/BisW,0y7, 6.0% Ag-doped
Bi,WO4g/Bi12W,0,; and 10.0% Ag-doped BiWOg/Bi1sW-0,7 composite films were calculated
to be 26.49, 26.37, 30.47, 24.22, 29.88, 34.96, 24.27 and 35.38 nm, respectively. The
washed pure Bi,WOg, 0.2% Ag-doped Bi,WOy/Bi1s WOy, 0.5% Ag-doped Bi,WOg/Biis W07,
1.0% Ag-doped Bi,WOgs/Bi1sW,0y7, 3.0% Ag-doped BiWOs/BiisW-0,7, 5.0% Ag-doped
BiWO4/Bi14W-Oy7, 6.0% Ag-doped Bi,WOg/Bi14W,0,7 and 10.0% Ag-doped Bi,WOg/Bi1sW,02,
composite films were calculated to be 29.29, 25.30, 25.62, 26.20, 23.67, 30.12, 40.75 and 29.13 nm,

respectively.
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Figure 8.2 XRD patterns of all unwashed films.
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Figure 8.3 XRD patterns of all washed films.
8.3 Raman spectroscopy

Raman spectroscopy confirms the formation crystal phase of semiconductors. The
Raman spectra of the pure Bi,WOg and 5.0%Ag-doped Bi,WOg/BiisW,0,7; composite
films are presented in Figure 8.4. The Raman shifts of pure Bi,WOg are located at about
152.58, 207.01, 261.24, 283.69, 307.11, 330.72, 418.76, 709.73, 789.65 and 824.67
cm™*, which can be implied to the orthorhombic structure. The band at 152.58 cm™ is
ascribed to the lattice modes of the bismuth and tungsten (Bi—W). The bending of WOg
octahedra is at the peaks of 207.01, 261.24, 283.69, 307.11, 418.76 cm ™. The spectrum
at 330.72 cm ™ is attributed to the Bi—O polyhedra. The antisymmetric stretching modes
of WOg octahedra with the vibrations of the equatorial oxygen atom within layers are at
the peak of 709.73 cm™. The symmetric and antisymmetric stretching modes of
terminal O—-W-O groups are located at the Raman shift of 789.65 and 824.67 cm™,
respectively [2]. For the 5.0%Ag-doped Bi,WOg/Bi14W,0,; composite film, the Raman
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peaks are similar to the pure Bi,WOg peaks but it has the additional peaks at 551.39,
889.12, 924.36 and 1094.30 cm™*. The Raman spectra of Ag—O vibrations are appeared
at 551.39, 889.12, 924.36 and 1094.30 cm* [3].
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Figure 8.4 Raman spectra of pure Bi,WOg and 5.0%Ag-doped Bi,WOg/BiisW,0,7

composite films.
8.4 Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS)

