
LEAST SQUARE REINFORCEMENT LEARNING FOR

SOLVING CART-POLE BALANCING PROBLEM

SA-NGAPONG PANYAKAEW

MASTER OF SCIENCE

IN COMPUTER SCIENCE

GRADUATE SCHOOL

CHIANG MAI UNIVERSITY

MAY 2019

a

LEAST SQUARE REINFORCEMENT LEARNING FOR

SOLVING CART-POLE BALANCING PROBLEM

SA-NGAPONG PANYAKAEW

A THESIS SUBMITTED TO CHIANG MAI UNIVERSITY IN PARTIAL

FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN COMPUTER SCIENCE

GRADUATE SCHOOL

CHIANG MAI UNIVERSITY

MAY 2019

c

ACKNOWLEDGMENT

At the moment of time, I used to think that my thesis will not accomplish. I was

going to quit several times but, that never happened because there are many people

support me. I would like to show my gratitude to my parent Tongwan and Sangla those

who support me everything and respect all of my decision. My brother Jarinya and my

sister-in-law Thanutchta who took care of me for years of my study.

I extend my respect to most of my teachers who are my role model and conduct me

to study computer science. I wish to honor my advisor Jeerayut Chaijaruwanich, for every

support, encouragement, merciful and opportunity for all years of my study. I appreciate

for trust me all the way through. I wish to thank my co-advisor Jakramate Bootkrajang,

for good advice, improve my writing skill and made me fascinated reinforcement learning

since I was an undergrad student. I would extend my respect to my early school teachers

especially, Mullika Tawonatiwas who made me interested in science and sowed curiosity

to the kid that day. I would like to mention Yossawin Fagpan who introduce programming

basic and inspired me to interest in programming stuff.

Special thanks to Kitimapond Rattanadoung, Papangkorn Inkeaw and my friends

for friendship and goodwill.

Sa-ngapong Panyakaew

d

Thesis Title Least Square Reinforcement Learning for Solving

Cart-Pole Balancing Problem

Author Mr. Sa-ngapong Panyakaew

Degree Master of Science (Computer Science)

Advisory Committee Assoc.Prof. Dr. Jeerayut Chaijaruwanich Advisor

 Asst. Prof. Dr. Jakramate Bootkrajang Co-advisor

ABSTRACT

Cart-pole balancing is a classic control problem that can be solved by reinforcement

learning approach. Most of previous work consider the problem in discrete state space

which rather unnatural. In this work, we consider the problem in continuous state space

with conditions that track length is limited and period of time considering the task success

is extended. Least square policy iteration algorithm is adopted for learning process. A

new reward function is proposed. Moreover, various factor that influent the success of

the learning are studied. The empirical result validate the effectiveness of our method.

e

หัวข้อวิทยานิพนธ์ การเรียนรู้เสริมกําลังแบบกําลังสองน้อยที่สุดเพื่อแก้ปัญหาสมดุล
 คาร์ท-โพล

ผู้เขียน นายสง่าพงศ์ ปัญญาแก้ว

ปริญญา วิทยาศาสตรมหาบัณฑิต (วิทยาการคอมพิวเตอร์)

คณะกรรมการท่ีปรึกษา รศ.ดร.จีรยุทธ ไชยจารุวณิช อาจารย์ที่ปรึกษาหลัก
 ผศ.ดร.จักรเมธ บุตรกระจ่าง อาจารย์ที่ปรึกษาร่วม

