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บทคัดย่อ 

กล้ามเนื้อโครงร่างเป็นอวัยวะที่มีความส าคัญในภาวะอ้วนที่มี การดื้ออินซูลิน เนื่องจาก
กล้ามเนื้อโครงร่างควบคุมระดับน้ าตาลในเลือดหลังอาหารถึงร้อยละ 80 ของเนื้อเยื่อทั้งหมดของ
ร่างกาย นอกจากนี้ผู้ที่มีภาวะอ้วน ยังพบความสามารถในหดตัวของกล้ามเนื้อลดลง กล้ามเนื้อโครง
ร่างประกอบด้วยเส้นใยกล้ามเนื้อหลายเส้นรวมกัน โดยเส้นใยกล้ามเนื้อถูกแบ่งเป็นสองจ าพวกใหญ่ 
ๆ คือ เส้นใยกล้ามเนื้อโครงร่างชนิดที่ใช้พลังงานโดยใช้ออกซิเจนเป็นหลัก และเส้นใยกล้ามเนื้อโครง
ร่างที่ใช้พลังงานโดยใช้ไกลโคเจนเป็นหลัก โดยพบว่า ภาวะอ้วนสัมพันธ์แบบผกผันกับสัดส่วนของ
เส้นใยกล้ามเนื้อโครงร่างที่ใช้พลังงานโดยใช้ออกซิเจนลดลง ร่วมกับการท างานของไมโตคอนเดรีย
ของกล้ามเนื้อลดลง ซึ่งอาจท าให้เกิดการหดตัวของกล้ามเนื้อผิดปกติ กล่าวคือ กล้ามเนื้อจะทนทานต่อ
การล้าน้อยลง อย่างไรก็ตาม ผลของภาวะอ้วนที่มีการดื้ออินซูลินต่อการหดตัวของกล้ามเนื้อและ
สัดส่วนของเส้นใยกล้ามเนื้อโครงร่างที่ใช้พลังงานโดยใช้ออกซิเจน รวมทั้งการท างานของไมโตคอน
เดรียในกล้ามเนื้อโครงร่าง โดยเฉพาะด้านจลนภาพของไมโตคอนเดรียยังไม่ชัดเจน จากการทบทวน
วรรณกรรม พบว่า ภาวะอ้วนที่มีการดื้ออินซูลินสามารถกระตุ้นให้เกิดภาวะดื้ออินซูลินในระดับเซลล์
กล้ามเนื้อ และยังพบอีกว่า ภาวะดื้ออินซูลินในระดับเซลล์กล้ามเนื้อสัมพันธ์กับการท างานของไมโต
คอนเดรียที่ลดลง การศึกษานี้จึงมีสมมติฐานว่า ภาวะอ้วนที่มีการดื้ออินซูลินกระตุ้นให้กล้ามเนื้อ
ทนทานต่อการล้าลดลง ผ่านทางการลดลงของสัดส่วนของเส้นใยกล้ามเนื้อชนิดชนิดที่ใช้พลังงานโดย
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ใช้ออกซิเจน และการท างานที่ผิดปกติของไมโตคอนเดรีย นอกจากนี้ การควบคุมแคลอรีร่วมกับออก
ก าลังกายเป็นการรักษาหลักของภาวะอ้วน อย่างไรก็ตาม ผลของการรักษานี้ต่อความทนทานต่อการล้า
ของกล้ามเนื้อ สัดส่วนของเส้นใยกล้ามเนื้อชนิดที่ใช้พลังงานโดยใช้ออกซิเจน และการท างานของไม
โตคอนเดรียในกล้ามเนื้อโครงร่างยังไม่ชัดเจนเช่นเดียวกัน การศึกษานี้มีสมมติฐานที่สองว่า การ
ควบคุมแคลอรีร่วมกับออกก าลังกายสามารถท าให้การทนทานต่อการล้าของกล้ามเนื้อดีขึ้น ผ่านการ
เพิ่มของสัดส่วนของเส้นใยกล้ามเนื้อชนิดชนิดที่ใช้พลังงานโดยใช้ออกซิเจน และการท างานของไม
โตคอนเดรียของกล้ามเนื้อลายในหนูที่อ้วนที่มีการดื้ออินซูลินดีขึ้นกว่าการควบคุมแคลอรีหรือการ
ออกก าลังกายเพียงอย่างเดียว  

การศึกษานี้ศึกษาหนูวิสตา 30 ตัว เป็นเวลา 27 สัปดาห์ โดยหนู 6 ตัวที่อยู่ในกลุ่มควบคุมได้รับ
อาหารปกติ ขณะที่หนู 24 ตัวได้รับอาหารไขมันสูง เมื่อถึงสัปดาห์ที่ 20 แบ่งหนูกลุ่มไขมันสูงเป็น 4 
กลุ่ม ได้แก่ กลุ่มที่ไม่ควบคุมแคลอรีและไม่ออกก าลังกาย กลุ่มที่ไม่ควบคุมแคลอรีแต่ออกก าลั งกาย
แบบเสริมสร้างความทนทาน 5 คร้ังต่อสัปดาห์ กลุ่มที่ควบคุมแคลอรีต่อวันจนเหลือร้อยละ 60 แต่ไม่
ออกก าลังกาย และกลุ่มที่ควบคุมแคลอรีร่วมกับออกก าลังกาย โดยการรักษาทุกกลุ่มจะท าเป็นเวลา 7 
สัปดาห์ เมื่อครบก าหนดเวลาแล้ว หนูทุกตัวจะถูกน าไปศึกษาการหดตัวของกล้ามเนื้อแกสตรอกนี
เมียสและเมื่อเสียชีวิตแล้ว กล้ามเนื้อวาสตัส แลทเทอรัลลิสจะถูกเก็บเพื่อศึกษาสัดส่วนของเส้นใย
กล้ามเนื้อ การดื้ออินซูลิน การเสื่อมสลายของเซลล์ และการท างานของไมโตคอนเดรียของกล้ามเนื้อ 
ผลการศึกษาพบว่า หนูที่ได้รับอาหารไขมันสูงอ้วนขึ้นและมีภาวะดื้ออินซูลิน รวมถึงมีการท างานของ
กล้ามเนื้อโครงร่างผิดปกติ กล่าวคือ มีความทนทานต่อการล้าลดลง มีสัดส่วนของกล้ามเนื้อชนิดชนิด
ที่ใช้พลังงานโดยใช้ออกซิเจนลดลง มีการดื้ออินซูลินในระดับกล้ามเนื้อมากขึ้น รวมทั้งการเสื่อม
สลายของเซลล์มากขึ้น และมีการท างานของไมโตคอนเดรียลดลง ซึ่งสังเกตได้จาก มีการสร้างอนุมูล
อิสระมากขึ้น ศักย์ไฟฟ้าของเยื่อบุลดลง และมีการบวมของไมโตคอนเดรียมากขึ้น รวมทั้งจลนภาพ
ของไมโตคอนเดรียลดลง อนึ่ง พบความสัมพันธ์แบบแปรผันตรงระดับสูงระหว่างสัดส่วนของใย
กล้ามเนื้อชนิดที่ใช้พลังงานโดยใช้ออกซิเจนและความเข้มข้นของโปรตีนพีพาร์เดลต้าในกล้ามเนื้อ 
เน่ืองจากโปรตีนพีพาร์เดลต้าเป็นโปรตีนหลักที่ควบคุมการสร้างใยกล้ามเนื้อชนิดที่ใช้พลังงานโดยใช้
ออกซิเจน การควบคุมแคลอรีและการออกก าลังกายเพียงอย่างเดียวสามารถแก้ไขความผิดปกติของ
กล้ามเนื้อได้บางส่วน กล่าวคือ การควบคุมแคลอรีสามารถลดการดื้ออินซูลินของกล้ามเนื้อ ลดการ
เสื่อมสลายของเซลล์และเพิ่มสมดุลของจลนภาพของไมโตคอนเดรียได้บางส่วน แต่ไม่สามารถเพิ่ม
การทนทานต่อการล้าของกล้ามเนื้อ และเพิ่มความเข้มข้นของโปรตีนพีพาร์เดลต้าในกล้ามเนื้อได้ 
ขณะที่การออกก าลังกายสามารถลดการดื้ออินซูลินของกล้ามเนื้อ ลดการเสื่อมสลายของเซลล์ เพิ่ม
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สมดุลของจลนภาพของไมโตคอนเดรีย เพิ่มความเข้มข้นของโปรตีนพีพาร์เดลต้าและเพิ่มความ
ทนทานต่อการล้าได้บางส่วน อย่างไรก็ตาม มีเพียงการควบคุมแคลอรีร่วมกับออกก าลังกายเท่านั้นที่
สามารถแก้ไขความผิดปกติของการท างานของกล้ามเนื้อได้ทั้งหมด โดยสังเกตได้จาก มีความทนทาน
ต่อการล้ามากขึ้น มีความเข้มข้นของโปรตีนพีพาร์เดลต้าในกล้ามเนื้อเพิ่มขึ้น มีการดื้ออินซูลินของ
กล้ามเนื้อลดลง การเสื่อมสลายของเซลล์ลดลง และมีการท างานของไมโตคอนเดรียเพิ่มขึ้น โดย
สังเกตได้จาก มีการสร้างอนุมูลอิสระลดลง ศักย์ไฟฟ้าของเยื่อบุเพิ่มขึ้น และมีการบวมลดลง รวมทั้ง
จลนภาพของไมโตคอนเดรียเพิ่มขึ้น ผลการศึกษานี้แสดงให้เห็นว่าการควบคุมแคลอรีร่วมกับออก
ก าลังกายมีผลดีต่อการท างานกล้ามเนื้อโครงร่างของหนูอ้วนที่มีภาวะดื้ออินซูลิน ทั้งด้านการหดตัว
ของกล้ามเนื้อ ด้านการเปลี่ยนแปลงของเส้นใยกล้ามเนื้อ และด้านการท างานของไมโตคอนเดรีย 
มากกว่าการควบคุมแคลอร่ีหรือการออกก าลังกายเพียงอย่างเดียว ดังนั้น จึงควรแนะน าผู้ป่วยโรคอ้วน
ที่มีภาวะดื้ออินซูลินลดน้ าหนักโดยการควบคุมแคลอรีร่วมกับการออกก าลังกายมากกว่าควบคุม
แคลอรีหรือออกก าลังกายเพียงอย่างเดียว เพื่อให้เกิดผลดีต่อกล้ามเนื้อโครงร่างให้มากที่สุดต่อไป 
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ABSTRACT 

Skeletal muscle is an important organ determining obese-insulin resistant 

condition since it is responsible for 80% of postprandial insulin-stimulated uptake of 

glucose. In addition, people with obesity have a decrease in contractile function of 

skeletal muscles. Skeletal muscle consists of several muscle fibers, which can be 

classified into two main types: oxidative type and glycolytic type.  Previous studies 

reported that an obese insulin-resistant condition was negatively correlated with ratio of 

oxidative-type/glycolytic muscle fibers and their mitochondrial function.  These 

changes in skeletal muscles might be responsible with a decrease in contractile function, 

as indicated by an increase in muscle fatigability. However, the effects of obese-insulin 

resistant condition on muscle contractile functions, ratio of oxidative-type/glycolytic-

type fibers, mitochondrial functions and mitochondrial dynamics of skeletal muscles 

have not been clearly elucidated. Therefore, the present study aimed to test the first 

hypothesis is that obese-insulin resistant condition leads to early fatigability of skeletal 

muscle by decreasing the percentage of oxidative-type muscle fibers and mitochondrial 

function of skeletal muscles.  

In addition, caloric restriction, exercise training program and the combined 

program are proposed to be a mainstream treatment of obesity.  However, the effects of 

those therapies on muscle contractile functions, ratio of oxidative-type/glycolytic-type 
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fibers, mitochondrial functions and mitochondrial dynamics of skeletal muscles in 

obese-insulin resistant condition is still underexplored.  This research question led to the 

second aim of the present study.   The second aim of the present study aimed to test 

hypothesis that both exercise training and caloric restriction program in obese-insulin 

resistant condition attenuate early fatigability of skeletal muscle by muscle contractile 

functions, ratio of oxidative-type/glycolytic-type fibers, mitochondrial functions and 

mitochondrial dynamics of skeletal muscles and the combined program has the better 

efficacy to improve all of those parameters than monotherapy.  

 To test both hypotheses, 30 Wistar rats were used in this study.  For aim 1, rats 

were fed by normal diet (n=8) and high-fat diet (n=12) for 27 weeks. At the 27
th

 weeks, 

all rats were applied to in situ muscle contraction studies at gastrocnemius muscle. After 

euthanatized, the vastus lateralis muscle tissue was collected to determine the 

percentage of oxidative-type muscle fibers, insulin resistance, apoptosis as well as 

mitochondrial functions of the muscle. We found that HFD-fed rats without therapy 

developed obese-insulin resistance and impaired function of skeletal muscles, as 

indicated by increased fatigability, decreased percentage of oxidative-type muscle 

fibers, increased skeletal muscle insulin resistance, increased apoptosis and impaired 

mitochondrial functions, as described by increased mitochondrial ROS production, 

induced mitochondrial depolarization and increased mitochondrial swelling, as well as 

more imbalance mitochondrial dynamics. Notice that we found a strong positive 

correlation between the percentage of oxidative-type muscle fibers and the PPAR delta 

protein expression of the muscle since PPAR delta is the main control of oxidative-type 

muscle fiber myogenesis. For aim 2-4, rats were fed by normal diet (n=6) and high-fat 

diet (n=24) for 20 weeks.  At the 21
st
 weeks, the normal diet fed rats continued their diet 

until the 27
th

 weeks, whereas the high-fat diet fed rats were divided into four groups. 

The sedentary group continued consuming the high-fat diet and sedentary living until 

the 27
th

 week. The second group, namely caloric restriction group, received 60% caloric 

restriction program for six weeks. The third group, namely exercise group, receive 

regular moderate intensity exercise training for six weeks. The last group, namely 

combined therapy group, were treated by combined 60% caloric restriction program and 
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moderate intensity exercise training.  At the 27
th

 week, all rats were applied to in situ 

muscle contraction studies at gastrocnemius muscle. After euthanasia, the vastus 

lateralis muscle tissue was collected to determine the percentage of oxidative-type 

muscle fibers, insulin resistance, apoptosis as well as mitochondrial functions of the 

muscle. The caloric restriction and the exercise training program partially attenuated the 

impairments of muscle functions. In details, the caloric restriction program could 

attenuate insulin resistance, decrease apoptosis and balance mitochondrial dynamics, 

but could not neither reduce fatigability nor increase PPAR delta protein expression. In 

the other hand, the exercise training program could partially attenuate insulin resistance, 

decrease apoptosis, balance mitochondrial dynamics, increase PPAR delta protein 

expression as well as reduce fatigability. However, only the combined exercise training 

and caloric restriction program could attenuate all aspects of skeletal muscle 

dysfunctions. These were indicated by reduced muscle fatigability, increased PPAR 

delta protein expression, decreased insulin resistance, reduced apoptosis and improved 

mitochondrial functions, as described by decreased mitochondrial ROS production, 

reduced mitochondrial depolarization and decreased mitochondrial swelling, as well as 

more balance mitochondrial dynamics. We conclude that a combination between caloric 

restriction and exercise training program has a beneficial effect on skeletal muscle 

functions of obese-insulin resistant rats in all aspects, which are contractile function, 

morphologic function and mitochondrial function. Therefore, physicians should advise 

patients with obese-insulin resistant condition to apply a combined caloric restriction 

and exercise training program rather than to use solely caloric restriction or exercise 

program, to provide the highest beneficial effects for their skeletal muscles. 
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ข้อความแห่งการริเริ่ม 

1. วิทยานิพนธ์นี้แสดงให้เห็นอย่างชัดเจนว่า การบริโภคอาหารไขมันสูงเป็นเวลานานสามารถ
กระตุ้นให้เกิดภาวะดื้ออินซูลินทั้งในระดับร่างกายและเนื้อเยื่อกล้ามเนื้อโครงร่าง และยัง
สามารถกระตุ้นให้เกิดการท างานผิดปกติของกล้ามเนื้อโครงร่าง อันได้แก่ การหดตัว
บกพร่อง ลักษณะใยกล้ามเนื้อบกพร่อง และการท างานของไมโตคอนเดรียบกพร่อง ใน
กล้ามเนื้อโครงร่างของหนูอ้วนที่มีภาวะดื้ออินซูลิน 

2. วิทยานิพนธ์นี้ยังแสดงให้เห็นอย่างชัดเจนว่า การควบคุมแคลอรีสามารถลดภาวะดื้ออินซูลิน
ทั้งในระดับร่างกายและเนื้อเยื่อกล้ามเนื้อโครงร่างได้บางส่วน และยังสามารถเพิ่มการท างาน
ของไมโตคอนเดรียได้บางส่วน แต่ไม่ช่วยแก้ไขการหดตัวและลักษณะใยกล้ามเนื้อที่
บกพร่อง ในกล้ามเนื้อโครงร่างของหนูอ้วนที่มีภาวะดื้ออินซูลิน 

3. วิทยานิพนธ์นี้ยังแสดงให้เห็นอย่างชัดเจนว่า การออกก าลังกายสามารถลดภาวะดื้ออินซูลิน
ทั้งในระดับร่างกายและเนื้อเยื่อกล้ามเนื้อโครงร่างได้บางส่วน และยังสามารถแก้ไขการหดตัว 
ลักษณะใยกล้ามเนื้อ และการท างานของไมโตคอนเดรียที่บกพร่อง ในกล้ามเนื้อโครงร่างของ
หนูอ้วนที่มีภาวะดื้ออินซูลินได้บางส่วน 

4. วิทยานิพนธ์นี้ยังแสดงให้เห็นอย่างชัดเจนว่า การควบคุมแคลอรีร่วมกับออกก าลังกายสามารถ
ลดภาวะดื้ออินซูลินทั้งในระดับร่างกายและเนื้อเยื่อกล้ามเนื้อโครงร่างได้ทั้งหมด  และยัง
สามารถแก้ไขการท างานผิดปกติของกล้ามเนื้อโครงร่าง  อันได้แก่ การหดตัวบกพร่อง 
ลักษณะใยกล้ามเนื้อบกพร่อง และการท างานของไมโตคอนเดรียบกพร่อง ในกล้ามเนื้อโครง
ร่างของหนูอ้วนที่มีภาวะดื้ออินซูลินได้ทั้งหมด 
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STATEMENT OF ORIGINALITY 

1. This thesis clearly demonstrates that long-term HFD consumption could induce 

an insulin resistant condition in both peripheral and skeletal muscle tissue. It 

also induced skeletal muscle dysfunctions, as indicated by impaired contractile 

functions, morphologic functions and mitochondrial functions of skeletal muscle 

in obese-insulin resistant rats. 

 

2. This thesis also clearly demonstrates that caloric restriction program could 

partially improve an insulin resistant condition in both peripheral and skeletal 

muscle tissue. It also partially attenuate mitochondrial dysfunctions but has no 

effect on contractile dysfunctions and morphologic dysfunctions of skeletal 

muscles in obese-insulin resistant rats. 

 

3. This thesis also clearly demonstrates that exercise training program could 

partially improve an insulin resistant condition in both peripheral and skeletal 

muscle tissue. It also partially attenuate contractile dysfunctions, morphologic 

dysfunctions and mitochondrial dysfunctions of skeletal muscles in obese-

insulin resistant rats. 

 

4. This thesis also clearly demonstrates that combined caloric restriction and 

exercise training program could fully restore an insulin resistant condition in 

both peripheral and skeletal muscle tissue. It also completely restores skeletal 

muscle functions, as indicated by improved contractile functions, morphologic 

functions and mitochondrial functions of skeletal muscles in obese-insulin 

resistant rats. 
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CHAPTER 1 

Introduction 

1.1 Historical Background 

 As the prevalence of overweight and obesity is increasing worldwide [1], the 

interest in the role of obesity within the skeletal muscles has been growing. Skeletal 

muscle is the largest metabolic organ in the body [2] and determines 20% of the resting 

energy expenditure [3]. Moreover, skeletal muscle is responsible for 80% of 

postprandial insulin-stimulated uptake of glucose [4]. Therefore, roles of skeletal 

muscle as a cause and an effect of obese-insulin resistant condition are considered. Each 

skeletal muscle contains of two types of muscle fiber, namely oxidative-type and 

glycolytic type fiber, but in difference ratio [5]. The oxidative-type fibers play 

important roles in glucose metabolism as well as fatigue-resistance, leading to 

prolonged physical activities for individuals. The glycolytic-type fibers play roles in 

high-power activity and maintaining the mass of skeletal muscles.  Both clinical and 

animal studies demonstrated that skeletal muscle dysfunction in obese-insulin resistant 

condition remains inconsistent findings. Some studies  in obese-insulin resistant models 

showed skeletal muscle dysfunction, as indicated by decreased percentage of oxidative-

type fiber [6-12], decreased mitochondrial function [13-20], decreased insulin signaling 

[12, 21], and decreased muscle contractile function [22-24], whereas others were 

reported no changes of oxidative-type fibers [18, 21, 24-27], mitochondrial function 

[27-29], insulin signaling [12, 21, 30] and muscle contractile function [31, 32] of 

skeletal muscle. In addition, a study in high-fat diet (HFD) induced obese mice 

demonstrated an increase in oxidative-type muscle fiber but decreased mitochondrial 

function of the skeletal muscles [20]. The difference between these findings may be 

related to the different model of obesity such as genetically obese models or diet-

induced models, as well as dietary intervention. Therefore, further studies are required 

to provide more evidence to strengthen up the skeletal muscle changes in obese-insulin 
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resistance by using HFD model of obesity.  Therefore, the first aim of the present study 

was aimed to test hypothesis that skeletal muscle dysfunction, as indicated by altered 

muscle fiber type distribution, mitochondrial dysfunction, increased oxidative stress, 

impaired insulin signaling, and induced apoptosis in skeletal muscle, occurs in obese-

insulin resistant condition. 