The morphology and cross-section of pure Bi,WOg and 5.0%Ag-doped
Bi,WOg/Bi1sW,0,; composite films were characterized by SEM, as exhibited in Figure
8.5 and 8.6. The morphology of pure Bi,WOg film shows the sphere-like shape with the
diameter of 100-600 nm for unwashed Bi,WQOg (Figure 8.5a) and the diameter of 100-
300 nm for washed Bi,WOQOg (Figure 8.5b). The 5.0%Ag-doped Bi,WO¢/Bi1sW,02;
composite film displays the morphology of the sphere-like shape with the diameter of
100-400 nm for unwashed 5.0%Ag-doped Bi,WO¢/Bi1sW,0,7 composite film (Figure
8.5¢) and the diameter of 100-200 nm for washed 5.0%Ag-doped Bi,WOQOg/Bi1sW,0,7
composite film (Figure 8.5d). However, the particles of 5.0%Ag-doped
Bi,WO¢/Bi14sW,0,7 composite film were agglomerated more than pure Bi,WQOg film.
Figure 8.6 shows the cross-section of pure Bi,WOg and 5.0%Ag-doped
Bi,WO¢/Bi1sW,0,7 composite films. The thickness of unwashed Bi,WOs, washed
Bi,WOQOg, unwashed 5.0%Ag-doped Bi,WO4/BisW,0,; and washed 5.0%Ag-doped
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Bi,WOg/Bi1sW,0,7 composite films were measured to be 0.454, 0.489, 0.455 and 0.250
um, respectively. The average thicknesses of unwashed Bi,WQOg, washed Bi,WOg,
unwashed 5.0%Ag-doped Bi,WOg/BiisW,0,; and  washed  5.0%Ag-doped
Bi,WOQOg/Bi1sW,0,; composite films were found to be 0.49+0.03, 0.50+0.04, 0.45+0.01
and 0.27+0.03 um, as shown in Figure 8.7. The compositions of 5.0%Ag-doped
Bi,WOg/Bi1sW,0,7; composite film were investigated using EDS mapping technique.
Figure 8.8 displays the EDS mapping of washed 5.0%Ag-doped Bi,WOQOg/Bi1sW,0,7
composite film. The elements of 5.0%Ag-doped Bi,WOg/Bi14sW,0,7 composite film are
shown in Figure 8.9. The elements of unwashed 5.0%Ag-doped Bi,WO4/Bi1sW,02;
composite film was found to be 28.14%, 8.67%, 61.57% and 1.62% for Bi, W, O and
Ag, respectively (Figure 8.9a). The Bi, W, O and Ag elements of washed 5.0%Ag-
doped Bi,WOg/Bi14W,0,7; composite film was found to be 26.44%, 9.92%, 62.94% and
0.70%, respectively (Figure 8.9b). It can be observed that the Ag element decreased
after washing the 5.0%Ag-doped Bi,WOg/Bi14W>0,7 composite film.

Figure 8.5 SEM images of (a) unwashed Bi;WQgs, (b) washed Bi,WOsg, () unwashed
5.0%Ag-doped Bi,WO4/Bi14W,0,; and (d) washed 5.0%Ag-doped Bi,WO4/Bi1sW,02;

composite films.
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Figure 8.6 Cross-section images of (a) unwashed Bi,WOs, (b) washed Bi,WOg, (C)

unwashed 5.0%Ag-doped Bi,WO¢/BijsW,0,; and (d) washed 5.0%Ag-doped
Bi,WOQOg/Bi14sW,0,7 composite films.
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Figure 8.7 Average thickness of unwashed Bi,WOs, washed Bi,WOQOgs, unwashed
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Figure 8.8 EDS mapping of Bi, W, O and Ag elements in washed 5.0%Ag-doped
Bi,WOQOg/Bi14W,0,7 composite film.
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Figure 8.9 The compositions of (a) unwashed 5.0%Ag-doped Bi,WOQOg/Bi1sW-0,7 and
(b) washed 5.0%Ag-doped Bi,WOg/Bi1sW,0,7; composite films.
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8.5 X-Ray Photoelectron Spectroscopy (XPS)

XPS analysis was investigated to confirm the compositions and valence states of
Bi, W, Ag and O for pure Bi,WOg and 5.0%Ag-doped Bi,WOQOg/Bi14sW,0,7 composite
films. Figure 8.10a shows the binding energy of Bi 4f. The binding energy peaks at
about 164.00 and 159.00 eV are ascribed to the Bi 4fs, and Bi 4f;,, respectively, which
can be indicated to Bi** in Bi,WOg. However, the higher shifted peaks at about 166.00,
165.00 and 160.00 eV are referred to the oxidation state of Bi** or Bi** [4]. The main
binding energy peaks of W 4fs;; and W 4f7, located at 37.16 and 35.06 eV, respectively,
corresponding to W®* in Bi,WOg (Figure 8.10b). The XPS peaks of 5.0%Ag-doped
Bi,WOg/Bi1sW,0,7 composite film placed at 37.53, 36.77, 35.43 and 34.65 eV. The two
shifted peaks at 37.53 and 35.43 eV are attributed to the oxidation state at W>* [5]. The
shifted binding energy of 5.0%Ag-doped Bi,WOg/Bi1sW>0,7 composite film compared
with pure Bi;WOsg, corresponding to the bonds in composite. The O 1s spectra of pure
Bi,WOg and 5.0%Ag-doped Bi,WOg/Bi1sW,0,7; composite films are shown in Figure
8.10c. The peak of Ols at 529.62 and 529.87 eV are implied to the lattice oxygen in the
metal oxide. The chemisorbed oxygen or weakly bond oxygen species located at the
peak of 530.94 and 530.99 eV. The XPS peaks at 532.14, 532.45 and 533.64 eV are
ascribed to the surface oxygen by hydroxyl species or adsorb water species on the
surface [6]. Figure 7.9d shows the XPS spectrum of Ag ion in 5.0%Ag-doped
Bi,WOg/Bi1sW,0,7 composite film. The peaks at 367.70 eV and 373.60 eV for Ag 3ds),
and Ag 3ds, respectively, can be attributed to Ag”* [7].
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Figure 8.10 XPS spectra of (a) Bi 4f, (b) W 4f, (c) O 1s and (d) Ag 3d for pure Bi,WOQOgq
and 5.0%Ag-doped Bi,WOg/Bi14W,0,7 composite films.
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8.6 UV-vis spectroscopy