บทคดัย่อ

ปัญหาสมดุลคาร์ท-โพลจัดเป็นปัญหารูปแบบหนึ่งที่สามารถแก้ไขได้โดยใช้การเรียนรู้แบบ
เสริมกําลัง จากงานในอดีตที่ผ่านมาปัญหาสมดุลคาร์ท-โพลถูกพิจารณาแบบเป็นสถานะที่ไม่ต่อเนื่อง
ซึ่งไม่มีความเป็นธรรมชาติ ดังนั้นในงานนี้จึงพิจารณาปัญหาสมดุลคาร์ท-โพลในรูปแบบที่เป็น
สถานะที่ต่อเนื่อง และประยุกต์ใช้การเรียนรู้แบบเสริมกําลังในการแก้ไขปัญหา โดยได้มีการเพิ่มข้อ
กําหนดให้รางวัลของรถเลื่อนให้มีระยะที่จํากัด และเพิ่มระยะเวลาเงื่อนไข เพื่อทําให้สามารถทํา
ภารกิจได้ยาวนานขึ้น รวมทั้งงานนี้ประยุกต์ใช้อัลกอริทึมการวนซ้ําแผนงานแบบกําลังสองที่น้อยที่สุด
สําหรับกระบวนการเรียนรู้ นอกจากนี้ยังศึกษาปัจจัยที่ส่งผลต่อการทําภารกิจให้สําเร็จ พร้อมทั้ง
นําเสนอผลลัพธ์เชิงประจักษ์เพื่อตรวจสอบประสิทธิภาพของกระบวนการ

f

CONTENTS

Page

ACKNOWLEDGEMENT c

ABSTRACT IN ENGLISH d

ABSTRACT IN THAI e

CONTENTS f

LIST OF FIGURES h

LIST OF ABBREVIATIONS i

LIST OF SYMBOLS j

CHAPTER 1 Introduction Error! Bookmark not defined.

1.1 Motivation Error! Bookmark not defined.

1.2 Research objectives Error! Bookmark not defined.

1.3 The usefulness of the research Error! Bookmark not defined.

1.4 Research scope Error! Bookmark not defined.

1.5 Research methodology Error! Bookmark not defined.

CHAPTER 2 Background Error! Bookmark not defined.

2.1 Decision Error! Bookmark not defined.

2.2 Agent environment interaction Error! Bookmark not defined.

2.3 Markov decision process Error! Bookmark not defined.

2.4 Value function Error! Bookmark not defined.

2.5 Policy Error! Bookmark not defined.

2.6 Action selection method Error! Bookmark not defined.

2.7 Policy iteration Error! Bookmark not defined.

2.8 Reinforcement learning Error! Bookmark not defined.

2.9 State approximation Error! Bookmark not defined.

g

CHAPTER 3 Reinforcement Learning for Solving Cart-Pole Balancing Problem Error!

Bookmark not defined.

3.1 Cart-Pole Balancing Problem Simulation Error! Bookmark not defined.

3.2 State and action definition Error! Bookmark not defined.

3.3 Reward function Error! Bookmark not defined.

3.4 Experiment Error! Bookmark not defined.

CHAPTER 4 Experimental Result Error! Bookmark not defined.

4.1 Comparison between fixing and updating sample collection method Error!

Bookmark not defined.

4.2 Effect of Initial Sample on Performance of the Agent Error! Bookmark not

defined.

4.3 Effectiveness of proposed reward function Error! Bookmark not defined.

4.4 Effect of  on the Performance of the Policy Error! Bookmark not defined.

CHAPTER 5 Conclusion and Discussion Error! Bookmark not defined.

5.1 Discussion Error! Bookmark not defined.

5.2 Conclusion Error! Bookmark not defined.

REFERENCES Error! Bookmark not defined.

APPENDICES

APPENDIX A Additional reward function Error! Bookmark not defined.

APPENDIX B Stability and reproducibility of reinforcement learning Error!

Bookmark not defined.

CURRICULUM VITAE Error! Bookmark not defined.

h

LIST OF FIGURES

Page

Figure 2.1 Policy iteration algorithm Error! Bookmark not defined.

Figure 2.2 TD(0) algorithm Error! Bookmark not defined.

Figure 2.3 TD(𝜆) algorithm Error! Bookmark not defined.

Figure 2.4 LSPI algorithm Error! Bookmark not defined.

Figure 2.5 LSTDQ algorithm Error! Bookmark not defined.

Figure 3.1 A flowchart illustrating how the sample gets updated. Error! Bookmark not

defined.

Figure 4.1 Average time-step of 100 episodes in each iteration for two agents learning

with fixed sample and continuously updated sample Error! Bookmark not

defined.

Figure 4.2 Reward per decision in each iteration for two agents learning with fixed

sample and continuously updated sample Error! Bookmark not defined.

Figure 4.3 Average time-step of 100 episodes in each iteration for initial samples.