Caloric restriction and exercise training program are the mainstream 

interventions of obesity. The beneficial effects of calorie restriction on the improvement 

of systemic insulin sensitivity and skeletal muscle changes, as indicated by increased 

muscle function [33], increased insulin signaling [34, 35], as well as decreased 

apoptosis [36, 37] had been demonstrated.  However, evidence from some clinical and 

animal models of obesity found no effect of calorie restriction on muscle fiber type 

distribution [18, 38-46] and muscle oxidative capacity [18, 38-48]. The beneficial 

effects of exercise training on improving systemic insulin sensitivity [12, 47-49], 

increasing percentage of oxidative-type muscle fiber [47, 48], enhancing oxidative 

capacity of skeletal muscle [12, 18, 40, 47-49], activating insulin signaling [50, 51] and 

increasing muscle contractile function [49, 52], but no effect on apoptotic marker in 

skeletal muscle had been demonstrated in clinical and mice models [53]. However, no 

significant alterations in muscle fiber type distribution, as well as mitochondrial 

function of skeletal muscles were reported in some clinical studies [12, 33, 40, 42, 46, 

49].  Focusing on the effects of exercise training in obese-insulin resistant models, 

studies in obese patients found an improved muscle mass as well as mitochondrial 

function, oxidative capacity, insulin signaling and contractile function of skeletal 

muscle after diet and exercise training despite of no change of skeletal muscle fiber type 

distribution [42, 54]. Notice that these inconsistent effects are intensity-specific, dose-

dependent, continuation-specific and mode-dependent. It is possible that the effect of 

combined program in obese-insulin resistant condition is more effective than 

monotherapy. However, there is still no scientific evidence. Therefore, it is interesting 

to investigate the effect of combined caloric restriction and exercise on skeletal muscle 

function in obese-insulin resistant rats.  Therefore, the second aim of the present study 

was aimed to test hypothesis that skeletal muscle dysfunction in obese-insulin resistant 

condition can be improved by either calories restriction or exercise training, and the 

combined intervention provides higher efficacy than single intervention.   
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1.2 Objectives 

Aim 1: To investigate the metabolic parameters, skeletal muscle structural and 

functional changes in obese insulin-resistant rats using HFD-induced obesity. 

Hypothesis of aim 1: Skeletal muscle dysfunction, as indicated by altered muscle fiber 

type distribution, mitochondrial dysfunction, increased oxidative stress, impaired insulin 

signaling, and induced apoptosis in skeletal muscle, occurs in obese-insulin resistant 

condition. 

Aim 2: To examine the effects of calorie restriction on the metabolic changes, skeletal 

muscle structure and function in obese insulin-resistance rats. 

Hypothesis of aim 2: Skeletal muscle dysfunction in obese-insulin resistant condition 

can be improved by calories restriction. 

Aim 3: To examine the effects of exercise training on the metabolic changes, skeletal 

muscle structure and function in obese insulin-resistance rats. 

Hypothesis of aim 3: Skeletal muscle dysfunction in obese-insulin resistant condition 

can be improved by exercise training. 

Aim 4: To examine the effects of calorie restriction, exercise training and combined 

calorie restriction and exercise training programs on the metabolic changes, skeletal 

muscle structure and function in obese insulin-resistance rats. 

Hypothesis of aim 4: The combined interventions provides higher efficacy than 

monotherapy via restoring skeletal muscle function in obese-insulin resistant condition. 

1.3   Literature reviews 

1.3.1 Effects of high-fat diet on obesity and insulin resistance 

Overweight is generally defined as a condition that the body mass index (BMI) is 

equal to or more than 25 kg/m
2
, while obesity is generally defined as a condition that 

BMI is equal to or more than 30 kg/m
2
 [55]. The prevalence and severity of obesity are 

associated with westernization, particularly high-fat diet consumption [56-58].  
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Hypertrophic obesity, characterized by expansion of the size of already existing fat cells 

and excessive weight gain occurring in adulthood, results from increase of high-fat diet 

consumption [59, 60]. In clinical studies, hypertrophic obesity is positively correlated 

with many major health issues such as diabetes, hyperlipidemia, hypertension and 

cardiovascular diseases [61]. Obesity is also positively correlated with an insulin 

resistant condition, which is proposed to be the major underlying mechanism of those 

pathological conditions [62].  Evidence from both clinical and animal studies 

demonstrated that weight gain from excessive caloric consumption significantly induced 

insulin resistance [62] while weight loss by caloric restriction reduced insulin resistance 

[63, 64].   

Insulin resistance is a pathological condition, in which target cells are resistant 

to the physiological activities of insulin, especially the effects on glucose and lipid 

metabolism. In obesity, insulin resistance is characterized by decrease in end-organs 

response to insulin hormone, resulting in compensatory release of insulin from pancreas 

to maintain plasma glucose in the near normal levels causing hyperinsulinemia [65, 66]. 

The combination of insulin resistance and hyperinsulinemia greatly increases risks of 

abnormal lipid profile as well as hypertension [66]. If the cause of insulin resistance 

remains, the compensatory hyperinsulinemic process is unable to maintain plasma 

glucose within the normal level. This is commonly found in an initial, non-insulin 

dependent phase of type 2 diabetes mellitus (T2DM) [66]. Persistent hyperglycemia 

leads to micro- and macrovascular complications, e.g. atherosclerotic heart disease or 

cerebrovascular disease [67]. Finally, failure of the compensatory insulin releases due to 

dysfunction of overloaded pancreatic beta cell results in decrease of the plasma insulin 

and severe increase of the plasma glucose [68], which commonly found in the late, 

insulin-dependent phase of T2DM. 

The underlying mechanism of obesity-induced insulin resistance is still elusive, 

but may associate with lipotoxicity, abnormal adipocyte-derived hormones and 

adipocyte-related pro-inflammatory cytokines. Excessive plasma non-esterified fatty 

acid level due to high-fat diet consumption, as well as obesity itself increases 

accumulation of lipid compounds, particularly triglyceride (TG)-derivatives such as 

diacylglycerol (DAG) and ceramide, in several non-adipose organs, e.g. heart, liver or 
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pancreas [69].  Malposition of lipid accumulation can cause cells dysfunction or death 

via apoptosis and if this process occurs in pancreas, it results in pancreatic β cell 

dysfunction and eventually, systemic insulin resistance [70]. Abnormal adipose tissue-

derived hormones are also proposed to be one of the mechanisms responsible for 

obesity-related insulin resistance [71]. There is decrease in adiponectin and increase in 

resistin in obese persons compared with lean persons [71]. Moreover, adipocyte-related 

pro-inflammatory cytokines, such as tumor necrosis factor alpha, interleukin-6 and 

interleukin-1 beta, are released from adipose tissue-derived macrophages [72]. It is 

proposed that macrophage activation is induced by many obesity-related conditions, 

such as relatively ischemia in rapid-growth adipocytes, endoplasmic reticulum stress 

response and mitochondrial dysfunction [73]. TG-derivatives, resistin, as well as pro-

inflammatory cytokines induce insulin resistance via disturbing phosphorylation process 

of insulin receptors and their downstream signaling, such as insulin receptor substrate 1 

(IRS1) and phosphatidylinositol-3-kinase (PI3K)/Akt [69, 72]. Figure 1.1 summarizes 

the possible mechanism of obesity-induced insulin resistance. 

 

 

Figure 1.1 Mechanism of obesity-induced insulin resistance. Obesity could induce 

insulin resistance via three main mechanisms. Excessive caloric consumption results in 

obesity, which described by an increase in adipocytes. Excessive adipose tissue 

increases accumulation of lipid compounds, particularly triglyceride (TG)-derivatives 

such as diacylglycerol (DAG) and ceramide. Excessive TG and DAG deposition can 



 

6 

cause cells dysfunction or death via apoptosis and if this process occurs in pancreas, it 

results in pancreatic β cell dysfunction and eventually, systemic insulin resistance. 

Moreover, adipocyte-related pro-inflammatory cytokines, such as tumor necrosis factor 

alpha, interleukin-6 and interleukin-1 beta, are released from adipose tissue-derived 

macrophages. Abnormal adipose tissue-derived hormones are also proposed to be one 

of the mechanisms responsible for obesity-related insulin resistance. There is decrease 

in adiponectin and increase in resistin in obese persons compared with lean persons.  

 

1.3.2 Impaired insulin signaling in skeletal muscle of obese-insulin resistance 

Skeletal muscle is a primary site of glucose disposal in the human body and 

insulin resistance in skeletal muscle can cause insulin resistance of the whole body or 

systemic insulin resistance [74]. In cellular level, systemic insulin resistance in diet-

induced obesity shows disrupted protein expression and activation (mainly in skeletal 

muscle and liver) of signaling via the IRS-1 and PI3K pathway, resulting in reduction in 

glucose uptake and utilization [75, 76].   

Normal insulin signaling in skeletal muscle is as followed (Figure 1.2) Binding of 

insulin to the receptor induces phosphorylation of its intracellular domains, inducing a 

recruitment of several IRS, the most important of which are IRS-1 and 2 [77]. These 

large phosphoproteins serve as a ‘platform’ that initiates downstream signaling 

pathways, among which the PI3K/protein kinase B (Akt) pathway and the MEK/ERK 

(formerly MAP kinase) pathway. The PI3K pathway, which is the key metabolic 

effector arm of the insulin signaling response, exerts critical metabolic actions in 

particular through Akt2, one of three isoforms of the serine–threonine kinase Akt that is 

enriched in insulin-responsive tissues [78]. Evidence demonstrated that the 

intramuscular lipid intermediates, such as fatty acyl-CoA, ceramides and DAG, inhibit 

steps in the insulin signaling cascade [79]. Evidence also demonstrates that ceramide 

activates a protein phosphatase that inhibits phosphorylation of Akt, resulting in 

decrease of GLUT4 translocation and glycogen synthesis [80, 81].   

It was evident that in the 15-week, diet-induced insulin resistant rats, expressions 

of IRS-1, PI3K and ERK1/2 were significantly increased, while that of insulin receptor 

beta (IRβ) and Akt were not changed [30]. Moreover, in this study, total signaling 
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proteins were measured without evaluation of phosphorylated proteins. Interestingly, 

clinical studies demonstrated the increase in serine-phosphorylated IRS in obese insulin 

resistance subjects compared with lean subjects [12], and decreased insulin receptor, as 

well as insulin signaling (Akt and TBC1D4) in muscle from patients with T2DM 

compared with lean and obese subjects [20]. In conclusion, skeletal muscle insulin 

signaling in obese-insulin resistant condition is still inconsistent and further study is still 

needed. 

 

Figure 1.2 Normal insulin pathway in skeletal muscle [82]. Binding of insulin to the 

receptor induces phosphorylation of its intracellular domains, inducing a recruitment of 

several IRS, the most important of which are IRS-1 and 2. IRS systems serve as a 

‘platform’ that initiates downstream signaling pathways, among which the PI3K/protein 

kinase B (Akt) pathway and the MEK/ERK (formerly MAP kinase) pathway. The PI3K 

pathway, which is the key metabolic effector arm of the insulin signaling response, 

exerts critical metabolic actions in particular through three isoforms of the serine–

threonine kinase Akt resulting in increased glucose transporatation and glycogen 

synthesis. After activated by insulin, MEK/ERK (MAPK) induces gene expression 

resuting in an increase in glycolytic, mitochondrial, as well as oxidative 

phosphorylation-realted protein expression. 
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1.3.3 Skeletal muscle function and obesity 

Evidence regarding skeletal muscle contraction parameter in obesity is 

inconsistent. In obese Zucker rats, peak force of diaphragm was significantly lower than 

which of the lean controls [83]. In 8-week HFD-induced obese insulin resistant mice, 

there were trend of decreases in pre- and post-fatigue peak forces of gastrocnemius-

plantaris muscle complex [24]. The authors hypothesized that the early adaptations of 

skeletal muscle to HFD (increased oxidative-type fiber, increased oxidative capacity, 

and decreased apoptosis) attenuated muscle force loss. They also demonstrated that 

continued exposure to an HFD would ultimately result in significant decreases in 

contractile force, consistent with clinical studies [22, 23]. In addition, in mice fed high-

fat diet for 5 weeks, muscle contraction study in EDL, a predominate fast-twitch 

skeletal muscle, demonstrated no change in single twitch and tetanic peak force but 

significant increase of relaxation time whereas muscle contraction study in soleus, a 

predominate slow-twitch skeletal muscle, demonstrated significant decrease of single 

twitch and tetanic peak force and significant decrease of relaxation time [29]. The 

authors of this study proposed that high-fat diet-induced muscle contractile property 

change was fiber type specific. In addition, the change in EDL was associated with long 

chain acycarnitine-induced impairment of calcium homeostasis and the change in soleus 

was resulted from short chain acycarnitine-induced myofibrillar component change of 

the muscle from slow- to fast-twitch [29]. In clinical studies, T2DM men had lower grip 

strength than non-diabetic men, regardless to age, body weight and level of physical 

activity [22, 23]. However, some studies reported no change of muscle contractile 

function of lower extremities [31, 32]. However, there has been no study investigating 

fatigability of tetanic muscle contraction. Fatigability is the most important parameter in 

clinical setting since it correlates with the duration of activity and determine function, 

e.g. duration of walking in individuals. In conclusion, evidence regarding skeletal 

muscle contractile function in obese-insulin resistant condition is inconsistent but 

having trend to have more dysfunction, but depending on which fiber type is 

predominate. 
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1.3.4 Skeletal muscle fiber type change in obese-insulin resistance 

Skeletal muscle plays an important role in metabolism, energy expenditure, 

physical strength, and locomotive activity.  Heterogeneity of skeletal muscle fiber types 

is described by different criteria, for example, using contractile property (slow- and fast-

twitch type) or myosin heavy chain (MyHC) structures (type 1, type 2a, type 2x and 

type 2b) [5]. At present, immunohistochemistry (IHC) of MyHC, using monoclonal 

antibody specific to each myosin heavy chain, is proposed to be the gold standard 

method for determining muscle fiber types [5]. A metabolic classification, which 

categorizes skeletal muscle fibers into 2 types; oxidative-type and glycolytic-type fibers, 

is frequently used in the studies that focus on their metabolic characters [84]. In human, 

type 1 skeletal muscle fibers are oxidative-type and type 2 skeletal muscle fiber is 

glycolytic-type. Each muscle in the human body is composed of both types of fiber, but 

in different percentages [85].   

Skeletal muscle fiber phenotypes are controlled by several mechanisms 

(comprehensively reviewed in [86] and [84]). Two different mechanisms responsible for 

obesity-associated muscle fiber type alterations: the metabolic hypothesis and 

mechanical hypothesis. For the metabolic hypothesis, the alterations in the distribution 

of skeletal muscle fiber type in obesity results from obesity-induced inflammation and 

oxidative stress in muscles, leading to changes in the metabolism in muscle fibers. 

Although skeletal muscle fiber phenotypes are controlled by several mechanisms 

including p38 mitogen-activated protein kinase (MAPK) calcium/calmodulin-dependent 

protein kinase IV(CaMKIV), calcineurin and peroxisome proliferator-activated receptor 

gamma coactivator 1-alpha (PGC-1α)- peroxisome proliferator-activated receptor delta 

(PPAR delta) pathway [87]. Among these, the peroxisome proliferator-activated 

receptor gamma coactivator 1-alpha (PGC-1alpha)- peroxisome proliferator-activated 

receptor delta (PPAR delta) (PGC-1alpha-PPAR delta) pathway is the most described 

mechanism evident in obesity-related skeletal muscle fiber type redistribution [12, 20, 

24, 88-90]. PGC-1alpha is a coactivator interacting with all PPAR isoforms and is an 

upstream of PPAR-related gene transcription [91], including PPAR delta, which is the 

most abundant PPAR isoform expressed in the muscle tissue [92]. Studies in mice with 

genetic modification demonstrated that skeletal muscle PPAR delta and PGC-1alpha 
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were key regulators of genes involved in mitochondrial fatty acid oxidation, oxidative 

phosphorylation and oxidative-type skeletal muscle fiber transformation [93, 94]. The 

main downstream transcription factors of PGC-1alpha that responsible for oxidative -

type skeletal muscle fiber transformation is myocyte-enhancing factor 2 (MEF2). 

Obesity is associated with the decrease of PGC-1alpha-PPAR delta signaling via 

oxidative stress and inflammatory process resulting from adipogenesis (adipocyte 

hypertrophy and hyperplasia) [95].   

The second proposed mechanism is the mechanical hypothesis. Obesity is 

associated with increased body weight, resulting in increased skeletal muscle workload, 

particularly in weight-bearing muscles It has been shown that increased workload 

enhanced glycolytic-type muscle fiber transformation [96]. In addition, people with 

obesity show a decrease in physical activity, including walking [97]. Walking ability is 

associated with an increase in oxidative-type fiber of the muscles, particularly in lower 

extremities [98]. Those findings suggest that obesity possibly leads to an increase in 

glycolytic-type fibers from weight gain and a decrease in oxidative-type fiber following 

decreased ambulation activity. Therefore, this hypothesis seems to suggest that obesity 

is an indirect cause of the alterations in muscle fiber type. However, a longitudinal 

clinical study evaluating muscle fiber type together with the monitoring of physical 

activity in people with obesity is needed to prove this hypothesis. 

In obese-insulin resistant models, the change of skeletal muscle fiber type has 

been studied. Most clinical evidence demonstrated that obesity-related parameters were 

negatively correlated with the percentage of oxidative-type skeletal muscle fiber and 

positively correlated with the percentage of glycolytic-type muscle fiber.  However, 

some results remain inconsistent. Studies in mice fed high-fat diet for 4 weeks [24] and 

8 weeks [27] showed increase in oxidative-type skeletal muscle fiber transformations, 

whereas there was no change in skeletal muscle fiber distribution in mice fed by high-

fat diet for 12 weeks [99]. On the other hand, the percentage of oxidative-type skeletal 

muscle fiber was decreased in mice fed by high-fat diet for 52 weeks [100]. The 

difference in duration of obesity may be responsible for these inconsistent findings.  In 

clinical studies, many cross-sectional comparative studies demonstrated that a decrease 

in percentages of skeletal muscle type 1 has been shown in overweight (BMI ≥ 
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25)/obese (BMI ≥ 30) subjects, regardless of an insulin-resistant condition, when 

compared with those of lean subjects [6-12]. However, few studies showed no change in 

percentage of muscle type 1 in those overweight/obese subjects [18, 21, 26]. 

Differences in methods for the identification of muscle types (IHC staining or Western 

blotting) and baseline characteristics of patients in each study may account for these 

inconsistent findings. The accuracy of IHC and Western blotting depends on which 

place the muscle tissue is collected and it could change the percentage of fiber type if 

the sampled place is different, although within the same muscle [5]. Figure 1.3 

summarizes mechanism of obesity-induced skeletal muscle fiber type distribution. 

 

Figure 1.3 Mechanism of obesity-induced skeletal muscle fiber type distribution 

[87]. The alterations in the distribution of skeletal muscle fiber type in obesity results 

from obesity-induced inflammation and oxidative stress in muscles, leading to changes 

in the metabolism in muscle fibers via the peroxisome proliferator-activated receptor 

gamma coactivator 1-alpha (PGC-1alpha)- peroxisome proliferator-activated receptor 

delta (PPAR delta)  

(PGC-1alpha-PPAR delta) pathway. The main downstream transcription factors of 

PGC-1alpha that responsible for oxidative -type skeletal muscle fiber transformation is 

myocyte-enhancing factor 2 (MEF2). Obesity is associated with the decrease of PGC-

1alpha-PPAR delta signaling via oxidative stress and inflammatory process resulting 

from adipogenesis (adipocyte hypertrophy and hyperplasia) 
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↑: Increase; AMP: Adenosine monophosphate; ATP: Adenosine triphosphate; AMPK: 

Adenosine monophosphate-activated protein kinase; MAPK: p38 mitogen-activated 

protein kinase; Ca2+: Calcium; CaMKIV: Calcium/calmodulin-dependent protein 

kinase IV; PGC-1α: Peroxisome proliferator-activated receptor gamma coactivator 1-

alpha; PPARδ: Peroxisome proliferator-activated receptor delta; →: Activation; ˗ ˗ |: 

Inhibition 

In addition, several clinical studies demonstrated the correlation between several 

obesity-related parameters and the percentage of muscle fiber types. Focusing on type 1 

muscle fiber, total body fat was negatively correlated with the percentage of type 1 

skeletal muscle fibers [101]. The negative correlation with the percentage of type 1 

skeletal muscle fibers was shown, when compared with central body fat [101-103], 

however, no correlation was found when compared with subcutaneous fat [25, 101]. In 

addition, a previous study demonstrated that increased adipocytes in central adipose 

tissues, but not in subcutaneous adipose tissues, led to decreased expression of skeletal 

muscle contractile proteins, including myosin heavy chain [104]. These studies, along 

with previous evidence, showed increased infiltration of macrophages, T cells and mast 

cells in central adipose tissues, but none in subcutaneous adipose tissues in obese 

condition [105, 106]. Therefore, the inflammatory processes in adipose tissues could be 

the reason behind the reduction of skeletal muscle fiber type 1 during obesity, since 

evidence showed that slow-type MyHC was sensitive to inflammation [107]. Some 

studies demonstrated that body mass index (BMI) was also negatively correlated with 

the percentage of type 1 muscle fibers [8, 9]. However, this correlation is inconsistent 

because another study failed to demonstrate this correlation [25]. A possible explanation 

of these inconsistent findings is that BMI represents both fat and fat-free components of 

whole body, not just the alterations of adipose tissue [95].  