The absorbance spectra of pure Bi,WOg and 5.0%Ag-doped Bi;WOg/Bi14W,057
composite films were examined using UV-vis spectroscopy, as displayed in Figure 8.11.
It can be observed that the pure Bi,WOs and 5.0%Ag-doped Bi,WOg/Bi1sW,027
composite films absorbed the light in visible region at 421 and 424 nm, respectively.
The band gap energies were calculated as 2.95 and 2.92 eV for pure Bi,WOs and
5.0%Ag-doped Bi,WOg/Bi14sW,0,7 composite films, respectively.
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Figure 8.11 UV-vis DRS spectra of (a) pure Bi,WOg and (b) 5.0%Ag-doped
Bi,WOg/Bi14sW,0,7 composite films.
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8.7 Photocatalytic activity

Pure Bi,WOse, 0.2%Ag-doped Bi,WOg/Bi1sW;0,7, 0.5%Ag-doped
Bi,WOg/Bi1sW,0,7, 1.0%Ag-doped Bi,WOg/Bi1sW,0,7, 3.0%Ag-doped
Bi,WOg/Bi1sW,0,7, 5.0%Ag-doped Bi,WOg/Bi1sW,0,7, 6.0%Ag-doped
Bi,WOQOg/Bi1sW,0,7; and 10.0%Ag-doped Bi,WOg/BiisW,0,7 composite films were
estimated the photocatalytic degradation of RhB under visible light irradiation for 7
hours. Figure 8.12 shows the photocatalytic activity trend of all films. It can be
observed that the 5.0%Ag-doped Bi,WOgs/BiisW,0,7 composite film exhibits the
highest photocatalytic efficiency (57.07%) for RhB degradation. Pseudo-first-order
reaction [-In (C/Cy) = kt] was plotted to determine the reaction rate constants (k), as
shown in Figure 8.13. The 5.0%Ag-doped Bi,WOg/Bi14W,0,7; composite film promotes
high reaction rate constant of 0.1409 hour®. The k value of 5.0%Ag-doped
Bi,WOg/BisW,0,; composite film relates to high photocatalytic performance. The
summary of the photocatalytic efficiency and reaction rate constants of all films for

RhB degradation is shown in Table 8.1.
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Figure 8.12 The photocatalytic activity of all films for RhB degradation.
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Figure 8.13 Pseudo-first-order reactions of all films for RhB degradation.

Table 8.1 The photocatalytic efficiency and reaction rate constants (k) of all films for

RhB degradation.