 Error! Bookmark not defined.

Figure 4.4 Reward per decision in each iteration for three initial samples. Error!

Bookmark not defined.

Figure 4.5 Average time-step of 100 episodes in each iteration for reward functions

 Error! Bookmark not defined.

Figure 4.6 Reward per decision in each iteration for reward functions Error! Bookmark

not defined.

Figure 4.7 Average time-step of 100 episodes in each iteration for lambda values Error!

Bookmark not defined.

Figure A.1 Average time-step of 100 episodes in each iteration for 𝑅6 Error!

Bookmark not defined.

Figure A.2 Reward per decision in each iteration for 𝑅6 Error! Bookmark not defined.

file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762190
file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762191
file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762192
file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762193
file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762194
file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762195
file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762196
file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762196
file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762197
file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762197
file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762198
file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762198
file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762199
file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762200
file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762200
file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762201
file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762202
file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762203
file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762204

i

Figure A.3 percent of episode ending in each iteration for 𝑅6 Error! Bookmark not

defined.

Figure B.1 Average time-step of 100 episodes in each iteration for 20 trials Error!

Bookmark not defined.

Figure B.2 Average time-step of 20 trials which each iteration contain 100 episodes

 Error! Bookmark not defined.

Figure B.3 Average time-step of 20 trials which each iteration contain 500 episodes

 Error! Bookmark not defined.

file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762205
file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762206
file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762207
file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762207
file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762208
file:///F:/Users/K-GIFT/Desktop/thesis%20split/Pol-Thesis-Draft6.docx%23_Toc11762208

j

LIST OF ABBREVIATIONS

LSPI Least Square Policy Iteration

LSTDQ Least Square Temporal Difference for State-Action Value

Function

MDP Markov Decision Process

PID Proportional Integral Derivative

RL Reinforcement Learning

TD Temporal difference

k

LIST OF SYMBOLS

𝜋 Pi, Policy

𝜙 Phi, Basis function

𝑄 Action value function, State-action Value function

𝑉 State value function, vale function

𝑎 Action

𝑟 Reward

𝑠 State

𝑤 Policy weight vector

𝔼 Expected value

Σ Sigma, Summation

∀ For all

∈ Set membership

∧ And

∨ Or

1

CHAPTER 1

Introduction

1.1 Motivation

Inverted pendulum is a classic problem in control theory. It is an unstable condition

that pivot placed under the center of mass which could be found in daily life, such as two

parallel wheeled vehicles (dicycle). The task is to maintain a condition that mass remains

above pivot as long as possible. For research, inverted pendulum is usually simplified to

cart-pole balancing problem which the cart is placed on that track that limited movement

in one dimension, forward and backward and the pole is mounted on the cart with one

degree joint. The objective for the cart-pole balancing problem is to prevent the pole from

falling down as long as possible by moving the cart back and forth. In practical, a control

strategy is considered successful if the pole stays upright longer than some predefined

threshold. Some might add the condition that the cart must not move too far from where

it started.

Cart-pole balancing problem is a popular benchmark task which has been solved by

various algorithms such as PID [1], fuzzy control [2]. However, these algorithms require

prior knowledge for processing. For example, PID, stand for proportional-integral-

derivative, is a control loop feedback mechanism which calculates the output from a linear

combination of proportional, integral and derivative term of error. Three coefficients

needs to be tuned manually while the output is not optimal for some application and do

not react to changing behavior of process.

Another method to solve the cart-pole problem is Reinforcement learning (RL) [3].

RL is a kind of machine learning that able to learn to perform some tasks without

knowledge of the task and exact supervision. It can learn by itself by trial-error at first

then exploit its own knowledge later. RL is promised to be adopted for most of the tasks,

especially optimal control, it then competent for learning a controller. For certain state,

the RL-based controller or agent interacts with the environment by choosing an action

2

and receives feedback as a reward or penalty (negative reward). The reward is the

guidance of RL. It influent agent to learn mapping states-actions that leads to maximum

long-term reward, the ultimate goal.

RL was able to solve the cart-pole problem with discrete state space [3], [4].