 A 19-year follow up longitudinal study found that the percentage of type 1 fiber 

at the beginning of the study was negatively correlated with weight gain, increased heart 

rate, hypertension and increased fractional shortening of heart at the end of the study 

[108]. In addition, several studies demonstrated that aerobic capacity, indicated by 

volume of maximum oxygen consumption of the body (VO2max), is the independent 

protective factor against obesity [109, 110] and cardiovascular diseases [111, 112]. In 
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addition, two studies demonstrated a positive correlation of the percentage of type 1 

fiber and weight loss [113]. It is known that type 1 fibers, the oxidative–type skeletal 

muscle fibers, are one of the factors determining aerobic capacity [114] and type 1 

muscle fibers have greater insulin sensitivity and oxidative capacity, particularly in fatty 

acid oxidation, than other fiber types [96]. Those findings suggested that the percentage 

of oxidative-type muscle fiber is proposed to be an important factor protecting against 

obesity and cardiovascular diseases.   

In contrast to alterations in type 1 fibers, several studies demonstrated that total 

body adiposity [19] and BMI [9] were positively correlated with percentage of type 2x 

fibers (the glycolytic-type skeletal muscle). Furthermore, two studies reported that 

plasma non-esterified fatty acid (NEFA) level, representing lipolytic activity was 

negatively correlated with percentage of type 1 muscle fibers [25, 115]. It is known that 

the fasting NEFA level is positively correlated with total body adipose tissues [116], 

while postprandial or post-euglycemic clamp NEFA is negatively correlated with 

insulin sensitivity [25].  

In conclusion, most clinical evidence demonstrated that obesity-related 

parameters were negatively correlated with the percentage of oxidative-type skeletal 

muscle fiber and positively correlated with the percentage of glycolytic-type muscle 

fiber. The association among muscle fiber types and obesity-related parameters could 

explain that the percentage changes of skeletal muscle fiber types may be the cause and 

the effect of obesity.  However, some evidence did not report any association among 

muscle fiber types and obesity-related parameters. A possible explanation of this 

inconsistent finding may be due to a difference in the measurement of obesity-related 

parameters. Further longitudinal studies, evaluating both anatomical position and 

quantity of body adiposity by high accuracy and more sensitive multicomponent 

methods e.g. dual energy X-ray absorptiometry (DEXA) or magnetic resonance imaging 

(MRI), to confirm this finding in a clinical setting, are required. 

1.3.5 Mitochondrial function in skeletal muscle and obese insulin resistance 

Evidence demonstrated an increase of H2O2 production in the skeletal muscle 

mitochondria of high-fat-diet induced obese insulin resistant mice [117]. The increase in 
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H2O2 proposed to be the cause of insulin resistance by inducing the stress-sensitive 

Ser/Thr kinases. c-Jun NH2-terminal kinase 1 (JNK1), which its activation can promote 

inhibitory serine phosphorylation of the insulin receptor substrate (IRS), eventually 

decreases response to insulin hormone or insulin resistance [118].  However, the results 

of skeletal muscle mitochondrial function change in high-fat diet-induced obese-insulin 

resistance model are inconsistent. Mice fed by high-fat diet for 4 weeks demonstrated 

no change in mitochondrial swelling [28]. An in vitro study showed decreased 

mitochondrial membrane potential of skeletal muscle cells with exposure to chronic 

insulin and saturated fatty acid [119] and an increase in mitochondrial fission with 

reduction of mitochondrial fusion was detected in mice fed by high-fat diet for 40 

weeks [16]. This inconsistency may be resulted from different in obesity models, 

especially age and duration of high-fat diet feeding, as well as different in measurement 

tool.  

Moreover, mitochondrial dynamics which is a reciprocal change in the 

morphology between a fission and fusion stage of mitochondria plays an important role 

in obesity-induced mitochondrial dysfunction. Skeletal muscle mitochondria, regarded 

as dynamic organelles, undergo a constant structural and morphological cycle involving 

fusion and fission, which are essential for cell survival as well as cell growth and 

division during cell differentiation. Mitochondrial fusion can compensate for damaged 

mitochondria by binding damaged mitochondria to healthy mitochondria, whereas 

mitochondria fission can maintain mitochondrial function by separating damaged 

mitochondrial sites from healthy mitochondria. Mitochondrial fusion plays essential 

role in the regulating the fusion proteins Mitofusins 1 and 2 (MFN1 and MFN2) as well 

as Optic atrophy 1 (OPA1). MFN1 and MFN2, which are dynamin-related GTPases, are 

responsible for the fusion of mitochondrial outer membranes while OPA1, also a 

dynamin-related GTPase, is recruited for the fusion of mitochondrial inner membranes 

and regulates cristae remodeling. Mitochondrial fission is largely mediated by dynamin-

related protein 1 (DRP1), which is mostly localized in the cytoplasm and interacts with 

several mitochondrial outer membrane receptors such as mitochondrial fission factor 

(MFF), fission protein 1 (Fis1), and mitochondrial dynamics proteins (Mid49/51) when 

mitochondria are damaged by loss of membrane potential or oxidative stress. To 

generate the fission process, Drp1 is recruited from the cytosol to the dysfunctional site 
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to cleave the damaged mitochondrial site through the receptors Fis1, Mff, and Mid49/51 

[210]. 

The balance between mitochondrial fusion and fission is important for 

maintaining mitochondrial health in skeletal muscle. However, obesity impairs 

mitochondrial dynamics and alters the balance between mitochondrial fusion and 

fission, thereby reducing mitochondrial contents and inducing mitochondrial 

dysfunction in skeletal muscle [16, 120, 210]. Particularly, a recent study reported that 

inhibition of MFN2 is related to diminished substrate oxidation, cellular metabolism, 

and reduction of membrane potential in electron transport chain complexes under obese 

conditions [211]. In addition, Liu et al. [16] reported that high fat diet consumption for 

40 weeks reduced both MFN1 and MFN2 protein levels in skeletal muscle by 20%, 

whereas protein levels of Fis1 and DRP1 were elevated by 50%. Furthermore, Jheng et 

al. [120] reported that mitochondrial fusion protein (MFN1, MFN2, and OPA1) levels 

were unaltered while mitochondrial fission protein (DRP1 and Fis1) levels were 

significantly increased in genetically induced obese mice (ob/ob) and high fat diet-

induced obese mice compared with lean mice, demonstrating the unbalance between 

fusion and fission in obesity. Evidence demonstrated the role of insulin sensitivity in the 

homeostasis control in mitochondrial dynamics. Insulin resistance in skeletal muscle 

could induce an increase in mitochondrial fission, as indicated by increased 

mitochondrial fission protein DRP1, especially their phosphorylated form 

Ser616pDRP1 [120] as well as a decrease in mitochondrial fusion, as indicated by 

increased mitochondrial fusion protein MFN2 [16]. In conclusion, obesity could induce 

mitochondrial dysfunction, which indicated by increased mitochondrial ROS production 

and swelling, decreased mitochondrial membrane permeability, as well as imbalance 

mitochondrial dynamics. Figure 1.4 summarized the effects of high-fat diet on 

mitochondrial function of skeletal muscle tissue. 
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Figure 1.4 Effects of high-fat diet on skeletal muscle mitochondrial function. High-fat 

diet consumption induces cellular fatty acid oxidation and oxidative phosphorylation 

resulting in increased its by product, oxygen radicals. Oxygen radicals react with 

oxygen, eventually creates reactive oxygen species. Among these, hydrogen peroxide 

(H2O2) is the most important since it is prevalent. Imbalance between reactive oxygen 

(as well as nitrogen) species and antioxidative system causes oxidative stress to the cell. 

Oxidative stress induces insulin resistance via creating abnormal phosphorylation of 

insulin signaling cascade. Simultaneously, oxidative stress induces mitochondrial 

dysfunction, as indicated by an increase in mitochondrial swelling and ROS production, 

resulting in a decrease in mitochondrial membrane permeability. Another possible 

mechanism of mitochondrial function is an imbalance of mitochondrial dynamics, 

indicated by an increase in mitochondrial fission as well as a decrease in mitochondrial 

fusion. Eventually oxidative stress also reduces cellular oxidative capacity, as indicated 

by oxidative phosphorylation (OXPHOS) activity, OXPHOS enzymes protein and mRNA 

expression, resulting in decreased mitochondrial respiratory capacity. If high-fat diet 

consumption continues, these detrimental changes would be enhanced and oxidative 

stress would be increased from abnormal OXPHOS process, causing a vicious cycle. 

 

 



 

17 

1.3.6 Apoptosis of skeletal muscle in obese-insulin resistance 

Obesity enhances not only lipid storage in visceral and subcutaneous adipose 

tissue, but also induces ectopic lipid deposition in non-adipose tissues. This 

phenomenon is proposed to be a result of increased adipose tissue lipolysis [121], 

delivery of non-esterified fatty acid (NEFA) and TG to peripheral tissues [122] and an 

increase in sarcolemmal fatty acid transport [123].  Lipid accumulation in non-adipose 

cells can cause cell dysfunction or cell death via apoptosis, and these processes have 

been defined as ‘lipotoxic’ [70]. DAG and ceramide were proposed to be intermediate 

signals of lipotoxicity [7]. Although lipotoxic apoptosis is well described for the 

pancreas, heart and liver [99], it remains poorly described in skeletal muscle [99]. There 

is in vitro evidence of saturated fatty acids-induced ceramide accumulation causing 

apoptosis in cultured myotubes [124]. In mice fed high-fat, high sucrose diet for 16 

weeks [125], skeletal muscle apoptosis, evident by increase of caspase-3 activity, was 

demonstrated.  However, in ob/ob mice mice fed high-fat diet for 12 weeks, Turpin 

(2009) demonstrated increase of anti-apoptotic (Bcl-2) signaling [99] with no change of 

caspase-3, Bax:Bcl2 ratio, TUNEL and decrease of mRNA expression of pro-apoptotic 

genes except increase of caspase-3 mRNA expression. A study in obese insulin resistant 

Zucker rats also demonstrated no change of the apoptotic markers in skeletal muscle in 

soleus and gastrocnemius [53], whereas there were decreased Bcl-2, increased Bax and 

decreased Bax:Bcl-2 levels in cardiac myocytes. Differences in duration of high-fat diet 

feeding, as well as the severity of obesity, may account for this inconsistency. The 

authors proposed that in mild obesity, a molecular adaptation in skeletal muscle which 

suppressed pro-apoptotic genes, prevented in vivo lipoapoptosis. Interestingly, this 

adaptive-to-apoptosis in skeletal muscle was compatible with the result of skeletal 

muscle fiber oxidative capacity. Mice fed high-fat diet for 4 and 8 weeks demonstrated 

compensatory increase of skeletal muscle oxidative capacity [27, 29] while this 

compensatory effect was absent in the skeletal muscle of mice fed by high-fat diet for 8 

weeks or more, as well as mice or rats with genetic-modified obesity induced increase 

of skeletal muscle oxidative capacity [24, 27]. In conclusion, apoptosis of skeletal 

muscle in obese-insulin resistant condition is still inconsistent. Skeletal muscle 

abnormalities in obese insulin resistant condition are summarized in Figure 1.5 
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Figure 1.5 Skeletal muscle abnormalities in obese insulin resistant condition. Obesity 

induces multiple abnormalities to the skeletal muscle. It increases insulin resistance of 

the skeletal muscle via pathologic phosphorylation of insulin cascade. Obesity also 

decreases oxidative-type muscle fiber resulting in early fatigability and contractile 

dysfunction. Obesity reduces mitochondrial function, as well as mitochondrial 

dynamics. Eventually, increased apoptosis, as indicated by elevated pro-apoptotic 

protein Bax and reduced anti-apoptotic protein Bcl-2 is one of the parameters of 

skeletal muscle dysfunction. 

1.3.7 Effects of caloric restriction program on obese-insulin resistance 

Lifestyle modification, such as dietary intervention, is a standard treatment of 

metabolic syndrome [126]. Evidence demonstrated that food restriction could improve 

metabolic effects and extended lifespan [127]. Caloric restriction (CR) also decreased 

body weight, core temperature, heart rate, and motor activity in rats [128]. Moreover, 

CR reduced cardiovascular (CVD) risk factors [129] and increased maximum and mean 

life spans, slowing aging [130]. Previous studies in aging obese-insulin resistant rats 

demonstrated that 55% of CR treatment for 18 months could improve metabolic effects 

via reducing visceral adipose tissue deposit, resulted in the reduction of hepatic glucose 

levels [137]. In addition, 85% of CR treatment for 2 weeks in obesity and severe 
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hypertension rats could reduce body weight, visceral fat, plasma insulin levels, improve 

lipid profile, as well as up-regulate glucose transporter-2 (GLUT2) in skeletal muscle 

[138]. Moreover, there were reductions of body weight and visceral fat along with 

increased ObRb expression in hypothalamus in diet-induced obese rats switch to chow 

with 60% CR for 30 days, suggesting that CR could improve leptin signaling [139]. In 

addition, previous studies of caloric and protein restriction or methionine restriction 

showed decreased ROS production and oxidative damage of mitochondrial rat liver 

[140, 141]. It might be proposed that CR also has the beneficial effect on the 

mitochondrial function. However, the effects of CR on mitochondrial dynamics in 

skeletal muscle of rats in the obese condition have not been investigated.   

Several studies found that moderate CR (~60% of daily food intake) improved 

metabolic parameters including glucose homeostasis, plasma insulin, and insulin 

sensitivity in both animals [34, 131, 132] and men [133]. In clinical studies, CR 

intervention has been shown to decrease insulin resistance [39, 42-44]. Increased insulin 

sensitivity after CR program is correlated with the amount of weight loss which also 

resulted from the reduction of both fat and fat free mass of the body. More than 10% 

weight loss can significantly improve insulin sensitivity [39, 42, 46] while 8-10% 

weight loss can improve insulin sensitivity without reaching significance [43, 44]. CR 

also decreased plasma TG and LDL [134], increased plasma HDL [135], as well as 

decreased lipid content in hepatic tissue [136]. 

1.3.8 Effects of caloric restriction program on skeletal muscle 

Caloric restriction increases catabolic metabolism and perhaps results in muscle 

fiber atrophy in the animal model [142, 143]. De Andrade and colleagues reported that 

the increased rate of fatty acid oxidation during prolonged caloric restriction occurs via 

AMPK-mediated signal and its downstream mediators, PGC-1alpha [144]. The 

expression of PGC-1alpha has been found in oxidative-type muscle fibers, rather than in 

glycolytic-type muscle fibers, which least found in type 2b/x muscles [144]. According 

to a lower ability to use fatty acid oxidation of type 2b/x, evidence demonstrates that 

muscle atrophy predominately presents in type 2b/x muscle fibers [142]. However, this 

effect depends on amount of protein intake in the program [145-147]. In general, to 

renew muscle fiber as well as change muscle fiber type, large amount of protein 
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consumption (at least 1.6 g/kg/day) is needed to produce myosin heavy chain and other 

contractile proteins [148, 149]. It is also evident that muscle atrophy predominately 

presents in type 2b/x muscle fibers [142].   

Focusing on effect on skeletal muscle fiber type distribution, several studies 

demonstrated no effect of caloric restriction intervention on the percentage of muscle 

fiber types, regardless of the intensity and duration of the intervening programs [18, 38-

46].  In contrast, Russell and colleagues reported the decreases of not only percentage of 

type 2b/x muscle fibers but also the oxidative enzymes without any change of type 1 

muscle fibers after short-term, severe caloric restriction (400 kcal/day for 2 weeks) 

[142]. These findings suggest that short-term severe caloric restriction can change the 

percentages of muscle fiber types and cause harmful effects to muscle, via decreased 

cross-sectional area as well as the oxidative capacity of the muscle fibers. 

Regarding the mitochondrial function and oxidative capacity of the muscle, some 

clinical studies reported no effect of caloric restriction intervention on the oxidative 

capacity of the muscle, regardless of the severity and duration of the program [18, 38-

46]. However, Russell and colleagues [142] demonstrated decreased oxidative capacity 

in muscle after 400 kcal/day of a two-week caloric restriction program while Kern and 

colleagues [41] demonstrated increased oxidative capacity in muscle after 500-800 

kcal/day of a three-week caloric restriction program. Therefore, the time-dependent, as 

well as the dose-dependent effects of caloric restriction program on percentages of 

muscle fiber type change may account for part of this discrepancy finding. The shorter 

program resulted in a change of the oxidative capacity in a different direction depending 

on the severity of caloric restriction whereas metabolic adaptation associated with the 

longer program resulted in no change in the oxidative capacity.  

There was a report of increased IRS-1-associated p110 subunit and Akt-serine 

phosphorylation in rat skeletal muscle after 60% CR for 8 weeks [34]. Interestingly, 

study in ovariectomized rats found that CR inhibited the impaired insulin stimulation of 

IRβ, IRS-1, PI3K, and Akt along with concomitant enhanced p38 MAPK activity in the 

skeletal muscle [150].  CR also reverse intramyocellular lipid content, which is 

proposed to be the cause of skeletal muscle lipotoxicity in obese subjects [43, 46] 

whereas this effect was absent with combination of CR and exercise [42]. Caloric 
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restriction is also proposed to prevent apoptosis in skeletal muscle in obese [36, 37] and 

sarcopenic conditions [151].  

The effect of CR on skeletal muscle function remains to be investigated. 

Evidence in aging rats demonstrated no change in peak and tetanic forces [33] after -

30%, 8 weeks caloric restriction but another study showed increase in peak and tetanic 

forces after -40%, 16 weeks caloric restriction [35]. Notice that these effects were 

present only in skeletal muscles that predominately contain of fast-twitch muscle fibers. 

In clinical study, evidence demonstrated no change in upper and lower extremity force 

after 1 year-10% weight loss [152]. Therefore, caloric restriction program may cause 

either no change or increased muscle contraction force in obese models depending on 

the severity and the duration of the program. Figure 1.6 summarized effect of caloric 

restriction on skeletal muscle in obese insulin resistant condition. 

 

Figure 1.6 Effects of caloric restriction on skeletal muscle in obese-insulin resistant 

condition. Calorie restriction (CR) affects skeletal muscle function in obesity in several 

mechanisms, which are decreased insulin resistance and apoptosis, as well as increased 

mitochondrial function. However, the effects of CR on skeletal muscle fiber type change 

as well as the fatigability is still elucidated but it is proposed to be positive.  
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1.3.9 Effects of exercise training on obese-insulin resistance 

Epidemiological studies have shown that exercise is effective for preventing and 

improving obesity and T2DM [153]. Several studies also found that there was an 

increase in insulin sensitivity following exercise training [154-156]. However, insulin 

resistance commonly returns to near baseline levels after cessation of the exercise. 

Without weight loss, exercise still influences changes in body composition variables 

such as fat mass, visceral and subcutaneous adipose tissue, and body fat percentage, 

which may then translate into improvements in insulin-stimulated glucose disposal [52, 

157]. Focusing on mode of exercise (endurance or resistance exercise), one clinical 

study, all modes of exercise increased insulin sensitivity compared with normal controls 

but resistance exercise more increased insulin sensitivity than endurance exercise [158]. 

This finding was proposed to be associated with significant increase of muscle mass 

resulted from resistance exercise.   

In addition, exercise training reduced the white adipose tissue size, resulting in 

the attenuation of dysregulated expression of adipocyte size-sensitive adipokines, such 

as leptin and oxidative stress [159]. Exercise training also enhances anti-oxidative 

system and increased in blood flow [160], which lead to the attenuation of the 

dysregulated expression of inflammatory adipokines involving TNF-𝛼 and MCP-1 

[159]. Clinical studies demonstrated that exercise reduced dyslipidemia, intra-

abdominal fat, blood platelet adhesiveness and aggregation and inflammation, and 

improved glucose tolerance [161, 162]. Exercise also increases adiponectin, which 

correlated with increased insulin sensitivity [163]. The intensity of exercise training 

appears to be the primary determinant of the degree of metabolic improvement 

modulating the molecular signaling pathways in a dose-response pattern (at least 

moderate intensity exercise program), whereas training modality (endurance or 

resistance) seems to have a secondary role [52, 164]. 

However, it is still inconsistent whether the benefit of exercise on insulin 

sensitivity results from weight loss or it is an effect of exercise itself. In clinical studies, 

the effect of moderate intensity endurance exercise training on insulin sensitivity has 

been reported [47, 48], and this effect was absent when mild intensity endurance 

exercise has been combined with resistance exercise training [12, 49].  Also, there was 
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no additive effect of exercise training on insulin sensitivity when combined with caloric 

restriction [18, 46]. This finding raised the hypothesis that in obese condition, effects of 

exercise training and caloric restriction or weight loss on increase of insulin sensitivity 

are mediated by the similar pathway.  

1.3.10 Effects of exercise training on skeletal muscle 

Exercise training is commonly included in a weight loss program. There is 

evidence in both animal and clinical studies that exercise increases PGC-1alpha (144-

148) and PPAR delta [165, 166] mRNA expression in affected skeletal muscles. The 

proposed mechanism was comprehensively reviewed [86].  Briefly, exercise training 

induces repetitive contractions of the muscles, as well as enhances energy deprivation 

and increases adenosine monophosphate /adenosine triphosphate ratio (AMP/ATP 

ratio).  Repetitive muscle contractions induce increase of MAPK and Ca-dependent 

signaling, e.g. calmodulin, calcineurin and CaMK, which are an upstream signaling of 

PGC-1alpha.  Therefore, it is hypothesized that exercise training can induce oxidative-

type skeletal muscle fiber transformation. 