Films Ph:f&?gitr?clztic Kk (hour™®) R2

RhB Photolysis 4.22% 0.0066 0.9959

Pure Bi;WOg 39.62% 0.0729 0.9986
0.2%Ag/Bi,WOe/BiisW,0,7 45.72% 0.1004 0.9774
0.5%Ag/Bi,WOe/BisW,0y7 50.78% 0.1074 0.9938
1.0%AQg/Bi;WO4/Bi1sW;0,7 26.41% 0.0496 0.9871
3.0%Ag/Bi,WOg/Bi1sW,07 17.94% 0.0301 0.9900
5.0%Ag/Bi;WOe/Bi1sW,04; 57.07% 0.1409 0.9767
6.0%Ag/Bi,WOg/BiisW,0,7 16.61% 0.0314 0.9525
10.0%Ag/Bi,WOe/Bi1sW,0,7 12.56% 0.0223 0.9615
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8.8 Photocatalytic stability

The photocatalytic stability of 5.0%Ag-doped Bi,WOg/Bi14W,0,7 composite film
was examined by the recyclability of the film for 10 times. Figure 8.14 shows the
photocatalytic performance of the 5.0%Ag-doped Bi,WOg/Bi14sW,02; composite film. It
can be seen that the photo stability of 5.0%Ag-doped Bi,WOg/Bi1sW,0,; composite
film exhibits the efficiency of 57.07%, 56.56%, 50.89%, 50.85%, 47.34%, 46.18%,
45.13%, 41.13%, 38.33% and 36.21% for tenth times. The photocatalytic activity was
gradually decreased after tenth cycle. It confirms that the 5.0%Ag-doped
Bi,WOg/Bi14W,0,7 composite film has the good photocatalytic stability.
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Figure 8.14 The photocatalytic stability of the 5.0%Ag-doped Bi,WOgs/BiisW,0,7

composite film.
8.9 Active species trapping

The active species of the 5.0%Ag-doped Bi,WOQOgs/BiisW20,; composite film
during the photocatalytic reaction was detected by adding 1x10™° mol/L of 2-
isopropanol (IPA) (a quencher of -OH), p-benzoquinone (BQ) (a quencher of -O,7), and
potassium iodide (KI) (a quencher of h*). It can be observed that the photocatalytic
activity for RhB degradation decreased when filling the quenchers, as seen in Figure
8.15. The photocatalytic performance of the 5.0%Ag-doped Bi,WOQOgs/BiisW,0,7
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composite film for RhB degradation under visible light irradiation is slightly decreased
after adding IPA (2.85%). The photocatalytic efficiency of the 5.0%Ag-doped
Bi,WOg/Bi14sW,0,7 composite film after adding IPA is lower than BQ (18.03%) and KI
(18.34%). It can be concluded that the -OH radicals are the main active specie during
the photocatalytic reaction of the 5.0%Ag-doped Bi,WO¢/Bi14W,0,7 composite film for
RhB degradation.

1.0 -

0.8 <

0.6

C/C

0.4

5.0% Ag-doped Bi, WO /Bi W O,

024 —®—no quencher
—eo—]JPA
—a—KI

0.0 < BQ

) v L) i ) ¥ ) ¥ ) 1 L) Y ) Y L)

0 1 2 3 4 5 6

Irradiation time (hour)

Figure 8.15 The active species trapping of the 5.0%Ag-doped Bi,WOQOgs/BiisW,0,7
composite film for RhB degradation using IPA, Kl and BQ.

8.10 Photoluminescence (PL)

Photoluminescence technique was considered to apply for detecting the electron-
hole recombination of the semiconductor. Figure 8.16 shows the PL peaks of pure
Bi,WOg and 5.0%Ag-doped Bi,WOg/Bi1sW20,; composite films. It can be observed
that the emission peaks are located at 482.85 and 483.40 nm for of pure Bi,WOs and
5.0%Ag-doped Bi,WOg/Bi1sW,0,; composite films, respectively. As the result, the PL
intensity of the 5.0%Ag-doped Bi,WOg/Bi14W,0,; composite film is lower than pure
Bi,WOg film, which infers that the 5.0%Ag-doped Bi,WOg/Bi14sW,0,7 composite film
has low the recombination rate of the photogenerated electron-hole pairs in the
photocatalytic reaction. Accordingly, the 5.0%Ag-doped Bi,WOg/Bi14W,0,7 composite
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film exhibits the highest photocatalytic performance, compared with pure Bi,WOg and
other films. This demonstrated that the 5.0%Ag-doped Bi,WO4/Bi14W,0,7 composite

film can be reduced the electron-hole pairs recombination.
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Figure 8.16 PL spectra of pure Bi,WOg and 5.0%Ag-doped Bi,WOgs/BiisW,0,7

composite films.
8.11 The photocatalytic mechanism of Ag-doped Bi,WOg/Bi14sW,0,; composite film