However, treating the problem in discrete domain is quite restrictive. The work in [5] and

[6] then reconsider the problem in a more relaxed continuous state space setting. Still,

most previous work only studied the learning in the situation where the length of the track

is unlimited which is rather unrealistic.

In this work, using reinforcement learning to learn the cart-pole controller will be

studied, with the condition that track length is limited. The problem will be considered in

continuous state space using a least square reinforcement learning approach. A new

reward function which is competent for influencing the agent towards optimal control

will be proposed.

1.2 Research objectives

To propose a new reward function for cart-pole balancing problem in which track

length is limited and state space is continuous.

To empirically investigate effect of various factors, namely, updating sample

method, quality of initial sample, lambda value and reward function on agent’s

performance.

1.3 The usefulness of the research

Able to apply reinforcement learning for solving cart-pole balancing problem and

to understand its limitation in practice which crucial for implementation of other tasks

that state space is continuous.

1.4 Research scope

In this study, we will solve cart-pole balancing problem using LSPI algorithm. The

condition for algorithm are continuous state and discrete action space. Experiments are

conducted via simulation provided by OpenAI [7] in which the length of cart track is

limited and the amount of time-step for considering the task success is set to 6000. The

performance is measured by amount of time-step that agent survived.

3

1.5 Research methodology

1.5.1 Study theory of reinforcement learning and cart-pole balancing problem

1.5.2 Define major component of reinforcement algorithm such as state, basis

function, action and reward

1.5.3 Implement LSPI algorithm using python programming language

1.5.4 Conduct experiment comparing various factors, namely, updating sample

method, quality of initial sample, lambda value and reward function on agent’s

performance.

1.5.5 Documentation and Publication

This thesis is organized as the follows, the basic concept of reinforcement learning

in chapter 2. The proposed methodology is described in chapter 3, Experimental results

are in chapter 4 and chapter 5 concludes the study.

4

CHAPTER 2

Background

This chapter will explain the basic concept of reinforcement learning which relates

to our work. Most of the content refers to Sutton’s book [8].

2.1 Decision

Decision making is selecting an action, based on situation, belief or preference of

decision maker, that lead to alternate consequences. Some problems required multiple

decisions to complete the objective, for examples chess, inverted pendulum control.

Chess is one of the most well-known board game, play by two players, each player

have 16 pieces which consist of 6 types, each type able to move differently. The objective

is to checkmate the opponent’s king. During that player have to move and capture the

opponent’s pieces for a better position. For every turn, the player selects a move as well

action based on board position that considered as situation or state and player’s insight.

For a certain move, there are various choices for the opponent to respond, as a result, the

next position (that player expect) occurs by chance.

Inverted pendulum is another problem that involves decision making. Considerate

the problem as simplified as cart-pole which the cart, placed on the track, limited

movement only back and forth, vertically mounted by a pole with one degree of freedom

joint. Movement of the cart considered as action while state is a combination of the pole’s

angle and pole’s angular velocity. Some also limited distance of the track, so the cart’s

position is needed to be included to state. For every moment of state, the controller must

decide the action to maintain the pole to upright position and to maintain the cart to still

in the track, in case, the track length is limited.

5

All mentioned problems require multiple decisions to complete the task. Chess is

needed to play until win or lost. Cart-pole is needed to be controlled as long as possible.

For every state, the best action is needed to be decided based on information of that

moment, then the new state occurs. The process is repeated until the task completed, that

would be called sequential decision making.

2.2 Agent environment interaction

Regularly, the task is an interaction between decision maker, called agent, and the

environment. Agent can be player (chess player), controller or software (cart controller),

while environment is the world that facing agent (opponent of chess player, physical cart

pole). The agent sensed situation as state that represents environment status, and decide

to choose action then, the state change and feedback is sent to agent. The feedback that

reflects consequence of action is considered a reward. The scenario that agent on certain

state then select an action and transit to the new state is called time-step.

For the task such as chess, there are states that terminate decision, for example,

checkmate, these state is called terminal state. The transitions from initial state to terminal

state is called episode.