Effect of exercise training on skeletal muscle fiber type is inconsistent.  In rats, 

endurance exercise by treadmill running for 6 weeks [167] and swimming for 4 weeks 

[168], as well as resistance training by ladder climbing for 8 weeks [169] caused no 

change in skeletal muscle fiber type distribution. Two of seven clinical trials 

demonstrated that exercise training in obesity leads to the alteration in the distribution 

of muscle fiber type by switching type 2 to type 1 muscle fibers [47, 48] while the other 

clinical trial failed to demonstrate that effect [12, 40, 42, 46, 49]. These inconsistent 

findings may result from the heterogeneity of the studies, both in subject characteristics 

and exercise program.  However, another study demonstrated that exercise training in 

male-type obesity significantly induced a type 2 to 1 fiber switch while this effect was 

absent in female-type obesity.  This finding may be resulted from different body 

composition change after exercise training, which was more decreased fat mass in male-

type than female-type obesity [47].   

Furthermore, the studies using resistance [49] or combined of resistance and 

endurance training [40] demonstrated no effect of exercise training on muscle fiber type 
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redistribution. As resistance training, which activates a phasic, high-power contraction 

of the muscle, has been reported to cause hypertrophy and increase percentages of type 

2x fiber, and endurance exercise, which activates a tonic, repetitive contraction of the 

muscles, increases percentages of oxidative-type skeletal muscle fiber [170].  Notice 

that resistance training program in these studies were moderate intensity, characterized 

by using 60%–70% of 1-repetition power maximum (RPM) [161, 171]. This intensity 

mostly causes glycolytic-type skeletal muscle fiber transformation and hypertrophy 

[172]. Therefore, these resistance exercise-only programs may cause only change in 

fiber cross-sectional area and the combination of both types of exercise program may 

cause the increase of both types of muscle fiber, resulted in no change in the 

percentages of fiber types. These findings were corresponded with the findings in 

molecular studies, which demonstrated more increase of PGC-1alpha in endurance 

exercise compared with resistance exercise [173, 174]. 

Focusing on skeletal muscle oxidative capacity, both clinical [12, 18, 40, 47-49] 

and animal studies demonstrated that exercise training, regardless of the parameters 

(type, intensity, duration or frequency), significantly increased the oxidative capacity of 

the muscle. Several studies also found that increase in skeletal muscle mitochondria 

biogenesis was observed following exercise training [175, 176]. In addition, studies 

using genetic modification of mice models demonstrated that muscle fiber phenotype 

and muscle oxidative capacity were mediated by close but not proximity mechanisms. 

For example, both muscle fiber phenotype and oxidative capacity were mediated by 

PGC-1alpha and PPAR delta, while only muscle fiber phenotype is mediated by the 

adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, which 

is the main signaling protein responsible for energy control of the body cells [88, 177]. 

Moreover, the benefits of exercise training to increase the oxidative capacity of muscle 

were emphasized in the studies of Toledo et al. and Chomentowski et al. demonstrating 

that the decrease of muscle oxidative capacity and muscle mass with caloric restriction 

program could be negated in combination with exercise training [18, 46]. 

Regarding skeletal muscle insulin signaling, exercise has marked acute and 

chronic effects on insulin action and related inflammatory signaling pathways.  

Improved insulin action, indicated by increased glucose uptake together with increased 
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glycogen synthesis, after acute exercise, or electrical stimulation of muscle contraction, 

was first demonstrated in isolated rat muscles [178, 179]. Although enhanced insulin 

action after acute exercise resulted from increased membrane translocation of GLUT4 

[50, 51], the mechanism that activates GLUT4 expression and translocation is not fully 

described yet.  Furthermore, exercise has the potential to modulate inflammatory 

processes by decreasing specific inflammatory signaling pathways, for example 

IKK/NF-𝜅B pathway and inflammasome pathway, which can interfere with signaling 

pathways of the glucose uptake [164]. In addition, a study in obese insulin resistant 

Zucker rats demonstrated that after 9 weeks of endurance exercise (treadmill running), 

there was no change of apoptosis-related markers, which were Bax, Bcl-2 and Bax:Bcl-

2 ratio, in skeletal muscle of obese compared with the lean controls [53].   

The effect of exercise training on skeletal muscle function is inconsistent.  

Clinical studies demonstrated increase of not only maximal strength of affected muscle 

[49, 52], but also aerobic capacity of whole body (indicated by volume of maximum 

oxygen consumption-VO2max) [12, 52] after resistance and endurance exercise 

program, respectively.  However, study in rats demonstrated no change in peak single-

twitch contraction force after 8 weeks of endurance exercise program [33]. In addition, 

a previous study reported that ET increased MFN1 protein expression [180], indicating 

an induction in mitochondrial fusion, as well as decreased DRP1 protein expression, 

indicating a reduction in mitochondrial fission [181] in the rat model.  

Although the effect of mainstream interventions to increase the percentage of 

oxidative-type skeletal muscle fiber is still inconsistent; an exercise program is 

proposed to be the only choice of treatment in humans. From reviewed evidence, the 

preferred exercise program is primarily endurance training, of moderate intensity, at 

least 150 min/week in volume. Endurance exercise prolongs walking time and distance, 

increases self-care activity duration, and improves one’s quality of life [161, 162]. 

Although the resistance exercise may negate an effect of exercise to oxidative-type 

skeletal muscle fiber transformation, it has benefits on increasing muscle mass, 

enhancing bone mass and reducing the risk of developing musculoskeletal disorders 

while performing exercise [171].  Since low intensity resistance exercise training can 

improve fatigability of the skeletal muscle [171], low intensity but high number of 



 

26 

repetitions resistance exercise program, as indicated by resistance weight less than 50% 

of 1 RPM, 15-25 times/sets, 3-4 sets/day, 2 days/week [171], is hypothetically preferred 

in people with obesity to prevent benefit on oxidative-type skeletal muscle fiber 

transformation.  However, further investigation to prove this hypothesis is still required. 

Figure 1.7 summarized effect of exercise training on skeletal muscle in obese insulin 

resistant condition. 

 

Figure 1.7 Effects of exercise training on skeletal muscle in obese insulin-resistant 

condition. Exercise training affects skeletal muscle function in obesity in several 

mechanisms, which are decreased insulin resistance and improved mitochondrial 

function, as well as increased oxidative-type muscle fiber.  However, the effects of 

exercise training program on skeletal muscle apoptosis as well as the fatigability is still 

elucidated but it is proposed to be positive.  

1.3.11 Effects of combined caloric restriction and exercise training program in obese 

insulin resistance 

Both caloric restriction and exercise program provide positive effects to insulin 

resistant condition [52, 182]. Previous studies demonstrated that combined caloric 

restriction and exercise training induces comparable [183-187] or more weight loss 

[188], compared with caloric restriction alone. In addition, clinical studies reported that 
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caloric restriction in combination with vigorous or moderate exercises can comparably 

decrease body weight, and improve lipid profiles as well as insulin sensitivity [183], 

although CR combined with vigorous group had significantly higher VO2max [183, 189] 

and more decrease of visceral fat [183, 184].  In obese insulin resistant rats, swimming 

exercise with 50% caloric restriction for 28 days decreased plasma TG, cholesterol, 

LDL and serum free fatty acid levels along with increased plasma HDL [190]. 

1.3.12 Effects of combined caloric restriction and exercise training program on 

skeletal muscle 

Aforementioned, caloric restriction program induced negative nitrogen balance 

[191, 192] and causes muscle wasting. Inadequate protein intake while performing 

caloric restriction may account for these negative results.  Therefore, clinical studies 

demonstrated that combined caloric restriction and exercise program resulted in no 

change in skeletal muscle fiber type distribution [18, 46]. However, adding exercise 

training to caloric restriction program could attenuate decrease of muscle mass 

compared with caloric restriction alone [46, 54, 187] and aerobic exercise with caloric 

restriction group demonstrated an increase in mitochondrial density, which supported an 

improved mitochondrial oxidative capacity, rather than reduction in mitochondrial size 

observed in the caloric restriction alone group [18]. Combined caloric restriction and 

exercise program also increased mitochondrial DNA (mtDNA content), corresponding 

with increased VO2max [184]. Furthermore, regarding skeletal muscle insulin signaling, 

clinical study demonstrated that insulin-stimulated glucose disposal increased similarly 

between caloric restriction alone and combined with exercise, as did phosphorylation of 

the PI3K/Akt insulin signaling pathway [184]. Focusing on oxidative stress, in obese 

insulin resistant rats, exercise and combination intervention improved SOD and 

decreased malondialdehyde (MDA) in soleus muscle while dietary intervention alone 

had not the effect [193]. In addition, skeletal muscle contraction evaluating by muscle 

contraction study in rats found that single-twitch contraction force was higher in 

combined caloric restriction and exercise group than caloric restriction or exercise only 

groups, as well as obese controlled group [33]. However, the combined effects of an ET 

with a CR program on mitochondrial dynamics and muscle fatigability in an obese-

insulin resistant condition, as well as the comparative effect of an ET, CR and a 
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combined ET and CR program on functions of skeletal muscles and mitochondria have 

not yet been investigated. Figure 1.8 summarized effect of combined caloric restriction 

and exercise training on skeletal muscle in obese insulin resistant condition. 

 

Figure 1.8 Effects of combined caloric restriction and exercise training on skeletal 

muscle in obese-insulin resistant condition. Combined caloric restriction and exercise 

training program affects skeletal muscle function in obesity in several mechanisms, 

which are decreased insulin resistance and increased mitochondrial function. However, 

the effects of combined caloric restriction and exercise training on skeletal muscle 

apoptosis, fiber type change as well as the fatigability is still elucidated but it is 

proposed to be positive. 

1.4 Theories/principles and rationales 

Currently, prevalence of metabolic syndrome, characterized by obesity and 

insulin resistance, leads to increase an epidemic problem around the world including 

Thailand.  Although several studies demonstrated the beneficial effects of calorie 

restriction and exercise training on improving systemic insulin sensitivity, skeletal 

muscle fiber type, skeletal muscle insulin signaling and mitochondrial function, the 

results of those studies are inconsistent. Moreover, few studies demonstrated effects of 

these interventions on skeletal muscle apoptosis markers and contractile function. In 
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addition, the combined effect of calorie restriction and exercise training on skeletal 

muscle mitochondrial function, skeletal muscle oxidative stress, skeletal muscle 

apoptosis and skeletal muscle contractile function in obese insulin resistant rats have not 

been investigated. Therefore, we hypothesize that combined calorie restriction and 

exercise training increase percentage of oxidative-type fiber of skeletal muscle, improve 

skeletal muscle mitochondrial function, skeletal muscle oxidative stress, skeletal muscle 

apoptosis and skeletal muscle contractile function in obese insulin resistant rats. 

1.5 Scope of study 

As the prevalence of overweight and obesity, particularly in women, has 

increased up to 40.4% in USA [1], the interest in the effect of obesity on skeletal 

muscles has been growing. Skeletal muscle is responsible for 80% of postprandial 

insulin-stimulated uptake of glucose [4]. Therefore, the roles of skeletal muscle in the 

cause and the effect of the obese-insulin resistant condition need to be considered.  In 

skeletal muscle, the insulin resistant condition can be indicated by a disruption of 

protein phosphorylation in insulin signaling pathways. This disruption can include 

decreased tyrosine phosphorylation of insulin receptors (IR) and protein kinase B (Akt), 

resulting in reduced glucose uptake and utilization [30, 76]. An insulin-resistant 

condition in skeletal muscles has been associated with mitochondrial dysfunction [18, 

48], imbalance of mitochondrial dynamics [16, 120], and increased cell apoptosis [7]. 

These impairments can lead to abnormal skeletal muscle contractile function, indicated 

by increased muscle fatigability, the ability to withstand fatigue being one of the most 

important functions of skeletal muscle [23, 24]. 

An exercise training program (ET) and caloric restriction (CR) are the 

conventional interventions for obesity. Previous studies from both animal and clinical 

studies demonstrated that ET activated insulin signaling [49, 50] and enhanced 

mitochondrial function of the skeletal muscle [48, 49, 54], leading to an increase in 

muscle contractile function [49, 52]. In addition, a previous study reported that ET 

increased MFN1 protein expression [180], indicating an induction in mitochondrial 

fusion, as well as decreased DRP1 protein expression, indicating a reduction in 

mitochondrial fission [181] in the rat model. Although ET could ideally attenuate 

apoptosis in skeletal muscles, a previous study investigating skeletal muscle of rats after 
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ET failed to demonstrate any significant changes in the pro-apoptotic protein Bax and 

anti-apoptotic protein Bcl-2 [53]. Several previous studies showed the beneficial effects 

of CR in the rat model as regards an increase in insulin sensitivity and function of 

skeletal muscles [33], increased insulin signaling [34, 35], and also decreased apoptosis 

[36, 37]. CR has been shown to have no effect on mitochondrial content and 

mitochondrial oxidative phosphorylation enzymes [42](42).  Moreover, the effects of 

CR on mitochondrial dynamics in skeletal muscle of rats in the obese condition have 

not been investigated.   

Previous clinical study found that the combination of ET with a CR program 

improved mitochondrial oxidative phosphorylation enzymes, oxidative capacity, insulin 

signaling and contractile function of skeletal muscle in obese patients [42]. However, 

the combined effects of an ET with a CR program on mitochondrial dynamics and 

muscle fatigability in an obese-insulin resistant condition, as well as the comparative 

effect of an ET, CR and a combined ET and CR program on functions of skeletal 

muscles and mitochondria have not yet been investigated. Therefore, the hypotheses of 

the present study were that: 1) in an obese condition skeletal muscles developed insulin 

resistance, contractile dysfunction, impaired mitochondrial function, mitochondrial 

dynamics, and biogenesis, as well as there being increased cell apoptosis; and 2) a 

combination of ET and CR therapy in an obese-insulin resistant condition provides 

greater efficacy in improving the deleterious effects on skeletal muscles than ET or CR 

alone. 

1.6     Expected benefits 

1.6.1 This study will provide novel, basic science knowledge about skeletal muscle 

dysfunction in obese insulin resistance condition in all modalities, e.g. histology, 

mitochondrial function, oxidative capacity, apoptosis, insulin signaling and 

contractile function, as well as effects of caloric restriction, exercise training and 

combined program in order to treat skeletal muscle dysfunction in obese insulin 

resistance condition. This knowledge can be applied to manage obese insulin 

resistant condition in clinical setting.  
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This study will be published in the international medical journal, which is in the 

PubMed database, as well as will be presented in the international conference, to 

transfer these knowledges to the scientific society. 
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CHAPTER 2 

Materials and Methods 

2.1 Specific objectives related to the protocol 

Aim 1: To investigate the metabolic parameters, skeletal muscle structural and 

functional changes in obese insulin-resistant rats using HFD-induced obesity. 

Hypothesis of aim 1: Skeletal muscle dysfunction, as indicated by altered muscle fiber 

type distribution, mitochondrial dysfunction, increased oxidative stress, impaired 

insulin signaling, and induced apoptosis in skeletal muscle, occurs in obese-insulin 

resistant condition. 

Aim 1.1: To investigate the effects of obese insulin resistance on metabolic changes in 

rats, by measuring plasma insulin level, plasma glucose level, lipid profiles level, 

Homeostatic model assessment (HOMA) index and oral glucose tolerance test (OGTT)   

Aim 1.2: To investigate the effects of obese insulin resistance on skeletal muscle insulin 

signaling in rats 

Aim 1.3: To investigate the effects of obese insulin resistance on skeletal muscle fiber 

types changes and contractile dysfunction in rats, by measuring the expression of 

myosin heavy chain isoforms and the contraction parameters of the muscles 

Aim 1.4: To investigate the effects of obese insulin resistance on skeletal muscle 

mitochondrial dysfunction in rats, by measuring skeletal muscle mitochondrial fusion-

fission proteins, mitochondrial reactive oxygen species (ROS) production, 

mitochondrial membrane potential change, mitochondrial swelling and mitochondrial 

respiratory function 
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Aim 1.5: To investigate the effects of obese insulin resistance on skeletal muscle 

apoptosis in rats by measuring the expression of Bax and Bcl2 levels 

Rationale: Previous studies regarding changes of skeletal muscle function in obesity are 

still inconsistent. Both clinical and animal studies demonstrated that skeletal muscle 

dysfunction , as indicated by decreased percentage of oxidative-type fiber [6-12], 

decreased mitochondrial function [13-20], decreased insulin signaling [12, 21], and 

decreased muscle contractile function [22-24] was presented in the obese insulin 

resistant condition, whereas some studies reported no changes of the oxidative-type 

fiber [18, 21, 24-27], mitochondrial function [27-29], insulin signaling [12, 21, 30] and 

muscle contractile function [31, 32] of skeletal muscle of the same pathological 

condition. The difference between these findings may be related to the different model 

such as genetically obese mice and rats, as well as HFD feeding mice. Interestingly, a 

study in HFD-induced obese insulin resistance found an increase in oxidative-type 

muscle fiber but decreased in mitochondrial function of the skeletal muscles [20]. To 

strengthen up the effect of obese insulin resistance on the skeletal muscle changes, rats 

fed HFD for 27 weeks are performed in this study. We hypothesize that high-fat diet 

induced insulin resistant obese rats have more severe muscle dysfunction compared 

with non-insulin resistant rats. 

Aim 2: To examine the effects of calorie restriction on the metabolic changes, skeletal 

muscle structure and function in obese insulin-resistance rats. 

Hypothesis of aim 2: Skeletal muscle dysfunction in obese-insulin resistant condition 

can be improved by calories restriction. 

Aim 2.1:  To examine the effects of caloric restriction on peripheral insulin resistance in 

obese insulin-resistance rats, by measuring plasma insulin level, plasma glucose level, 

lipid profiles level, HOMA index and OGTT  

Aim 2.2:  To examine the effects of caloric restriction on skeletal muscle insulin 

resistance in obese insulin-resistance rats, by measuring skeletal muscle insulin 

signaling  
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Aim 2.3: To examine the effects of caloric restriction on skeletal muscle fiber type 

changes and contractile dysfunction in obese insulin-resistance rats, by measuring the 

expression of myosin heavy chain isoforms and the contraction parameters of the 

muscles 

Aim 2.4:  To examine the effects of caloric restriction on skeletal muscle mitochondrial 

dysfunction- in obese insulin-resistance rats, by measuring skeletal muscle 

mitochondrial fusion-fission proteins, mitochondrial reactive oxygen species (ROS) 

production, mitochondrial membrane potential change, mitochondrial swelling and 

mitochondrial respiratory function 

Aim 2.5:  To examine the effects of caloric restriction on skeletal muscle apoptosis in 

obese insulin-resistance rats by measuring the expression of Bax and Bcl2 levels 

Rationale: Caloric restriction and exercise are mainstream intervention of obesity.  

Several studies demonstrated the beneficial effects of calorie restriction on 

improvement of systemic insulin sensitivity [34, 131-133], increase of muscle function 

[33] and insulin signaling [34, 35], as well as decreased apoptosis [36, 37], but have no 

effect on muscle fiber type distribution [18, 38-46] and muscle oxidative capacity [18, 

38-48].  However, the results of those studies are inconsistent [42, 152] and may be due 

to different model of obesity. In this study, the effects of obese insulin resistance on 

skeletal muscle will be investigated by using the model of rat fed HFD for 27 weeks. 

We hypothesize that caloric restriction attenuates skeletal muscle dysfunction 

(particularly abnormal insulin signaling), but does not attenuate mitochondrial 

dysfunction, in obese insulin resistance rats. 

Aim 3: To examine the effects of exercise training on the metabolic changes, skeletal 

muscle structure and function in obese insulin-resistance rats. 

Hypothesis of aim 3: Skeletal muscle dysfunction in obese-insulin resistant condition 

can be improved by exercise training. 

Aim 3.1:  To examine the effects of exercise training on peripheral insulin resistance in 

obese insulin-resistance rats, by measuring plasma insulin level, plasma glucose level, 

lipid profiles level, HOMA index and OGTT  
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Aim 3.2:  To examine the effects of exercise training on skeletal muscle insulin 

resistance in obese insulin-resistance rats, by measuring skeletal muscle insulin 

signaling  

Aim 3.3: To examine the effects of exercise training on skeletal muscle fiber type 

changes and contractile dysfunction in obese insulin-resistance rats, by measuring the 

expression of myosin heavy chain isoforms and the contraction parameters of the 

muscles 

Aim 3.4:  To examine the effects of exercise training on skeletal muscle mitochondrial 

dysfunction- in obese insulin-resistance rats, by measuring skeletal muscle 

mitochondrial fusion-fission proteins, mitochondrial reactive oxygen species (ROS) 

production, mitochondrial membrane potential change, mitochondrial swelling and 

mitochondrial respiratory function 

Aim 3.5:  To examine the effects of exercise training on skeletal muscle apoptosis in 

obese insulin-resistance rats by measuring the expression of Bax and Bcl2 levels 

Rationale: Several studies demonstrated the beneficial effects of exercise training on 

improving systemic insulin sensitivity [12, 47-49], increasing percentage of oxidative-

type muscle fiber [47, 48], enhancing oxidative capacity of skeletal muscle [12, 18, 40, 

47-49], activating insulin signaling [50, 51] and increasing muscle function [49, 52], 

with no effect on apoptotic marker in skeletal muscle [53].  Notice that these effects are 

intensity-specific, dose-dependent, continuation-specific and mode-dependent.  