Figure 8.16 shows the possible photocatalytic mechanism of Ag-doped
Bi,WOg/Bi14sW,0,7 composite film for RhB degradation under visible light irradiation.
In the photocatalytic process, the Ag-doped Bi,WOg/BiisW,0,7 composite film
absorbed the light in the visible region. The electrons are stimulated and migrated from
valence band to conduction band, resulting electron-hole pairs. The electrons and holes
can be transferred between Bi,WOg and Biy4sW,0,7 at the surface. The holes generated
‘OH by the oxidation reaction with H,O or OH". In order to reach the high
photocatalytic performance, the Ag group was added into the Bi,WOQOg/BiisW,0,7
composite film [8]. The Ag" ion can trap electrons, which produced -O,  using

reduction reaction with O,.
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Figure 8.17 Photocatalytic mechanism of Ag-doped Bi,WOg/Bi14,W,0,; composite film
for RhB degradation.

8.12 Conclusions

The Ag-doped Bi,WO4¢/Bi1sW,0,7 composite film was successfully synthesized
by a chemical deposition method. The XRD pattern of the Ag-doped
Bi,WOg/Bi1sW,0,7 composite film shows the both structures of orthorhombic Bi,WOg
and tetragonal Bi;4sW20,7. The crystallite size of the 5.0%Ag-doped Bi,WOg/Bi1sW,02;
composite film is biggest (34.96 nm). The Raman peak is confirmed that the 5.0%Ag-
doped Bi,WOg/Bi14sW,0,; composite film have the orthorhombic phase of Bi,WQOg. The
morphology of Bi,WOg and Ag-doped Bi,WO¢/Bii1sW,0,; composite films is the
sphere-like shape. The EDS analysis was confirmed that the 5.0%Ag-doped
Bi,WOg/Bi14sW,0,7 composite film consists of Bi, W, O and Ag elements. The thickness
of Bi,WOs film is thicker than 5.0%Ag-doped Bi,WOg/Bi14W,0,7 composite film. The
chemical composition and chemical state were ensured by XPS analysis. The 5.0%Ag-
doped Bi,WO4g/Bi1sW,0,7 composite film includes Bi**, Bi**, Bi**, W**, 0% and Ag"
compositions. The Bi,WOg and 5.0%Ag-doped Bi,WOg/Bi14sW,0,7 composite films can
be responded in visible light region with the band gap of 2.95 eV and 2.92 eV,
respectively. The 5.0%Ag-doped Bi,WOQOg/Bi1sW,0,7 composite film exhibits the best
photocatalytic efficiency (57.07%) for RhB degradation under visible light irradiation in
7 hours. The 5.0%Ag-doped Bi,WOs/Bi1sW,0,; composite film shows the good
photocatalytic stability that can be reused for RhB degradation in tenth times. The -OH
radicals are the main active specie of the 5.0%Ag-doped Bi,WOQOg/Bi14W>0,7 composite
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film in the photocatalytic reaction. The PL technique is verified that the 5.0%Ag-doped

Bi,WOQOg/Bi1sW,0,; composite film can separate electrons and holes, which affect to

enhanced photocatalytic performance.

Table 8.2 The summary of physicochemical properties and photocatalytic efficiency of
Ag-doped Bi,WO4/Bi14W,0,7 composite film.

Properties Bi,WOg film 5.0% Ag-doped Bi;WO¢/Bi1sW,0,7 film
Structure orthorhombic Orthorhombic/tetragonal
Crystallite size 29.29 nm 30.12 nm (Bi;WOg), 24.00 nm (Bi1sW-027)
Morphology sphere-like sphere-like
Thickness 0.132+0.010 um 0.187+0.007 um
Band gap 2.95eV 2.92 eV
Photocatalytic 0 5
performance (RhB) 39.62% SIPTA
Main active specie - OH
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