2.3 Markov decision process

Sequential decision-making problem could be modeled as Markov Decision

Process (MDP) which defined as a tuple (𝑆, 𝐴, 𝑇, 𝑅) where

𝑆 is a finite set of state

𝐴 is a finite set of action

𝑇: 𝑆 × 𝐴 → 𝑆 is a transition function that returns next state 𝑠′ for given current state

𝑠 ∈ 𝑆 and action 𝑎 ∈ 𝐴. The next state 𝑠′ might be occurred by probability.

𝑅: 𝑆 × 𝐴 → 𝑅 is reward function for given current state 𝑠 and action 𝑎

The objective of MDP is to find the optimal policy 𝜋∗ that maximize long

term/future reward or return.

2.4 Value function

When agent performs, there are transitions from state to state. The essence of agent

is to decide the best action for current state while the action should transfers agent to a

6

better state. How good of being on the certain state is measured by potential (expected)

of return which called value function (state value function). For given policy 𝜋, value

function underlying the policy 𝑉𝜋 for certain state 𝑠 is defined as

𝑉𝜋(𝑠) = 𝔼 [∑ 𝛾𝑡𝑟𝑡

∞

𝑡=0

| 𝑠0 = 𝑠] (1)

Where 𝛾 is discount factor that 0 < 𝛾 < 1 , 𝑡 is time-step that 𝑡 ∈ { 0,1,2,3, … }, 𝑟𝑡

is reward on time-step 𝑡. When agent perform, there are transitions from state to state. It

is obvious that transitions returning high reward are preferred. The reward from a

transition of state is called immediate reward. However, one immediate reward might not

lead agent to ultimate goal. For example, chess game, when agent capture opponent’s

queen which is the most important one, it gain high reward (in case reward function is

returned follow on rank of opponent piece), but it might not win the game, due to

capturing the queen cause too much causality. Return thus relate both immediate and

future reward. Since current state 𝑠 is given and an immediate reward 𝑟 is known. Now

value function is defined as

𝑉𝜋(𝑠) = 𝑟 + 𝛾𝔼 [∑ 𝛾𝑡𝑟𝑡+1

∞

𝑡=0

| 𝑠0 = 𝑠]

𝑉𝜋(𝑠) = 𝑟 + 𝛾𝔼[𝑉𝜋(𝑠1)|𝑠0 = 𝑠] (2)

where 𝑠1 is next state.

There is another value function that shows potential of action which is state-action

value function or action value function as called as Q-function. For given policy 𝜋, Q-

function underlying policy 𝜋 is defined as

 𝑄𝜋(𝑠, 𝑎) = 𝑟 + 𝛾𝔼[𝑄𝜋(𝑠1, 𝜋(𝑠1))|𝑠0 = 𝑠, 𝑎0 = 𝑎] (3)

2.5 Policy

The agent act to environment by discrete time-step. At each time-step, agent

chooses the best possible action, based on its knowledge, to maximize reward in long run.

Agent’s knowledge is summarized as policy 𝜋: 𝑆 → 𝐴 that mapping state to action. The

good policy is very important for agent to archive the goal.

7

Since value function is reflected potential of reward so, the policy should return the action

that maximizes value function. Suppose 𝑉∗ is the optimal state value function, the optimal

policy 𝜋∗ is defined as

 𝜋∗(𝑠) = argmax
𝑎

𝑉∗(𝑠) (4)

However, to evaluate the best action from a state value function, it requires expected value

function of next state that also require state transition probability. As a result, it is

uncomfortable if agent does not have perfect knowledge of environment that will be

discussed in a later section. In the same way, a policy can also be defined from an action

value function. Suppose 𝑄∗ is the optimal action-value function, the optimal policy 𝜋∗ is

defined as

 𝜋∗(𝑠) = argmax
𝑎

𝑄∗(𝑠, 𝑎) (5)

With action value function, policy for given state 𝑠 is simultaneously derived by the

action that maximizes value of every state-action for the given state.

2.6 Action selection method

𝜀-greedy is the action selection method employed in this work. It makes the agent

explore the environment at first and then exploit its own knowledge later. The method is

selecting the best action most of the time but randomly select the action with a small

probability (𝜀). It is defined as follows

𝜋(𝑠) = {

−argmax
𝑎

𝑉(𝑠) − −

−𝑟𝑎𝑛𝑑𝑜𝑚 𝑎 ∈ 𝐴𝑠

 (6)

where 𝜋 is policy function and 𝐴𝑠 is set of available action for state 𝑠. To implement 𝜀-

greedy, one can set 𝜀 as high as 1 on start and reduce its value over time.