However, the results of those studies are inconsistent [12, 33, 40, 42, 46, 49]. In this 

study, the effects of obese insulin resistance on skeletal muscle will be investigated by 

using the model of rat-fed HFD for 27 weeks. We hypothesize that exercise training 

attenuates all components of skeletal muscle dysfunction in obese insulin resistant rats. 

Aim 4: To examine the effects of calorie restriction, exercise training and combined 

calorie restriction and exercise training programs on the metabolic changes, skeletal 

muscle structure and function in obese insulin-resistance rats. 

Hypothesis of aim 4: The combined interventions provides higher efficacy than 

monotherapy via restoring skeletal muscle function in obese-insulin resistant condition. 
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Aim 4.1:  To examine the effects of caloric restriction combined with exercise training 

on peripheral insulin resistance in obese insulin-resistance rats, by measuring plasma 

insulin level, plasma glucose level, lipid profiles level, HOMA index and OGTT  

Aim 4.2:  To examine the effects of caloric restriction combined with exercise training 

on skeletal muscle insulin resistance in obese insulin-resistance rats, by measuring 

skeletal muscle insulin signaling  

Aim 4.3: To examine the effects of caloric restriction combined with exercise training 

on skeletal muscle fiber type changes and contractile dysfunction in obese insulin-

resistance  

rats, by measuring the expression of myosin heavy chain isoforms and the contraction 

parameters of the muscles 

Aim 4.4:  To examine the effects of caloric restriction combined with exercise training 

on skeletal muscle mitochondrial dysfunction- in obese insulin-resistance rats, by 

measuring skeletal muscle mitochondrial fusion-fission proteins, mitochondrial reactive 

oxygen species (ROS) production, mitochondrial membrane potential change, 

mitochondrial swelling and mitochondrial respiratory function 

Aim 4.5:  To examine the effects of caloric restriction combined with exercise training 

on skeletal muscle apoptosis in obese insulin-resistance rats by measuring the 

expression of Bax and Bcl2 levels 

Rationale: Effects of combined caloric restriction and exercise program on skeletal 

muscle in obese insulin resistance are quite consistent. Although skeletal muscle fiber 

type distribution is not changed [18, 46, 54], muscle mass [46, 54, 187], as well as 

mitochondrial function and oxidative capacity [18, 46, 54, 184], insulin signaling[184] 

and contractile function of skeletal muscle are improved [33]. However, these effects on 

skeletal muscle apoptosis and skeletal muscle contractile function in obese insulin 

resistant rats have not been investigated yet. We hypothesize that combined caloric 

restriction and exercise training attenuates skeletal muscle dysfunction and its effect is 

more than effect of caloric restriction or exercise training alone. 
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2.2 Study protocol 

All experiments were conducted using a protocol approved by the Faculty of 

Medicine, Chiang Mai University Institutional Animal Care and Use Committee, in 

compliance with NIH guidelines.  

Aim 1: To investigate the effects of obese insulin resistance on the metabolic changes 

and skeletal muscle structure and function in rats 

Female Wistar rats (n=20, body weight 200-220 g.) were obtained from the 

National Laboratory Animal Center, Thailand, and were randomly assigned to be fed on 

either a normal or high-fat diet. The normal-diet (ND) group (n=8) was given standard 

laboratory chow, which had an energy content of 4.02 kcal/g with 19.77% of the total 

energy (%E) of the food being from fat (Mouse Feed Food No. 082, C.P. Company, 

Bangkok, Thailand) (see Appendix Table A1). The high-fat diet (HFD) group were 

given a high-fat diet, which had an energy content of 5.35 kcal/g and contained fat 

mostly from lard (59.28% E) [194] (see Appendix Table A2). Rats in both groups 

continued consuming their assigned diet for total 27 weeks. Blood samples were 

collected to determine metabolic parameters at the end of week 26. At the end of week 

27, an oral glucose tolerance test (OGTT) was performed on each rat by collecting 

blood from the tail veins.  In the next morning, the animals were deeply anesthetized 

with xylazine (0.15 ml/kg) and Zoletil (50mg/kg). The gastrocnemius muscles were 

used to carry out in situ muscle contraction studies for measuring the time to fatigue of 

tetanic contraction.  Then, insulin was injected intramuscularly 10 minutes before the 

rats were euthanatized and the vastus lateralis muscles were rapidly removed for 

determining insulin signaling, mitochondrial function, mitochondrial biogenesis, 

mitochondrial dynamics, oxidative stress and apoptosis, as well as evaluating fiber type 

component by using immunohistochemistry staining. A summary of the protocol of aim 

1 is shown in Figure 2.1 
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Figure 2.1 Schematic diagram of the experimental design of aim 1 

ND, normal diet group; HFD, high-fat diet group; IHC, immunohistochemistry; OGTT, 

oral glucose tolerance test 

Aim 2-4: To investigate the effects of interventions (e.g. exercise training, caloric 

restriction or combined exercise training and caloric restriction program) on the 

metabolic changes and skeletal muscle structure and function in obese-insulin resistant 

rats 

Female Wistar rats (n=30, body weight 200-220 g.) were obtained from the 

National Laboratory Animal Center, Thailand, and were randomly assigned to be fed on 

either a normal or high-fat diet. The normal-diet (ND) group (n=6) was given standard 

laboratory chow, which had an energy content of 4.02 kcal/g with 19.77% of the total 

energy (%E) of the food being from fat (Mouse Feed Food No. 082, C.P. Company, 

Bangkok, Thailand) (see Appendix Table A1). The high-fat diet (HFD) group were 

given a high-fat diet, which had an energy content of 5.35 kcal/g and contained fat 

mostly from lard (59.28% E) [194] (see Appendix Table A2). Rats in both groups 

continued consuming their assigned diet for total 27 weeks. At week 21, ND-fed rats 

continued ingesting ND without any intervention until the 27
th

 week. At week 21, HFD-

fed rats were subdivided into four subgroups (n=6 rats per subgroup). Each subgroup 
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was designated as either: sedentary living (HFDS), exercise training (HFDEx), calorie 

restriction (HFDCr), or combined exercise and caloric restriction (HFDCb) for 7 weeks.  

Blood samples were collected to determine metabolic parameters at the end of week 26. 

At the end of week 27, an oral glucose tolerance test (OGTT) was performed on each rat 

by collecting blood from the tail veins.  In the next morning, the animals were deeply 

anesthetized with xylazine (0.15 ml/kg) and Zoletil (50mg/kg). The gastrocnemius 

muscles were used to carry out in situ muscle contraction studies for measuring the time 

to fatigue of tetanic contraction.  Then, insulin was injected intramuscularly 10 minutes 

before the rats were euthanatized and the vastus lateralis muscles were rapidly removed 

for determining insulin signaling, mitochondrial function, mitochondrial biogenesis, 

mitochondrial dynamics, oxidative stress and apoptosis. A summary of the protocol is 

shown in Figure 2.2 

 

Figure 2.2 Schematic diagram of the experimental design of aim 2-4 

ND, normal diet group; HFD, high-fat diet group; IHC, immunohistochemistry; OGTT, 

oral glucose tolerance test 
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2.3 Caloric restriction (CR) diet  

 This CR diet provided 60% energy high fat caloric intake of mean of basal 

freely available in the form of normal diet chow. By 1 g of high fat diet was 5.35 kcal 

and normal diet is 4.02 kcal and feeding for 6 weeks [195]. The body weight was 

monitored every week to prevent excessive body weight loss (not more than 3% per 

week). 

2.4 Exercise training protocol 

 The exercise training, in terms of endurance training, was performed on a motor-

driven rodent treadmill five days/week over a six-week period. The exercise regime was 

carried out using a motor-driven rodent treadmill (Columbus Instruments Ohio, USA) 

as previously described [196]. Exercise training was performed five days/week over a 6-

week period. The treadmill was equipped with an aversive electrical stimulus (163  V 

of alternating current and 1.5  mA) in the back region of each lane to force the rats to 

run. Training sessions were held in the morning. During the running sessions sedentary 

rats were put in the same room as exercising rats. The intensity of exercise started at 

10  min once a day at 22  m/min in the first week to accustom the rats to the 

equipment. Then, the intensity was increased to 30  min once a day at 25  m/min. This 

protocol was continued for 6  weeks. The intensity of exercise was 65% VO2max and 

the intensity of exercise was classified as moderate intensity as previously described. 

The exercise program is summarized in Figure 2.3 
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Figure 2.3 Schematic diagram of the exercise protocol. 

2.5 Plasma analysis 

Plasma glucose, triglyceride, HDL, LDL and cholesterol concentrations were 

determined using colorimetric assay, a commercially available kit (Biotech, Bangkok, 

Thailand). Plasma insulin level were measured by Sandwich ELISA (LINCO Research, 

MO, USA). Plasma estrogen concentration were measured by using Sandwich ELISA 

(Cayman Chemical Company, MI, USA). 

2.6 Determination of insulin resistance (OGTT and HOMA) 

Insulin resistance were assessed by oral glucose tolerance test (OGTT) [197, 

198] and Homeostasis Model Assessment (HOMA) [199, 200]. OGTT were performed 

after fasting overnight (12 hrs.). Rats were received a bolus of glucose (2 g/kg BW) via 

gavage feeding and blood samples were corrected from tail vein at 0, 30, 60, 90 and 120 

minutes after glucose administration in NaF microcentrification tube.  Then blood 

samples were centrifuged at 4°C, 6,000 rpm. for 10 minutes.  Plasma glucose were 

estimated by colorimetric assay using a commercially available kit (Biotech, Bangkok, 

Thailand).  HOMA is a mathematical model describing the degree of insulin resistance, 

calculated from fasting plasma insulin and fasting plasma glucose concentration.  A 

Accustoming phase 

10 min once a day at 22 m/min 

1 week 

Progressive phase 

↑ duration 5 min/day, ↑ velocity 1 m/min 

1 week   

Maintenance phase 

30 min once a day at 25 m/min 

4 weeks 
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higher HOMA index indicates a higher degree of insulin resistance.  The HOMA index 

was determined by the following equation:    

[Fasting plasma insulin (µU/ml)] x [fasting plasma glucose (mmol/l)] 

22.5 

2.7 Muscle homogenate preparation 

 Muscles was homogenized in ice-cold lysis buffer: 50 mM HEPES (pH 7.4), 

150 mM NaCl, 1 mM CaCl2,1mM MgCl2, 2 mM EDTA, 10 mM NaF, 20 mM sodium 

pyrophosphate, 20 mMβ-glycerophosphate, 10% glycerol, 1% Triton X-100, 2 mM 

Na3VO4,10μg/ml aprotinin and leupeptin, and 2 mM PMSF. After 20-min incubation 

on ice, the homogenates were centrifuged at 13,000 g for 20 min at 4 
o
C. Aliquots of 

supernatant was frozen at−80 
o
C, and a portion of these homogenates was used for the 

determination of total protein (BCA method, SigmaChemical) [150]. 

2.8 Immunoblotting 

 Expression of the proteins (antibody), including IR (SC-711, Santa Cruz 

Biotechnology, Santa Cruz, USA), Tyr1162/1163pIR (SC-25103, Santa Cruz 

Biotechnology, Santa Cruz, USA), Akt (#9272, Cell Signaling Technology, Danvers, 

USA), Thr308pAkt (#9271, Cell Signaling Technology, Danvers, USA), Bax (ab 

182733, Abcam, Cambridge, UK), Bcl2 (ab 196495, Abcam, Cambridge, UK), PPAR 

delta (PA5-29678, Thermo Fisher Scientific, Waltham, USA), PGC1alpha (ab 154481, 

Abcam, Cambridge, UK), CPT1 (SC-393070, Santa Cruz Biotechnology, Santa Cruz, 

USA), MFN2 (#9482, Cell Signaling Technology, Danvers, USA), DRP1 (#5391, Cell 

Signaling Technology, Danvers, USA) and Ser616pDRP1 (#3455, Cell Signaling 

Technology, Danvers, USA), were determined using immunoblotting. The proteins 

were separated by electrophoresis on 10% polyacrylamide gels (Bio-Rad Laboratories, 

CA, USA) SDS-Page and transferred into PDVF membranes. Band intensity was 

quantified by Scion Image program and the results are shown as average signal intensity 

(arbitrary units) [27, 201]). 
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2.9 Skeletal muscle mitochondrial isolation 

 68-150 mg of removed skeletal muscle was kept in 1 ml isolation medium (100 

mmol sucrose, 100 mmol KCl, 50 mmol Tris, 1 mmol KH2PO4, 0.1 mmol/L EDTA, 

0.2% BSA, adjusted pH to 7.4) on ice and cut into small pieces. After that, skeletal 

muscle tissue was incubated in 1 ml of solution mixed between isolation medium and 

0.2 mg of nagrase type XXVII for 2 minutes. The tissue was finely minced and 

homogenized for 8 minutes in an ice-cooled glass- homogenizer. The homogenate was 

added 3 ml of isolation medium, and then was centrifuged at 700 ×g for 10 minutes to 

remove connective tissue. The supernatant was centrifuged at 10,000 ×g for 10 minutes 

and the pellet was carefully resuspended in 1.3 mL of insolation medium and further 

centrifuged at 7000 ×g for 3 minutes. All centrifugations were at 4°C. The final 

mitochondrial pellet was resuspended in 4µL/g of respiratory buffer for measuring 

mitochondrial RO, membrane potential and mitochondrial swelling. Respiratory buffer 

contained of 225 mmol/L mannitol, 75 mmol/L sucrose, 90 mmol/L Tris-HCl, 10 

mmol/L EDTA, pH 7.4 and brain respiratory buffer contained of mmol KCl, 5 mmol 

HEPES, 5 mmol K2HPO4*3H2O, 2 mmol L-glutamate, 5 mmol Pyruvate sodium salt 

(183). The volume of the added buffer was 4 uL/mg of skeletal muscle tissue. 

Concentrations of mitochondrial proteins was determined by the BCA assay [202]. 

2.10 Protein quantitation by the Bicinchoninic Acid (BCA) assay  

Skeletal muscle protein concentration was determined according to the 

Bicinchoninic Acid (BCA) Assay. Reagent A was composed of sodium bicinchoninate 

(0.1 g), Na2CO3.H2O (2.0 g), sodium tartrate (dihydrate) 0.16 g, NaOH (0.4 g), and 

NaHCO3 (0.95 g), made volume up to 100 ml. The pH was adjusted to 11.25 with 

NaHCO3 or NaOH if necessary. Reagent B was composed of CuSO4.5H2O (0.4 g) in 10 

ml of water and the standard working reagent (SWR) was a mix of 100 ml of reagent A, 

with 2 ml of reagent B. The solution was apple green in color and was stable at room 

temperature for 1 wk. SWR (1 ml) was added to mitochondrial protein (50 µl) and 

incubate at 60°C for 30 min. The sample was cooled to room temperature and then the 

absorbance was measured at 562 nm using a spectrophotometer. A calibration curve 

was constructed using dilutions of a stock 1 mg/ml solution of bovine serum albumin 

(BSA) [202]. 
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2.11 Reactive oxygen species (ROS) measurement in isolated skeletal muscle 

mitochondria 

ROS in isolated skeletal muscle mitochondria was measured by fluorescent 

probe and dichloro-hydrofluoresceindiacetate (DCFDA). Protein of skeletal muscle 

mitochondria (0.4 mg/ml) was incubated with 2 μM DCFDA, 25°C in 20 minutes. ROS 

was evaluated by fluorescent microplate reader at the wavelength of 485 nm (bandwidth 

5 nm) and emission wavelength at 530 nm (bandwidth). The fluorescence was 

determined using a fluorescent microplate reader (Bio-Tek Instruments, Inc. Winooski, 

Vermont USA). Increase of fluorescent intensity represented as increased of skeletal 

muscle ROS [203]. 

2.12 Mitochondrial membrane potential (ΔΨm) measurement in isolated muscle 

mitochondria 

Mitochondria membrane potential (ΔΨm) change was measured with dye 

5,5’,6,6’-tetrachloro-1,1’,3,3’-tetraethyl benzimidazolcarbocyanine iodide (JC-1). 

Mitochondrial proteins (0.4 mg/ml) was stained with JC-1 (5µM) at 37 °C for 15 

minutes. Mitochondrial membrane potential was determined as fluorescence intensity 

by using a fluorescent microplate reader (Bio-Tek Instruments, Inc. Winooski, Vermont 

USA.  JC-1 monomer (green) fluorescent is excited at wavelength at 485 nm and detects 

the emission wavelength at 590 nm and JC-1 aggregate form (red) fluorescent is excited 

wavelength 485 nm and detects the emission wavelength at 530 nm. The change in 

mitochondrial membrane potential was calculated as the ratio of red to green 

fluorescence. Mitochondrial depolarization was represented as decrease of red to green 

ratio [204]. 

2.13 Isolated skeletal muscle mitochondrial swelling determination 

Isolated skeletal mitochondria were measured as its changing in the absorbance 

of the suspension at 540 nm by using a microplate reader (Bio-Tek Instruments, Inc. 

Winooski, Vermont USA). Mitochondria (0.4 mg/ml) was incubated in 2 ml respiration 

buffer Mitochondrial swelling will be represented as decrease of absorbance value 

[205].  
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2.14 Skeletal muscle insulin signaling  

Rats were fasted 3 h and intraperitoneal injected with human insulin at 1.25 

IU/kg body weight. Fifteen minutes later, mice were euthanized, and tissues were 

collected from bilateral soleus. Total and phosphorylated Akt as well as IR primary 

antibodies were applied. Peroxidase conjugated immunoglobulin G secondary antibody 

were used. Tissues were homogenized in cell lysis buffer and a BCA assay was used to 

determine sample protein concentrations. For western blots, 12 μg of protein was loaded 

onto a 4 – 20% gradient SDS-PAGE gel for separation. Protein was transferred to 

nitrocellulose membranes which was then incubated in primary antibody overnight at 

4°C (1:1000 for total Akt and phosphorylated Akt). Membranes were washed then 

incubated in the secondary antibody (1:5000) for 1 hour then washed again. Band 

intensity was quantified by Scion Image program and the results were shown in average 

signal intensity (arbitrary units). Data were represented as basal and insulin stimulated 

phosphorylation as a ratio of phosphorylated Akt to total Akt and phosphorylated 

insulin receptors to total insulin receptors [206]. 

2.15 In situ skeletal muscle contraction study 

 To set up this preparation, the animal was anesthetized, and the left lower 

extremity of the animal was restrained.  Left gastrocnemius muscle was surgically 

isolated, with the origin intact. Care was taken to maintain the blood and nerve supplies. 

A long section of the sciatic nerve was cleared of connective tissue and severed 

proximally. All branches of the distal stump that innervate the medial gastrocnemius 

muscle was severed. The distal nerve stump was inserted into a cuff lined with stainless 

steel stimulating wires. The Achilles tendon was attached to the force transducer. The 

muscle was covered by gauze filled with normal saline to protect myocyte injury and 

minimizes evaporative heat loss. A heat lamp was placed near the muscle, and the 

muscle and rat were allowed to warm up to 37°C. While it was warming, maximal 

voltage and optimal length was determined. Muscle length was adjusted to the resting 

length, i.e., the length at witch maximal force after single twitch contraction was 

observed. The muscle length was increased by about 1 mm for another twitch. This was 

repeated as long as twitch amplitude is increasing. Once twitch amplitude decreased, the 

length was returned to the one that gave the largest amplitude twitch. Muscles were 
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allowed to equilibrate for 10 min before starting stimulation protocol.  The pulse 

duration was set at 50 μs. The starting intensity was 0.5 V then the voltage was 

increased until twitch amplitude did not increase. Maximal voltage was the lowest 

voltage that activates all motor units. Supramaximal intensity was double of the 

maximal voltage or 3 V whichever will be higher. Isometric single-twitch contractions 

were evoked using supramaximal single pulses. Contraction time (time from the 

baseline to the peak force; ms), relaxation time (time from the peak force to the 

baseline; ms) and peak force for single-twitch contraction were measured. To minimize 

the influence of noise, contraction and relaxation times were calculated as the transition 

time between 10% and 90% of peak force rather than 0% and 100%. Force was 

normalized to muscle weight in grams [29]. For tetanic contraction protocol, muscle 

was evoked at 50 Hz until 50% fatigue of the muscle was presented. Peak force and 

time to fatigue of tetanic contraction was measured.  Muscles was allowed to recover 

for 10 min between different stimulation protocols. At the end of the experiment, 

tendon-free muscle weight was determined [207]. Figure 2.4 demonstrates the setting 

of muscle contraction study used in this research. 

 

 

Figure 2.4 The muscle contraction study setting. 
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2.16 Immunohistochemistry staining 

After removed, vastus lateralis muscles will be fixed in 10% neural buffered 

formalin (NBF) and embedded in paraffin. The tissue will be cut into 10 µm thick with 

a microtome maintained at -20°C. Immunofluorescence analysis of MHC expression 

will be performed with primary antibodies against MyHCII. Muscle sections will be 

blocked in normal goat serum, primary antibody cocktail was added for 2 h. Sections 

will be then washed and incubated in the appropriate secondary antibody in avidin-

biotin peroxidase complex method for 1 h, washed, and cover slipped. Slides will be 

visualized with a microscope. The Individual images will be taken across the entire 

cross-section and assembled into a composite panoramic image with Microsoft Image 

Composite Editor (Microsoft). For fiber type analysis, all fibers within the entire 

muscle/cross-section will be characterized [208]. Since mammals have only two kinds 

of skeletal muscle fibers, namely oxidative type and glycolytic type [5], the percentage 

of oxidative type fibers would be presented as a percentage of non-glycolytic type 

fibers. 

2.17 Statistical analysis 

Categorical variables were described using percentages of frequency. Normally-

distributed numerical variables were presented using arithmetic mean and standard 

deviation (SD). Differences of parameters among groups were compared using 

independent t-test and two-way ANOVA, followed by post-hoc Turkey test. 

Correlations between parametric continuous parameters were determined by Pearson 

correlation analysis. Statistical analyses were performed using SPSS version 22 for 

Windows (SPSS Inc., Chicago, IL, USA). A p-value of less than 0.05 was considered 

statistically significant. 
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CHAPTER 3 

Results 

3.1 Aim 1: To investigate the effects of obese insulin resistance on the metabolic 

changes and skeletal muscle structure and function in rats 

3.1.1 HFD consumption induced obesity, insulin resistance and dyslipidemia  

 After being fed on HFD for 27 weeks, HFD-fed rats demonstrated metabolic 

disturbance, as indicated by obesity (increased body weight and visceral fat weight), 

peripheral insulin resistance, as shown by hyperinsulinemia with euglycemia, increased 

HOMA index and impaired OGTT, and dyslipidemia (increased plasma cholesterol 

level, plasma LDL level and decreased plasma HDL level) (Table 3.1). 

Table 3.1 Effects of high-fat diet on metabolic parameters in rats 

Metabolic parameters 
Group 

ND HFD 

Body weight (g)  
281.15 ± 3.50 352.00 ± 4.16* 

Visceral fat (g)  
9.31 ± 0.69 28.51 ± 1.12* 

Plasma glucose (mg/dl) 
133.25 ± 3.03 139.66 ± 4.48 

Plasma insulin (ng/ml)  
1.50 ± 0.17 4.76 ±  0.36* 

Plasma glucose AUC from OGTT 

(AUC)(mg/dl×min×10
4
) 1.92 ± 0.07 2.57 ± 0.04* 

HOMA index 
5 ± 2.4 16 ± 2.1* 



 

 49 

Table 3.1 Effects of high-fat diet on metabolic parameters in rats (continued) 

Metabolic parameters 
Group 

ND HFD 

Plasma total cholesterol (mg/dl)  
51.65 ± 6.79 98.55 ± 4.53* 

Plasma triglyceride (mg/dl)  
61.30 ±  7.39 70.38 ± 5.65 

HDL cholesterol (mg/dl)  
19.24 ± 1.49 22.64 ± 1.35 

LDL cholesterol (mg/dl)  
19.29 ± 4.66 57.89 ± 4.66* 

*, p<0.05 compared with ND; n=6/group; 

Abbreviation:  AUC, area under the curve; OGTT, oral glucose tolerance test; HOMA, 

homeostatic model assessment; HDL, high density lipoprotein; LDL, low density 

lipoprotein; ND, normal diet group; HFD, high-fat diet group 

3.1.2 Enhanced early fatigability and decreased PPAR delta protein expression in 

gastrocnemius muscles occurred in HFD-fed rats 

 In-situ muscle contraction study of gastrocnemius muscles was used to 

determine muscle contractile dysfunction. HFD-fed rats in the sedentary living group 

demonstrated a significant decrease in time-to-fatigue duration, when compared with 

those of ND-fed rats (Figure 3.1 A and B). Muscle fatigability is mainly determined by 

the predominant type of muscle fiber in the muscle. PPAR delta is part of the PPAR 

receptor family, which regulates muscle fiber type 1 construction. Corresponding with 

the results of muscle contraction study, the results of the western blot analysis also 

showed a significant decrease in PPAR delta protein expression in sedentary living 

HFD-fed rats, when compared with those of ND-fed rats (Figure 3.1 C). 
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Figure 3.1 The effects of HFD consumption on skeletal muscle fatigability and PPAR 

delta protein expression. (A): Muscle contraction study tracing in each study group; (B): 

Comparison of time to fatigue parameter of muscle contraction studies between the 

study groups; (C): Comparison of PPAR delta protein expression among the study 

group.  

 *, p<0.05 compared with ND group; n=6/group. ND, normal diet group; HFD, high-fat 

diet group; PPAR, peroxisome perforator-activated receptor; GAPDH, glyceraldehyde 

3-phosphate dehydrogenase 

3.1.3 Decreased ratio of oxidative-type skeletal muscle fibers occurred in HFD-fed 

rats and associated with PPAR delta protein expression. 

 Immunohistochemistry (IHC) of glycolytic-type muscle fibers was applied to the 

formalin-fixed muscle tissues from vastus lateralis for determining the ratio between 

oxidative-type muscle fibers and glycolytic-type muscle fibers in rats from ND and HFS 

groups. Since mammals have only two kinds of skeletal muscle fibers, namely oxidative 

type and glycolytic type [5], the percentage of oxidative type fibers would be presented 

as a percentage of non-glycolytic type fibers. 
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 In ND-fed rats, the percentage of oxidative-type muscle fibers was 

27.17±0.83%. HFD-fed rats in the sedentary living group demonstrated a significant 

reduction in percentage of oxidative-type muscle fibers (20.33±0.76%), when compared 

with those of ND-fed rats (20.33±0.76% vs 27.17±0.83%, p<0.001; independent t-test). 

(Figure 3.2). Notice that there was a strong positive correlation between the percentage 

of oxidative-type muscle fibers and PPAR delta protein expression in both ND- and 

HFD-fed groups (R=0.896, p<0.001; Pearson correlation) (Figure 3.3). 

 

 

Figure 3.2 The effects of HFD consumption on the percentage of oxidative-type 

skeletal muscle fibers. *, p<0.05 compared with ND group; n=6/group; ND, normal diet 

group; HFDS, high-fat diet with sedentary living group 
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Figure 3.3  The correlation between percentage of oxidative-type muscle fibers and 

PPAR delta protein expression 

Abbreviation:  PPAR, peroxisome perforator-activated receptor; GAPDH, 

glyceraldehyde 3-phosphate dehydrogenase 

3.1.4 HFD consumption induced insulin resistance in the skeletal muscle, indicated 

by decreased Tyr1162/1163pIR/IR ratio and Thr308pAkt/Akt ratio. 

We found that the Tyr1162/1163pIR/IR ratio and Thr308pAkt/Akt ratio, which 

represented the degree of insulin sensitivity, were significantly lower in HFD-fed rats 

experiencing sedentary living, when compared with those of ND-fed rats (Figure  3.4 

A-B). These findings indicated that HFD consumption could induce insulin resistance in 

the skeletal muscle. 

PPAR delta/GAPDH 
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Figure 3.4 The effects of HFD consumption on skeletal insulin signaling. (A): 

Comparison of Tyr1162/1163pIR/total IR ratio between the study groups; (B): 

Comparison of Thr308pAkt/total Akt ratio between the study groups. 

 *, p<0.05 compared with ND group; n=6/group. ND, normal diet group; HFD, high-fat 

diet group; HFDEx; Tyr1162/1163pIR, tyrosine phosphorylated insulin receptor; IR, 

insulin receptor; Thr308 pAkt, phosphorylated protein kinase B; Akt, protein kinase B 

3.1.5 Impaired skeletal muscle mitochondrial function was found in obese-insulin 

resistant rats and that dysfunction could be attenuated by combined ET and CR 

program. 

We have found that skeletal muscle was one of the end-organs affected by an 

insulin-resistant condition, and the resulting impact is an impairment of mitochondrial 

function in the muscle. Mitochondrial ROS production was significantly higher in HFD-

fed rats with sedentary living, when compared with those of ND-fed rats (Figure 3.5A).  

This result was compatible with an increase in mitochondrial membrane potential 

change (Figure 3.5B), and mitochondrial swelling (Figure 3.5C).  
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Figure 3.5 The effects of HFD consumption on skeletal muscle mitochondrial function. 

(A): Comparison of Mitochondrial ROS between the study groups; (B): Comparison of 

Mitochondrial membrane potential change between the study groups; (C): Comparison 

of Mitochondrial swelling between the study groups. 

 *, p<0.05 compared with ND group; n=6/group.  ND, normal diet group; HFD, high-fat 

diet group; ROS, reactive oxygen species 

3.1.6 An imbalance in mitochondrial dynamics, as shown by an increase in 

mitochondrial fission and a decrease in mitochondrial fusion were observed in 

skeletal muscles of obese-insulin resistant rats. 

Mitochondrial dynamics involve a reciprocal change in the morphology between 

a fission and fusion stage of mitochondria. The present study demonstrated an increase 

in Ser616pDRP1/total DRP1 ratio and a decrease in the MFN2 protein expression of 

HFD-fed rats experiencing sedentary living, when compared with that of ND-fed rats 

(Figure 3.6A-B).  These results indicated that HFD consumption could induce an 

imbalance of mitochondrial dynamics. 
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Figure 3.6 The effects of HFD consumption on skeletal muscle mitochondrial 

dynamics. (A): Comparison of Ser616pDRP1/total DRP1 ratio between the study 

groups; (B): Comparison of MFN2 protein expression between the study groups. 

  *, p<0.05 compared with ND group; n=6/group. ND, normal diet group; HFD, high-fat 

diet group; pDRP1; phosphorylated dynamin-1-like protein 1; DRP1, dynamin-1-like 

protein 1; MFN2, mitofusin-2; GAPDH, glyceraldehyde 3-phosphate dehydrogenase 

3.1.7 HFD-induced insulin resistance decreased mitochondrial biogenesis and fatty 

acid oxidation of skeletal muscles. 

Compared with ND-fed rats, sedentary living HFD-fed rats had significantly 

lower PGC-1alpha and CPT1 protein expression, indicating a reduction in fatty acid 

oxidation metabolism in skeletal muscles (Figure. 3.7A and B). These results indicated 

that HFD consumption could reduce decreased mitochondrial biogenesis and fatty acid 

oxidation of skeletal muscles. 
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Figure 3.7 The effects of HFD consumption on skeletal muscle mitochondrial 

biogenesis. (A): Comparison of PGC1alpha protein expression between the study 

groups; (B):  Comparison of CPT1 protein expression between the study groups. 

 *, p<0.05 compared with ND group; n=6/group. ND, normal diet group; HFD, high-fat 

diet group; PGC1a, peroxisome perforator-activated receptor coactivator-1 alpha; CPT1, 

carnitine palmitolytransferase-1; GAPDH, glyceraldehyde 3-phosphate dehydrogenase 

3.1.8 HFD-induced insulin resistance increased skeletal muscle apoptosis, indicated 

by an increase in pro-apoptotic protein Bax reciprocally with a decrease in anti-

apoptotic protein Bcl-2. 

Evidence has demonstrated that HFD-induced insulin resistance could enhance 

apoptosis in skeletal muscle tissue, by increasing pro-apoptotic protein-Bax and 

decreasing anti-apoptotic protein-Bcl-2 [7]. Compared with ND-fed rats, sedentary 

living HFD-fed rats had significantly higher Bax protein expression (Figure 3.8A), 

lower Bcl-2 protein expression (Figure 3.8B), and a higher Bax/Bcl-2 ratio (Figure 

3.8C) in skeletal muscles. These results indicated that HFD consumption could induce 

apoptosis of skeletal muscles. 
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Figure 3.8 The effects of HFD consumption on skeletal muscle apoptosis. (A): 

Comparison of Bax protein expression between the study groups; (B): Comparison of 

Bcl2 protein expression between the study groups; (C): Comparison of Bax/Bcl2 ratio 

between the study groups. 

  *, p<0.05 compared with ND group; n=6/group. ND, normal diet group; HFD, high-fat 

diet group; Bax, Bcl2 associated X protein; Bcl2, B-cell lymphoma 2 protein; GAPDH, 

glyceraldehyde 3-phosphate dehydrogenase 

3.2 Aim 2-4: To investigate the effects of interventions (e.g. exercise training, caloric 

restriction or combined exercise training and caloric restriction program) on the 

metabolic changes and skeletal muscle structure and function in obese-insulin 

resistant rats 

3.2.1 ET and CR improved resulting metabolic function, and combined therapies 

restored the metabolic parameters in HFD consumption induced obese-insulin 

resistant rats. 

After being fed on HFD for 27 weeks, HFD-fed rats demonstrated metabolic 

disturbance, as indicated by obesity (increased body weight and visceral fat weight), 

peripheral insulin resistance, as shown by hyperinsulinemia with euglycemia, increased 
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HOMA index and impaired OGTT, and dyslipidemia. A two-way ANOVA, 

determining two type of diet (CR, no CR) an physical activity (ET, no ET), revealed a 

significant effect of ET and CR on body weight (F [3, 72] = 32.68, p<0.001; F [1, 72] = 

83.65, p<0.001), visceral fat (F [3, 59] = 35.18, p<0.001; F [1, 59] = 185.6, p <0.001), 

area under the curve of OGTT (F [3, 70] = 3.222, p=0.003; F [1, 70] = 44.51, p<0.001), 

plasma insulin (F [3, 44] = 10.65, p<0.001; F [1, 44] = 78.35, p<0.001) and HOMA 

index (F [2, 44] = 34.65, p<0.001; F [1, 44] = 72.34, p , 0.001) (ET; CR, respectively).  

The post-hoc analyses revealed that the exercise training and calorie restriction 

led to equally improved metabolic parameters, as indicated by decreased visceral fat, 

glucose intolerance from OGTT, plasma insulin, as well as HOMA index, when 

compared with those of HFD-fed rats experiencing sedentary living (Table 1). A 

combination of exercise training with calorie restriction showed the greatest benefits in 

the improvement of metabolic function when compared with either monotherapy (Table 

1). Focusing on plasma lipid profiles, a two-way ANOVA, determining two type of diet 

(CR, no CR) and physical activity (ET, no ET), revealed a significant effect of ET and 

CR on TC (F [3, 48] = 7.05, p<0.001; F [1, 48] = 70.57, p<0.001) and LDL levels (F [3, 

54] = 3.694, p=0.017; F [1, 54] = 13.06, p<0.001), but not TG (F [3, 70] = 0.051, 

p=0.985; F [1, 70] = 0.340, p=0.562) and HDL level (F [3, 50] = 0.012, p=0.994; F [3, 

50] = 0.329, p=0.804) (ET; CR, respectively). The post-hoc analyses revealed that 

HFD-fed rats with all therapies had significantly lower TC and LDL levels while there 

was no difference in TG and HDL level, when compared with HFD-fed rats 

experiencing sedentary living (Table 3.2).  

These findings suggested that: 1) HFD consumption caused an obese-insulin 

resistant condition; 2) Exercise training and calorie restriction shared similar effects in 

decreasing metabolic disturbance in obese-insulin resistant rats, and 3) a combination of 

ET and CR demonstrated the greatest benefits on this improvement. 
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Table 3.2 Effects of exercise, calorie restriction and combined therapies on metabolic parameters in HFD-fed rats 

Metabolic parameters 

 
Groups 

ND HFDS HFSEx HFDCr HFSCb 

Body weight (g)  
281.15 ± 3.50 352.00 ± 4.16* 322.86 ± 6.53

*,+

 295.00 ± 8.16
*,+

 269.44 ± 3.27
+,#

 

Visceral fat (g)  
9.31 ± 0.69 28.51 ± 1.12* 20.80 ± 1.83

*,+

 15.14 ± 1.06
*,+

 10.14 ± 0.54
+,#

 

Plasma glucose (mg/dl) 
133.25 ± 3.03 139.66 ± 4.48 135.73 ± 7.12 125.41 ± 10.97 131.25 ± 7.06 

Plasma insulin (ng/ml)  

1.50 ± 0.17 4.76 ±  0.36* 3.34 ± 0.20
*,+

 3.01 ± 0.49
*,+

 1.75 ± 0.19
+,#

 

Plasma glucose AUC from OGTT 

 (AUCg)(mg/dl×min×10
4
) 1.92 ± 0.07 2.57 ± 0.04* 2.31 ± 0.09

*,+

 2.26 ± 0.09
*,+

 1.97 ± 0.04
+,#

 

HOMA index 
5 ± 2.4 16 ± 2.1* 11 ± 1.1

*,+

 9 ± 3.4
*,+

 6 ± 0.8
+,#

 

Plasma total cholesterol (mg/dl)  
51.65 ± 6.79 98.55 ± 4.53* 70.33 ± 5.77

*,+

 63.46 ± 2.98
*,+

 56.61 ± 5.70
+,#

 

Plasma triglyceride (mg/dl)  
61.30 ±  7.39 70.38 ± 5.65 66.21 ±  7.75 68.37 ± 8.45 63.07 ± 7.47 

HDL cholesterol (mg/dl)  
19.24 ± 1.49 22.64 ± 1.35 22.24 ± 0.94 22.64 ± 0.82 22.35 ± 0.81 

5
9
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Table 3.2 Effects of exercise, calorie restriction and combined therapies on metabolic parameters in HFD-fed rats (continued) 

LDL cholesterol (mg/dl)  
19.29 ± 4.66 57.89 ± 4.66* 30.27 ± 6.18

*,+

 20.26 ± 3.56
*,+

 28.97 ± 8.89
+,#

 

*, p<0.05 compared with ND; +, p<0.05 compared with HFDS; #, p<0.05 compared with HFDEx and HFDCr groups; n=6/group; 

AUC, area under the curve; OGTT, oral glucose tolerance test; HOMA, homeostatic model assessment; HDL, high density lipoprotein; 

LDL, low density lipoprotein 

ND, normal diet group; HFDS, high-fat diet with sedentary living; HFDEx, high-fat diet with exercise; HFDCr, high-fat diet with caloric 

restriction; HFDCb, high-fat diet with combined therapies 6
0
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3.2.2 Enhanced early fatigability and decreased PPAR delta protein expression in 

gastrocnemius muscles of HFD-fed rats were attenuated by ET and combined 

therapies.  

HFD-fed rats in the sedentary living group demonstrated a significant decrease 

in time-to-fatigue duration, when compared with those of ND-fed rats.  A two-way 

ANOVA, determining two type of diet (CR, no CR) and physical activity (ET, no ET), 

revealed a significant effect of ET (F [1, 14] = 44.88, p<0.001), but not CR (F [1, 14] = 

3.878, p=0.069) on time-to-fatigue duration. The post-hoc analyses also revealed that a 

fatigue-vulnerable property was absent in groups with ET and combined therapies.  In 

addition, HFD-fed rats with combined therapies took a significantly longer time to 50% 

fatigue than those in the HFD-fed groups with ET (Figure 3.9A and B). It is noticeable 

that the HFD-fed rats with combined therapies were the only group that had no 

difference in time to 50% fatigue when compared with ND-fed rats. This result 

suggested that only ET, not CR, attenuated skeletal muscle fatigability and combined 

therapies prevented fatigability in the obese-insulin resistant condition. 

Corresponding with the results of muscle contraction study, the results of the 

western blot analysis also showed a significant decrease in PPAR delta protein 

expression in sedentary living HFD-fed rats, when compared with those of ND-fed rats 

(Figure 3.9 C). A two-way ANOVA, determining two type of diet (CR, no CR) and 

physical activity (ET, no ET), revealed a significant effect of ET (F [1, 8] = 44.31, 

p=0.010), but not CR (F [1, 8] = 1.087, p=0.109) on PPAR delta protein expression. The 

post-hoc analyses also revealed that a decrease in PPAR delta protein expression was 

attenuated in HFD-fed rats with ET and with combined therapies. As expected, PPAR 

delta protein expression of HFD-fed rats with combined therapies was significantly 

higher than those of HFD-fed rats with ET (Figure 3.9 C). It is significant that the 

combined therapies group was the only group that had no difference in PPAR delta 

protein expression when compared with those of ND-fed rats. 

 



 

 62 

 

Figure 3.9 The effects of exercise, caloric restriction and a combined program on 

skeletal muscle fatigability and PPAR delta protein expression in HFD-induced obese-

insulin resistant rats. (A): Muscle contraction study tracing in each study group; (B): 

Comparison of time to fatigue parameter of muscle contraction studies between the 

study groups; (C): Comparison of PPAR delta protein expression among the study 

group.  

 *, p<0.05 compared with ND group; †, p<0.05 compared with HFDS group; #, p<0.05 

compared with HFDEx group; n=6/group  ND, normal diet group; HFDS, high-fat diet 

with sedentary living group; HFDEx, high-fat diet with exercise group; HFDCr, high-fat 

diet with caloric restriction group; HFDCb, high-fat diet with combined therapies 

group; PPAR, peroxisome perforator-activated receptor; GAPDH, glyceraldehyde 3-

phosphate dehydrogenase 

3.2.3 Both ET and CR improved insulin resistance and the combined ET and CR 

program restored insulin sensitivity in skeletal muscles in HFD-induced obese-insulin 

resistant rats. 

It has been proposed that ET and CR increase insulin sensitivity in skeletal 

muscles. A two-way ANOVA, determining two type of diet (CR, no CR) and physical 

activity (ET, no ET), revealed a significant effect of ET (F [1, 8] = 49.33, p<0.001) and 
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CR (F [1, 8] = 91.76, p<0.001) on Tyr1162/1163pIR/IR ratio. A two-way ANOVA also 

revealed a significant effect of ET (F [1, 8] = 8.735, p=0.018) and CR (F [1, 8] = 8.444, 

p=0.020) on Thr308pAkt/Akt ratio. The post-hoc test also revealed that rats with either 

ET or CR had a significantly higher Tyr1162/1163pIR/IR ratio and Thr308pAkt/Akt 

ratio, when compared with the sedentary living HFD-fed rat group. The combined 

therapy HFD-fed rat group had the highest Tyr1162/1163pIR/IR ratio and 

Thr308pAkt/Akt ratio out of all groups (Figure 3.10A-B). However, the combined 

therapy was the only group that had no difference in the Tyr1162/1163pIR/IR ratio and 

Thr308pAkt/Akt ratio when compared with those of ND-fed rats. These findings 

suggest that both ET and CR in the obese-insulin resistant condition improved the 

insulin sensitivity in the skeletal muscles and the combined ET and CR program in 

HFD-fed rats restored it. 

 

Figure 3.10 The effects of exercise, caloric restriction and combined program on 

skeletal insulin signaling in HFD-induced obese-insulin resistant rats. (A): Comparison 

of Tyr1162/1163pIR/total IR ratio among the study groups; (B): Comparison of 

Thr308pAkt/total Akt ratio among the study groups. 

 *, p<0.05 compared with ND group; †, p<0.05 compared with HFDS group; #, p<0.05 

compared with HFDEx and HFDCr group; n=6/group  ND, normal diet group; HFDS, 
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high-fat diet with sedentary living group; HFDEx, high-fat diet with exercise group; 

HFDCr, high-fat diet with caloric restriction group; HFDCb, high-fat diet with 

combined therapies group; Tyr1162/1163pIR, tyrosine phosphorylated insulin receptor; 

IR, insulin receptor; Thr308 pAkt, phosphorylated protein kinase B; Akt, protein kinase 

B 

3.2.4 Only combined ET and CR program attenuated an impairment of skeletal 

muscle mitochondrial function in obese-insulin resistant rats. 

We have found that there was an impairment of mitochondrial function in the 

skeletal muscle of obese-insulin resistant rats. A two-way ANOVA, determining two 

type of diet (CR, no CR) and physical activity (ET, no ET), revealed a significant effect 

of ET (F [1, 10] = 7.898, p<0.020) and CR (F [1, 14] = 14.6, p=0.003) on mitochondrial 

ROS.  It also revealed a significant effect of ET and CR on mitochondrial membrane 

potential change and mitochondrial swelling (F [2, 14] = 76.5, p<0.001; F [1, 14] = 

10.24, p=0.006 and F [1, 9] = 11.16, p<0.009; F [1, 9] = 10.64, p<0.010 respectively). 

However, the post-hoc analyses demonstrated that ET or CR program alone did not 

attenuate any parameters pertinent to mitochondrial dysfunction, but the combined ET 

and CR program led to restoration of mitochondrial function, represented by a decrease 

in mitochondrial ROS production, and membrane potential change, as well as 

mitochondrial swelling (Figure 3.11 A, B and C). 
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Figure 3.11 The effects of exercise, caloric restriction and combined program on 

skeletal muscle mitochondrial function in HFD-induced obese-insulin resistant rats. (A): 

Comparison of Mitochondrial ROS among the study groups; (B): Comparison of 

Mitochondrial membrane potential change among the study groups; (C): Comparison of 

Mitochondrial swelling among the study groups. 

 *, p<0.05 compared with ND group; †, p<0.05 compared with HFDS group; #, p<0.05 

compared with HFDEx and HFDCr group; n=6/group  ND, normal diet group; HFDS, 

high-fat diet with sedentary living group; HFDEx, high-fat diet with exercise group; 

HFDCr, high-fat diet with caloric restriction group; HFDCb, high-fat diet with 

combined therapies group; ROS, reactive oxygen species 

3.2.5 An imbalance in mitochondrial dynamics in skeletal muscle of obese-insulin 

resistant rats, as shown by an increase in mitochondrial fission and a decrease in 

mitochondrial fusion were attenuated by either ET or CR, and the dynamics were 

restored by combined therapies. 

Mitochondrial dynamics involve a reciprocal change in the morphology between 

a fission and fusion stage of mitochondria. The present study demonstrated an 

imbalance between mitochondrial fission and fusion occurring in HFD-induced obese-

insulin resistant rats. A two-way ANOVA, determining two type of diet (CR, no CR) 
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and physical activity (ET, no ET), revealed a significant effect of ET (F [1, 8] = 64.73, 

p<0.001) and CR (F [1, 8] = 36.1, p<0.001) on Ser616pDRP1/total DRP1 ratio.  A two-

way ANOVA also revealed a significant effect of ET (F [1, 8] = 120, p<0.001) and CR 

(F [1, 8] = 109.4, p<0.001) on MFN protein expression. The post-hoc analyses 

demonstrated that all interventions, i.e. ET, CR and combined therapies, led to a 

decreased Ser616pDRP1/total DRP1 ratio and increased MFN2 protein expression in 

HFD-fed rats.  In addition, the Ser616pDRP1/total DRP1 ratio and MFN2 expression of 

HFD-fed rats with combined therapies were not significantly different from those of 

ND-fed rats (Figure 3.12 A-B). These results indicated that ET and CR in rats with the 

obese-insulin resistant condition improved mitochondrial dynamics and combined 

therapies restored it. 

 

Figure 3.12 The effects of exercise, caloric restriction and combined program on 

skeletal muscle mitochondrial dynamics in HFD-induced obese-insulin resistant rats. 

(A): Comparison of Ser616pDRP1/total DRP1 ratio among the study groups; (B): 

Comparison of MFN2 protein expression between the study groups. 

  *, p<0.05 compared with ND group; †, p<0.05 compared with HFDS group; #, p<0.05 

compared with HFDEx and HFDCr group; n=6/group  ND, normal diet group; HFDS, 

high-fat diet with sedentary living group; HFDEx, high-fat diet with exercise group; 
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HFDCr, high-fat diet with caloric restriction group; HFDCb, high-fat diet with 

combined therapies group; pDRP1; phosphorylated dynamin-1-like protein 1; DRP1, 

dynamin-1-like protein 1; MFN2, mitofusin-2; GAPDH, glyceraldehyde 3-phosphate 

dehydrogenase 

3.2.6 Decreased mitochondrial biogenesis and fatty acid oxidation in skeletal muscle 

of HFD-induced obese-insulin resistant rats were attenuated by either ET or CR, and 

combined therapies restored them.  

Compared with ND-fed rats, sedentary living HFD-fed rats had significantly 

lower PGC-1alpha and CPT1 protein expression, indicating a reduction in fatty acid 

oxidation metabolism in skeletal muscles. A two-way ANOVA, determining two type 

of diet (CR, no CR) and physical activity (ET, no ET), revealed a significant effect of 

ET and CR on PGC-1alpha and CPT1 protein expression (F [1, 8] = 33.18, p<0.001; F 

[1, 8] = 23.8, p=0.001 and F [1, 8] = 16.89, p=0.003; F [1, 8] = 14.2, p<0.006 

respectively). The post-hoc analyses demonstrated that HFD-fed rats undergoing either 

ET, CR, or combined therapies had significantly higher PGC1alpha and CPT1 protein 

expression when compared with sedentary living HFD-fed rats. In addition, the 

expression of PGC1alpha and CPT1 in the combined therapies group was not 

significantly different from those of ND-fed rats (Figure 3.13 A and B). These results 

indicated that ET and CR in rats with the obese-insulin resistant condition improved 

mitochondrial biogenesis as well as the fatty acid oxidation capacity of skeletal muscles, 

and a combined ET and CR program restored them.   
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Figure 3.13 The effects of exercise, caloric restriction and combined program on 

skeletal muscle mitochondrial biogenesis in HFD-induced obese-insulin resistant rats. 

(A): Comparison of PGC1alpha protein expression among the study groups; (B):  

Comparison of CPT1 protein expression among the study groups. 

 *, p<0.05 compared with ND group; †, p<0.05 compared with HFDS group; #, p<0.05 

compared with HFDEx and HFDCr group; n=6/group  ND, normal diet group; HFDS, 

high-fat diet with sedentary living group; HFDEx, high-fat diet with exercise group; 

HFDCr, high-fat diet with caloric restriction group; HFDCb, high-fat diet with 

combined therapies group; PGC1a, peroxisome perforator-activated receptor 

coactivator-1 alpha; CPT1, carnitine palmitolytransferase-1; GAPDH, glyceraldehyde 

3-phosphate dehydrogenase 

3.2.7 Skeletal muscle apoptosis in HFD-induced obese-insulin resistant rats was 

attenuated by ET and CR, while combined therapies restored it. 

The effects of exercise and caloric restriction were also demonstrated in this 

study.  A two-way ANOVA, determining two type of diet (CR, no CR) and physical 

activity (ET, no ET), revealed a significant effect of ET and CR on Bax (F [1, 8] = 

36.28, p<0.001; F [1, 8] = 34.16, p=0.001, respectively) but not Bcl-2 protein 

expression (F [1, 8] = 3.308, p<0.106; F [1, 8] = 3.739, p=0.089, respectively).  It also 
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revealed a significant effect of ET (F [1, 8] = 12.47, p=0.008) and CR (F [1, 8] = 13.65, 

p=0.006) on Bax/Bcl-2 ratio.  The post-hoc analyses demonstrated that HFD-fed rats in 

the ET or CR groups had significantly lower Bax protein expression, as well as 

significantly higher Bcl2 protein expression, when compared with those of sedentary 

living HFD-fed rats.  A significant decrease in the Bax/Bcl-2 ratio in combined therapy 

HFD-fed rats was observed when compared with that of the monotherapy groups and 

the Bax/Bcl2 ratio of combined therapies group was not different from that of ND-fed 

rats (Figure 3.14 A, B and C).  These results indicated that ET and CR attenuated 

apoptosis in skeletal muscles of HFD-fed rats and combined therapies restored it.  

 

Figure 3.14 The effects of exercise, caloric restriction and combined program on 

skeletal muscle apoptosis in HFD-induced obese-insulin resistant rats. (A): Comparison 

of Bax protein expression among the study groups; (B): Comparison of Bcl2 protein 

expression among the study groups; (C): Comparison of Bax/Bcl2 ratio among the 

study groups; (D): the representative blots from all groups. 

  *, p<0.05 compared with ND group; †, p<0.05 compared with HFDS group; #, p<0.05 

compared with HFDEx and HFDCr group; n=6/group  ND, normal diet group; HFDS, 

high-fat diet with sedentary living group; HFDEx, high-fat diet with exercise group; 

HFDCr, high-fat diet with caloric restriction group; HFDCb, high-fat diet with 
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combined therapies group; Bax, Bcl2 associated X protein; Bcl2, B-cell lymphoma 2 

protein; GAPDH, glyceraldehyde 3-phosphate dehydrogenase 
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CHAPTER 4 

Discussion and Conclusion 

4.1 Discussion 

The major findings of the present study are as follows: 1) long-term HFD 

consumption led to obese-insulin resistance and pathological changes in skeletal 

muscles, including insulin resistance, enhanced early fatigability, increased apoptosis 

and impaired mitochondrial function, as well as imbalanced mitochondrial dynamics 

and decreased biogenesis;  2) ET in the induced obese-insulin resistant condition 

improved metabolic function, insulin signaling, fatigability, apoptosis, mitochondrial 

biogenesis and mitochondrial dynamics of skeletal muscles; 3) CR in the induced 

obese-insulin resistant condition also improved metabolic function, insulin signaling, 

apoptosis and mitochondrial dynamics of skeletal muscles; and 4) combined ET and CR 

therapies in the induced obese-insulin resistant condition reversed those pathological 

conditions in skeletal muscles. These major findings are summarized in Table 4.1 
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Table 4.1 The effect of obesity, exercise training, caloric restriction, and combined program on skeletal muscle function parameters. 

        

 

 

 

 

 

PPAR, Peroxisome perforator-activated receptor; ET, Exercise training; CR, Caloric restriction 

 

Condition 

Peripheral 

insulin 

resistance 

Muscle 

insulin 

resistance 

Muscle 

apoptosis 

Balance of 

muscle 

mitochondrial 

dynamics 

Muscle 

mitochondrial 

biogenesis 

Muscle 

fatigue 

resistance 

Muscle 

PPAR delta 

(% oxidative 

type fiber) 

Muscle 

mitochondrial 

function 

Obesity ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ 

ET ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↔ 

CR ↓ ↓ ↓ ↑ ↑ ↔ ↔ ↔ 

Combined 

ET + CR 
↓↓ ↓↓ ↓↓ ↑↑ ↑↑ ↑ ↑ ↑ 

7
2
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 Contractile function is one of the most important functions of skeletal muscle.  

Although it is dependent on several parameters, the parameter that has the most 

significant effect on human mobility is fatigability of tetanic contraction [87]. 

Fatigability is determined by many factors, including the type of muscle fiber. Skeletal 

muscle fibers can be roughly divided into two types, namely oxidative type and 

glycolytic type muscle fibers.  Oxidative-type fibers have a lower fatigability than 

glycolytic-type fibers [5]. There is evidence to demonstrate that the fatigability of each 

skeletal muscle is correlated with the percentage of oxidative-type fiber in the muscle 

[5]. One of the factors determining the production of oxidative-type fiber is PPAR delta 

[93, 94]. The percentage of oxidative-type fiber in each muscle has been associated with 

the amount of PPAR delta protein expression in the muscle [93, 94], which also 

demonstrated in this study. Therefore, enhanced early fatigability of HFD-fed rats with 

sedentary living might be as a result of a decrease in the percentage of oxidative-type 

muscle fiber, which shows a correlation with a decrease in PPAR delta protein 

expression of the HFD-fed rats undergoing sedentary living, when compared with those 

of ND-fed rats.  

We also demonstrated that HFD-fed rats with sedentary living had impaired 

mitochondrial function and imbalance of mitochondrial dynamics, as well as increased 

cell apoptosis, all of which showed a correlation with the degree of insulin-resistant 

condition.  Several previous studies have demonstrated that mitochondrial dysfunction 

[18, 48], imbalance of mitochondrial dynamics [16, 120], and increased cell apoptosis 

[7] are associated with an insulin-resistant condition in skeletal muscles.   

The ET in this study was the endurance exercise program. In this study, HFD-

fed rats with ET had significantly lower peripheral and skeletal muscle insulin 

resistance, when compared with those that were sedentary living. HFD-fed rats with ET 

also showed an improvement in metabolic function, insulin sensitivity, muscle 

fatigability, mitochondrial biogenesis and balance in mitochondrial dynamics, as well as 

a decreased level in apoptosis of skeletal muscles. These findings might be as a 

consequence of an activation of adenosine monophosphate kinase (AMPK) during 

exercise training. AMPK is the major signaling protein responsible for energy control of 

the body cells [88]. There is evidence to demonstrate that endurance exercise activates 
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AMPK by causing energy deprivation, and the beneficial effects of exercise are 

dependent on its activation [86]. AMPK is an upstream signaler of PGC1alpha, which is 

a coactivator of several proteins for many important metabolisms including CPT1 for 

fatty acid oxidation [209] and PPAR delta for type 1 skeletal muscle fiber 

transformation [86].   

Another beneficial effect of ET in this study was an improvement in the balance 

of mitochondrial biogenesis, as indicated by a decrease in mitochondrial fission 

markers, which occurred simultaneously with an increase in mitochondrial fusion 

markers.  These results were compatible with the result from the previous studies, which 

also demonstrated a decrease in mitochondrial fission markers [181], as well as an 

increase in mitochondrial fusion markers [180] after ET. However, the mechanism 

regarding the effect of exercise on improving the balance of mitochondrial dynamics is 

still elusive. Although this beneficial effect of exercise training was compatible with the 

results from the previous studies, this study is the first study that demonstrated the 

reciprocal change between mitochondrial fission and fusion makers in the same study 

model.   

Apoptosis is programmed cell death, which mostly results from mitochondrial 

dysfunction. In this study, a decrease in pro-apoptotic proteins and an increase in anti-

apoptotic proteins were demonstrated in HFD-fed rats with ET, when compared with 

those undergoing sedentary living. The mechanism of an exercise-induced reduction of 

apoptosis might be associated with an improvement in the insulin-resistant condition 

after ET. This result was different to the results of a previous study [53]. That study in 

obese-Zucker rats demonstrated that after 9 weeks of endurance exercise (treadmill 

running), there was no change in apoptosis-related markers, specifically Bax, Bcl2 and 

the Bax:Bcl2 ratio, in the skeletal muscle of obese rats, when compared with the lean 

controls [53]. These different findings might be due to the difference in obese modes. 

Zucker rats developed the insulin- resistant condition from a genetic defect, resulting in 

prolonged hyperinsulinemia, while the HFD-induced insulin-resistant condition has a 

shorter period of onset of the hyperinsulinemic condition. 

The CR in this study provided 60% of the basal calorie requirement.  Earlier 

evidence has demonstrated that CR could attenuate peripheral insulin resistance and 
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increase insulin signaling in skeletal muscle tissue [34, 35]. Some of our findings were 

compatible with the previous studies in that HFD-fed rats with CR demonstrated a 

significantly lower peripheral and skeletal muscle insulin resistance. HFD-fed rats with 

CR also exhibited increased skeletal muscle insulin sensitivity, reduced apoptosis and 

improved mitochondrial dynamics, as well as mitochondrial biogenesis. The mechanism 

behind these positive results is not clear but might be in association with an 

improvement in insulin sensitivity. It has been proposed that the underlying mechanism 

of CR behind improvement in insulin sensitivity is related to the activation of AMPK, 

which might result from an energy-deprivation stage during caloric restriction [144]. 

Although we found an increase in CPT1, which is a part of the downstream signaling 

mechanism of AMPK via PGC-1alpha, we did not find any difference in PPAR delta 

protein expression or muscle fatigability in HFD-rats with CR, when compared with 

those undergoing sedentary living. These findings were consistent with the results from 

a previous study, demonstrating no change in percentage of type 1 muscle fiber of the 

subjects with caloric restriction, when compared with those without caloric restriction 

[54]. Since PGC1alpha is induced by several mechanisms, such as an activation of 

AMPK from energy deprivation as well as an induction of Ca-dependent signaling 

(CaMKIV, calcineurin) from repetitive muscle contraction) [87]. Distinguished from 

ET, which induces not only energy deprivation but also repetitive muscle contraction, 

CR induced only energy deprivation. This might be responsible for the inconsistent 

findings between the effect of ET and CR on an induction of PPAR delta protein 

expression and fatigability. We also found that HFD-fed rats with CR had a lower 

apoptotic process, when compared with those undergoing sedentary living.  This result 

corresponded with the results from a previous study, which demonstrated CR 

preventing apoptosis in rat skeletal muscle [35]. The possible mechanism of decreased 

apoptosis of CR might be associated with an improvement in insulin sensitivity [36, 70].  

The combined CR and ET therapy in this study included both endurance 

exercise and 60% caloric restriction program. The study demonstrated that a 

combination of the therapies resulted in the greatest benefit on almost all of parameters 

pertaining to the skeletal muscles. The beneficial results on skeletal muscles from the 

three interventions in obese-insulin resistant condition could be summarized into three 

main findings. Firstly, the incidence of positive responses to ET and combined 
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therapies, but not CR, were observed. Secondly, the combined therapies had the 

synergistic effects from ET and CR. Thirdly, some favorable responses were found only 

in the combined therapy groups. These different responses from interventions could 

reflect the underlying mechanisms of each intervention. 

The parameters, which were positive responses to ET and the combined 

therapies, but not CR, were skeletal muscle fatigability and PPAR delta protein 

expression. The possible mechanisms of these differences could the results from the 

repetitive muscle contractions in ET and combined therapy groups, but not in CR, led to 

activation of the Ca-dependent signaling pathway. The next parameters, from which the 

combined therapies had the synergistic effects from ET and CR, were increased 

peripheral and skeletal muscle insulin sensitivity, mitochondrial biogenesis, and 

mitochondrial dynamics, as well as decreased apoptosis. We propose that a combination 

of ET and CR therapy has a greater beneficial effect than ET or CR alone in term of 

enhancing the balance of mitochondrial dynamics, and improving mitochondrial 

biogenesis, as well as attenuating the rate of apoptosis in skeletal muscles. These 

improvements led to the restoration of peripheral and skeletal muscle insulin sensitivity. 

The parameters in the third group, specifically the beneficial effects only seen in the 

combined therapy group, were those relating to mitochondrial function, including 

attenuation of mitochondrial ROS, mitochondrial membrane potential, and 

mitochondrial swelling. These exclusive effects might be associated with the synergistic 

activation of AMPK signaling from both the ET and CR program (86, 123). We 

proposed that the combined therapies could induce activation of the AMPK pathway at 

an adequate rate, at a rate at which the ET or CR therapy alone could not adequately 

maintain. The correlations, as well as the proposed mechanisms of obesity, exercise 

training, caloric restriction, and combined program affecting skeletal muscle function 

are summarized in Figure 4.1. 
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Figure 4.1 The schematic diagram presenting the correlations and the proposed mechanisms of obesity, exercise training, caloric 

restriction, and combined program affecting skeletal muscle function

   7
7
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Long-term high-fat diet consumption induces obesity. Obesity causes peripheral insulin 

resistance and eventually enhances insulin resistance in skeletal muscle. Skeletal 

muscle insulin resistance induces apoptosis, imbalances mitochondrial dynamics as 

well as decreases mitochondrial biogenesis. These changes eventually result in a 

reduction in mitochondrial function. In other hand insulin resistance reduces the PPAR 

delta protein expression of skeletal muscle, resulting in a reduction in the percentage of 

oxidative-type muscle fiber. Both the reduction of mitochondrial function and the 

decrease of percentage of oxidative-type muscle fiber eventually result in an early 

fatigability of the skeletal muscle. Caloric restriction causes an energy deprivation 

state, resulting in AMPK activation. Increased AMPK signaling improves insulin 

sensitivity and eventually increases mitochondrial function. However, only caloric 

restriction could not induce enough PPAR delta expression for improving the 

percentage of oxidative-type muscle fiber and early fatigability state. Exercise induces 

both AMPK signaling and PPAR delta expression. Therefore, it could improve both 

insulin sensitivity and mitochondrial function, as well as increase the percentage of 

oxidative-type muscle fiber and attenuates the early fatigability state. Combined 

exercise training and caloric restriction could induce both AMPK signaling and PPAR 

delta expression in enough levels, resulting the additive effect on improving insulin 

sensitivity, mitochondrial function, as well as increasing the percentage of oxidative-

type muscle fiber and attenuating the early fatigability state to the skeletal muscle. 

HFD, High-fat diet; PPAR, Peroxisome perforator-activated receptor; AMPK: 

adenosine monophosphate-activated protein kinase; →: Activation; ˗ ˗ |: Inhibition 
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 Another point regarding the metabolic parameters is the weight of rats in 

HFDEx group. Average weight of rats HFDEx group had a trend to lower than rats in 

HFDCr and HFDCb groups. This might be result from an increase in food intake of rats 

in HFDEx group, which did not receive the caloric restriction program. Evidence 

demonstrated that exercise could induce more food intake (212). However, the stress 

from our negative exercise program (rats would have punishments, which were 

electrical shock, when they did not perform exercise) might be another cause of elevated 

food intake since previous evidence demonstrated that the stress-induced behavior of 

rodents is increased food intake (212). Therefore, applying more in detail on recording 

the amount of food intake, as well as evaluating the stress-induced behavior such as 

elevated plus maze test for anxiety behavior, forced swim test for depression, as well as 

sucrose preference test for anhedonia. Finally, one of the important factors affecting 

during exercise is autonomic nervous control. Evidence demonstrated that acute 

exercise induced sympathetic activity (213), whereas chronic exercise elevated 

parasympathetic activity (214). It was also demonstrated that beta 2 adrenergic receptor 

type of sympathetic nervous system could induced vasodilation in skeletal muscle 

(215). Therefore, it could be proposed that the beneficial effects of exercise might be 

associated with the autonomic nervous control. Further study, evaluating heart rate 

variability and/or postganglionic muscle sympathetic nerve activity to examine the 

functions of autonomic nervous system, is needed. 

4.2 Conclusion 

Long-term consumption of HFD induced peripheral insulin resistance, and 

decreased cellular insulin signaling, in addition to increasing fatigability, apoptosis and 

mitochondrial dysfunction in skeletal muscles. ET alone improved cellular insulin 

signaling, fatigability, apoptosis, mitochondrial biogenesis and mitochondrial dynamics 

in skeletal muscles. CR alone improved cellular insulin signaling, mitochondrial 

biogenesis, apoptosis and mitochondrial dynamics in skeletal muscles. A combination 

of ET and CR therapies improved skeletal muscle fatigability in comparison to ET 

therapy. In addition, the combined therapies had additive effects on improving insulin 

signaling, apoptosis, mitochondrial biogenesis and mitochondrial dynamics in skeletal 

muscles. Furthermore, a combination of ET and CR therapies caused an exclusive effect 

on mitochondrial function, which ET or CR therapy alone could not instigate. These 
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results demonstrate the beneficial synergistic effects of the combined ET and CR 

therapies in an obese-insulin resistant condition on improving the function of skeletal 

muscle and mitochondria. 

4.3 Limitations and suggestions 

This study had some limitations. First, the function of glucose uptake in skeletal 

muscles, for example 2-deoxyglucose uptake study, was not directly determined. Next, 

although the oral glucose tolerance test, in which is one of the assessments of insulin 

sensitivity (197), was performed in the present study, the insulin tolerance test should be 

performed to confirm insulin sensitivity in the future study. Furthermore, there is no 

positive control group, i.e. normal diet with exercise, normal diet with caloric restriction 

and normal diet with combined exercise and caloric restriction group. Therefore, it is 

difficult to identify whether benefits on the metabolic and skeletal muscle are directly 

from the interventions. In addition, the question whether the beneficial effects on the 

intervention program is dependent or independent to an effect of weight reduction has 

not been elucidated. Normalization of the evaluated parameters with the amount of 

reduced weight should be considered in further study. Finally, since it has been 

demonstrated that the effects on insulin resistance and skeletal muscle functions 

between male and female are different (198), therefore we decided to use animals in the 

only one gender for the present study. Since the period of menopause comes earlier than 

andropause making female exposed the condition of lack of the sex hormone longer, as 

well as the prevalence of overweight and obesity, particularly in women, has increased 

up to 40.4%. Thus, the present study decided to use only female animals. To generalize 

the results of this study, a further study aims to investigate the effects of exercise 

training and caloric restriction on skeletal muscle functions in obese-insulin resistant 

male rats is needed.  
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APPENDIX 1 

Table A1. Composition of Normal Diet (Mouse Feed Food No. 082, C.P. Company, 

Bangkok, Thailand) 

Composition 
Normal diet (CP 082) 

g kcal %E 

Carbohydrate 495.30 1981.20 51.99 

Fat 83.70 753.30 19.77 

Protein 269.00 1076.00 28.24 

Vitamins 65.40 - - 

Fiber 34.30 - - 

Total 947.70 3810.50 100 

Kcal/g 4.02 kcal/g 
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APPENDIX 2 

Table A2. Composition of High-Fat Diet (Pratchayasakul et al 2011) (174) 

Composition 
High fat diet (modified from Srinivasan et al.) 

g kcal %E 

Carbohydrate  190.76 763.04 14.27 

Fat 342.24 3080.16 57.60 

Protein 353.60 1414.40 26.45 

Cholesterol 10 90 1.68 

Vitamins 85.19 - - 

DL-Methionine 3 - - 

Fiber 13.21   

Yeast powder 1 - - 

Sodium chloride 1 - - 

Total 1000 5347.60 100 

Kcal/g 5.35 kcal/g 
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APPENDIX 3 

Western Blotting 

1. Reagents for western blotting 

aCSF 

NaCl      125 mM 

KCl      2.5 mM 

CaCl2      2 mM 

MgCl2      1 mM 

NaH2PO4     1.25 mM 

NaHCO3     26 mM 

Glucose     25 mM 

pH 7.37-7.43, 310-320 mOsm, 34-35oC, bubble with 95%O2/5%CO2 

Slicing solution 

KCL      2.50 mM 

CaCl2      2.00 mM 

MgCl2      2.00 mM 

KH2PO4     1.25 mM 

Sucrose     25.20 mM 

NaHCO3     26.00 mM 

Glucose     10.00 mM 

pH 7.37-7.43, 310-320 mOsm, 0-4oC, bubble with 95%O2/5%CO2 

Slice lysis buffer 

EDTA      1 mM 

EGTA      1 mM 

NP-40      1% 

Triton-X     1% 

Protease inhibitor 
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Non-ionizing lysis buffer 

NaCl      100 mM 

EDTA      25 mM 

Tris      10 mM 

Triton X-100     1% v/v 

NP-40      1% v/v 

Protease inhibitor 

Loading buffer 

Tris-HCl, pH6.8    62.5 mM 

SDS      2% 

Glycerol     20% 

Bromophenol blue    0.2% 

DTT      100 mM 

2-mercaptoethanol    0.2 mM 

TBST (10X) 

Tris, pH 8     200 mM 

NaCl      1.37 M 

5% Non-fat milk in TBST 

TBST (TBS+0.5%TWEEN) 

Running buffer 

Trizma base, pH 8.3    15.15 g 

Glycine     72 g 

SDS      5 g 

Q to 500 ml with ddH2O 

Transfer buffer 

Tris, pH 8.3     25 mM 

Glycine     192 mM 

Methanol     20% 

pH 7.6 

Antibody 

Primary antibodies 

Anti-GAPDH 
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Anti-IR (SC-711, Santa Cruz Biotechnology, Santa Cruz, USA) 

Anti-Tyr1162/1163pIR (SC-25103, Santa Cruz Biotechnology, Santa Cruz, 

USA) 

Anti-Akt (#9272, Cell Signaling Technology, Danvers, USA) 

Anti-Thr308pAkt (#9271, Cell Signaling Technology, Danvers, USA) 

Anti-Bax (ab 182733, Abcam, Cambridge, UK) 

Anti-Bcl2 (ab 196495, Abcam, Cambridge, UK) 

Anti-PPAR delta (PA5-29678, Thermo Fisher Scientific, Waltham, USA), 

Anti-PGC1alpha (ab 154481, Abcam, Cambridge, UK) 

Anti-CPT1 (SC-393070, Santa Cruz Biotechnology, Santa Cruz, USA) 

Anti-MFN2 (#9482, Cell Signaling Technology, Danvers, USA) 

Anti-DRP1 (#5391, Cell Signaling Technology, Danvers, USA) 

Anti-Ser616pDRP1 (#3455, Cell Signaling Technology, Danvers, USA) 

Secondary antibodies 

Anti-rabbit, anti-mouse and anti-goat IgG conjugated with horseradish 

peroxidase 

Molecular weight marker 

ECL 

 

2. Preparation of gel 

Stock A: 1.5M Tris pH 8.8 (200 ml) 

Tris base     36.5 g 

Deionized water    160 ml 

pH 8.8 

Add deionized water to 200 ml 

Filter through membrane   0.2 um 

Store at 4oC (light sensitive) 

 

Stock B: 30% acrylamide/0.8% Bis (25 ml) 

Acrylamide     7.3 g 

Bisacrylamide    0.2 g 

Add deionized water to 25 ml 
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Filter through membrane   0.2 um 

Store at 4oC (light sensitive) 

Stock C: 0.5M Tris pH 6.8 (200 ml) 

Tris base     12.1 g 

Deionized water    160 ml 

pH 6.8 

Add deionized water to 200 ml 

Filter through membrane   0.2 um 

Store at 4oC (light sensitive) 

10% Acrylamide/Bisacrylamide 

30% acrylamide/0.8% Bis (Stock B)  3.5 ml 

1.5M Tris pH 8.8 (Stock A)   2.5 ml 

Deionized water    2.85 ml 

10% SDS     100 ul 

10% APS*     100 ul 

TEMED*     10 ul 

4% Stacking gel 

Deionized water 3.05 ml 

0.5M Tris pH 6.8 (Stock C)   1.25 ml 

30% acrylamide/0.8% Bis (Stock B)  650 ul 

10% SDS     50 ul 

10% APS*     25 ul 

TEMED*     5 ul 

*should be fresh prepared 

3. Gel preparation process 

1. Clean glasses for loading gel with 70% Ethanol 

2. Load the 10% Acrylamide 

3. Fill the space above the gel with propanol, then leave it for 30 minutes 
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4. Rinsed the gel with distill water and replaced with 4% Stacking gel, leave it       

for 30 min 

4. Immunoblotting process 

1. Move gels in to electrophoresis chamber 

2. Loading samples 

a. 7 µl for molecular weight marker 

b. 20 µl for protein sample 

3. Run gel at 120 Volts, 1.20 hours until the protein arrived the end of the gel 

4. Transfer gel to nitrocellulose membrane at 70 Volts, 2 hours 

5. Wash the membrane with deionized water for 5 minutes 

6. Block membrane with 5%Mlk or 5%BSA in TBST 1 hour on an orbital 

shaker (room temperature) 

7. Add primary antibodies 1:1000 in TBST incubate overnight at 4oC. 

8. Wash the membrane with 10 ml TBST 5 minutes, 5 times 

9. Add secondary antibodies 1:4000 in TBST; Anti-rabbit and anti-mouse 

IgG conjugated with horseradish peroxidase for 1 hour on an orbital shaker 

10. Wash the membrane 5 minutes 5 times 

11. ECL exposure to film 
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APPENDIX 4 

Reagent for Determination of Muscle Mitochondrial Function 

1. Solution for isolated muscle mitochondria proportion 

MSE 

D-mannitol     225 mM 

Sucrose     75 mM 

EGTA      1 mM 

HEPES     5 mM 

BSA      1 mg/ml 

pH was adjusted to 7.4 with NaOH (strong base) or HCl (strong acid) 

MSE-Nagrase 

MSE+Nagrase    0.05% 

MSE+Digitonin    0.02% 

2. Solution for muscle mitochondrial respiratory buffer 

KCl      150 mM 

HEPES     5 mM 

K2HPO4.3H2O    2 mM 

C5H8NNaO4.xH2O    5 mM 

CH3COCOONa    5 mM 

pH was adjusted to 7.2 with NaOH (strong base) or HCl (strong acid) 

3. JC-1 dye preparation (310 nM of JC-1) 

JC-1      1 mM 

DMSO     100% 
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4. DCFH-DA preparation (2 µM DCF-DA) 

DCFH-DA     1 mM 

Muscle mitochondrial   100 % 

Respiratory buffer 

5. Standard working reagent (SWR) preparation 

Reagent A (100 ml) 

NAOH     0.40 g 

NaHCO3     0.95 g 

Na2CO3.H2O     2.00 g 

Sodium bicinchoninate   0.10 g 

Sodium tartrate (dihydrate)   0.16 g 

ddH2O     100 ml 

Reagent B (10 ml) 

CuSO4.5H2O     0.40 g 

ddH2O     10 ml 

SWR 

Reagent A    100 ml 

Reagent B     2 ml 
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APPENDIX 5 

Immunohistochemistry Staining to Determine Skeletal Muscle Fiber Type 

1. Deparaffinization 

-   Before performing with the staining protocol, the slides must be    

deparaffinizedand rehydrated.  

-         Incomplete deparaffinization can result in poor staining of the section. 

Materials and reagents 

1. Xylene 

2. 100% ethanol 

3. 95% ethanol 

Methods 

1. Place the slides in a rack, and perform the following washes: 

1. Xylene: 2 x 3 minutes 

2. Xylene 1:1 with 100% ethanol: 3 minutes 

3. 100% ethanol: 2 x 3 minutes 

4. 95% ethanol: 3 minutes 

5. 70 % ethanol: 3 minutes 

6. 50 % ethanol: 3 minutes 

7. Running cold tap water to rinse 

2. Keep the slides in the tap water until ready to perform antigen retrieval.  

- After this time, the slides should not be allowed to dry.  

- Drying out will result in non-specific antibody binding and high background staining. 
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2. Antigen retrieval 

• Most formalin-fixed tissue needs an antigen retrieval step before 

immunohistochemical staining can perform. This is due to the formation of 

methylene bridges during fixation, which cross-link proteins and therefore cover 

antigenic sites.  

• The two methods of antigen retrieval are heat-mediated (also known as heat-

induced epitope retrieval, or HIER) and enzymatic. We have used enzymatic 

method (commercial reagent, Abcam #ab91506). 

Enzymatic retrieval, immersion method 

Materials and reagents 

1. 37oC water bath 

2. Slide racks and slide rack containers 

3. Enzymatic antigen retrieval solution 

Method 

1. Be sure to read the manufacturer’s instruction and the referred literatures for 

the enzyme you choose, as some enzymes require specific buffers and 

cofactors for activity. 

2. Set water bath to the optimal temperature for the enzyme you are using. Add 

water to two containers that can hold slide racks. Place the containers into 

the water bath to warm. Use an enough volume of water or buffer to cover 

the slides. 

3. Deparaffinize and rehydrate sections as aforementioned. Place slides in a 

water container to warm. Placing cold slides into the enzyme solution will 

lower the temperature of the solution, reducing enzyme activity and causing 

under-retrieval of the antigenic site. 

4.  Prepare the enzymatic antigen retrieval buffer from the warm water in the 

other container, and then return the container to the water bath to allow the 

solution to re-heat. Prepare the enzymatic antigen retrieval solution as 

quickly as possible to avoid impairing the activity of the enzyme. Allow this 

solution to return to temperature before introducing the slides. 

5. Transfer the warmed slides into the enzyme solution for 10 - 20 minutes. 

Less than 10 minutes may cause the antigens under retrieved, leading to 
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weak staining. More than 20 minutes may cause them over retrieved, 

leading to non-specific background staining and increasing the chances of 

sections dissociating from the slides or damage to the morphology of the 

tissue. 

6.  remove the slides and place them in running tap water for 3 minutes to rinse 

off the enzyme.  

7. Start with immunohistochemical staining protocol. 

 

Note: A control experiment is recommended. Slides of the same tissue section are 

incubated in the enzyme solution for 10, 15, 20, 25, and 30 minutes before 

being immunohistochemically stained to evaluate optimum antigen retrieval 

time for each antibody being used. 

 

3. Immunohistochemical staining 

Our protocol is for the laboratory which does not have an automated staining 

machine or other capillary gap system that allows rapid application and rinsing of 

reagents (e.g. Shandon Sequenza). Reagents will be applied manually by pipet. 

1. General guidelines 

All incubations should be performed in a humidified chamber to avoid drying of 

the tissue. Drying at any stage will lead to non-specific binding and ultimately high 

background staining. A shallow plastic box with a sealed lid and wet tissue paper in the 

bottom is an adequate chamber. The slides should be kept off the paper and lay 

flat so that the reagents don’t drain off. A good solution is to cut a plastic serological 

pipette into lengths to fit your incubation chamber. Glue them in pairs to the bottom of 

the chamber, with the 2 individual pipette tubes of each pair being placed about 4.0 cm 

apart. This provides a level and raised surface for the slides to rest on away from the 

wet tissue paper. 

Dilutions of the primary and secondary antibody are listed on the datasheets or 

are determined by testing. Adjust dilutions appropriately from the results obtained. 

Adhere strictly to all incubation times in the protocol. 
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2. Protocol 

(Antigen retrieval should be performed before commencing with the following 

protocols.) 

Day 1 

1. (If using an HRP conjugate for detection, blocking of endogenous peroxidase can 

be performed here but we recommend waiting until after the primary antibody 

incubation.) 

2. Wash the slides 2 x 5 minutes in TBS plus 0.025% Triton X-100 with gentle 

agitation. The use of 0.025% Triton X-100 in the TBS helps to reduce surface 

tension, allowing reagents to cover the whole tissue section with ease. It will 

dissolve Fc receptors, therefore reducing non-specific binding. We recommend 

TBS to give a cleaner background rather than PBS. 

3. Block in 10% normal serum with 1% BSA in TBS for 2 hours at room 

temperature. The primary antibody should be diluted to the manufacturer’s 

instruction or to a previously optimized dilution. Most antibodies will be used in 

IHC-P at a concentration between 0.5 and 10 µg/ml. Make sure the primary 

antibody is raised in a species different from the tissue being stained. For 

example, if you had mouse tissue and your primary antibody was raised in a 

mouse, an anti-mouse IgG secondary antibody would bind to all the endogenous 

IgG in the mouse tissue, leading to high background. Use of mouse monoclonals 

on mouse tissue is discussed in our mouse-on-mouse protocol. 

4. Drain slides for a few seconds (do not rinse) and wipe around the sections with 

tissue paper. Overnight incubation allows antibodies of lower titer or affinity to be 

used by simply allowing more time for the antibodies to bind. Also, regardless of 

the antibody’s titer or affinity for its target, once the tissue has reached saturation 

point no more binding can take place. Overnight incubation ensures that this 

occurs. 

5. Apply primary antibody diluted in TBS with 1% BSA.  

6. Incubate overnight at 4°C. 
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Day 2 

1. Rinse 2 x 5min TBS 0.025% Triton with gentle agitation. 

2. If using an HRP conjugate for detection, incubate the slides in 0.3% H2O2 in TBS 

for 15 min. H2O2 suppresses endogenous peroxidase activity and therefore 

reduces background staining. Peroxide can be diluted in TBS or water. 

3. For enzymatic detection (HRP or AP secondary conjugates): Apply enzyme-

conjugated secondary antibody to the slide diluted to the concentration 

recommended by the manufacturer in TBS with 1% BSA and incubate for 1 hour 

at room temperature. Apply fluorophore-conjugated secondary antibody to the 

slide diluted to the concentration  recommended by the manufacturer in TBS with 

1% BSA and incubate for 1 hour at room temperature. This step should be done in 

the dark to avoid photobleaching. 

4. Rinse 3 x 5min TBS. If visualizing the protein with a chromogen, continue with 

the following steps. 

5. Develop with chromogen for 10 min at room temperature. Develop the colored 

product of the enzyme with the appropriate chromogen. The choice depends on 

which enzyme label you are using, the colored end-product you prefer and 

whether you are using aqueous or organic mounting media. 

6.  Rinse in running tap water for 5 min. 

7. Counterstain (if required). Don’t forget that DAB is a suspected carcinogen. Wear 

the appropriate protection. 

8. Dehydrate, clear and mount. 

Notes 

- The secondary antibody may cross react with endogenous immunoglobulins in the 

tissue. This is prevented by pre-treating the tissue with normal serum from the species 

in which the secondary was raised. The use of normal serum before the application of 

the primary also eliminates Fc receptor binding of both the primary and secondary 

antibody. BSA is included to reduce non-specific binding caused by hydrophobic 

interactions.  

3. Signal amplification 
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- To achieve a stronger signal, Avidin-biotin complex (ABC) was applied. This 

technique developed by Su-Ming Hsu and colleagues (J Histochem Cytochem. 1981 

Apr 29 (4):577-80), utilizes the high affinity of avidin, a protein found in chicken egg 

white, for biotin, an enzyme co-factor in carboxylation reactions. Avidin has four 

binding sites for biotin and binding is essentially irreversible. 

In brief, the primary antibody is bound to the target protein. A biotinylated 

secondary antibody is then bound to the primary antibody. In a separate reaction, a 

complex of avidin and biotinylated enzyme is formed by mixing the two in a ratio that 

leaves some of the binding sites on avidin unoccupied. This complex is then incubated 

with the tissue section after the antibody incubations. The unoccupied biotin-binding 

sites on the complex bind to the biotinylated secondary antibody. The result is more 

enzyme attached to the target than is possible using an enzyme-conjugated secondary or 

primary antibody. 

The components of the avidin-biotin complex are commercially available in kits 

that provides the two reagents and instructions for combining them in the optimal ratio. 
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