8

2.7 Policy iteration

If we know the optimal value function then the optimal policy is also known. Policy

iteration is one of procedure to find the optimal policy. Starting from arbitrary policy, the

procedure evaluates the policy and obtain value function then improve policy and repeat

process until the new policy unchanged. The final policy had been proved that optimal

[9].

𝜋0 → 𝑉𝜋0 → 𝜋1 → 𝑉𝜋1 → 𝜋2 → 𝑉𝜋2 → 𝜋3 → 𝑉𝜋3 → ⋯ → 𝜋∗

2.7.1 Policy evaluation

Policy evaluation is a method for calculating value function from a policy. In this

work, we will stick with iterative approach. For given arbitrary policy 𝜋, the value

function is updated as follows equation.

 𝑉′(𝑠) = r + γ ∑ 𝑃𝜋(𝑎|𝑠)

𝑎

∑ 𝑇(𝑠𝑡+1|𝑠, 𝑎)

𝑠𝑡+1

 V(𝑠𝑡+1) (7)

Figure 2.1 Policy iteration algorithm

9

where 𝑃𝜋(𝑎|𝑠) is selection probability of action 𝑎 for given state 𝑠 underlying the

policy 𝜋. 𝑇(𝑠′|𝑠, 𝑎) is occurrence probability of next state 𝑠𝑡+1 for given state 𝑠 and

action 𝑎. This method is iterative approach, a new value function 𝑉′ is estimated

based current value function underlying the policy 𝑉, so there are approximation of

value function 𝑉0, 𝑉1, 𝑉2,…,𝑉𝑘 that 𝑉𝑘 ≈ 𝑉𝜋 when 𝑘 → ∞. Practically, the algorithm

continues until value function converges or slightly change. The procedure is

depicted in figure 2.1

2.7.2 Policy improvement

To improve policy, it needs to be sure that value function of the new policy better

than the old one for all state as follows inequation

 𝑉𝜋′
(𝑠) ≥ 𝑉𝜋(𝑠), ∀𝑠𝜖𝑆 (8)

where 𝑉𝜋 is value function underlying current policy 𝜋 and 𝑉𝜋′
 is value function

underlying new policy 𝜋′. The new policy can be obtained greedily as equation

 𝜋′(𝑠) = argmax
𝑎

𝑉𝜋(𝑠) (9)

However, obtaining a policy from state-value function is quite challenging due to 𝑉-

function do not describe utility of any action so, it is more comfortable to obtaining policy

from action-value function instead.

 𝜋′(𝑠) = argmax
𝑎

𝑄𝜋(𝑠, 𝑎) (10)

2.8 Reinforcement learning

In MDP context, agent completely knows mechanism of the environment. For

example, state transition probability is known. While practically, agent just experiences

environment without any knowledge and improve decision from existing data, as called

as, sample which is sequence of state-action and reward. Learning to solve MDP from

sample is reinforcement learning.

The main subject is still finding the optimal value function to calculating the

optimal policy. Policy iteration is the procedure to achieve the optimal policy, but without

knowledge of environment, policy evaluation method which using only sample is

required.

10

2.8.1 Temporal difference learning

Temporal difference (TD) is a set of policy evaluation algorithms based on sample

(collected by certain policy 𝜋). It estimates value function underlying policy 𝜋 iteratively,

as a result 𝑉 ≈ 𝑉𝜋. The value function is updated incrementally iteratively as a

summation of current estimated value function and step-sized error as follows equations.

 𝛿 = 𝑇𝑎𝑟𝑔𝑒𝑡 𝑉𝑎𝑙𝑢𝑒 − 𝑉𝑡

𝑉𝑡+1(𝑠) = 𝑉𝑡 + 𝛼𝑡𝛿 (11)

where 𝛼𝑡 is step-size parameter or learning rate which satisfies the follows conditions.

∑ 𝛼𝑡 = ∞

∞

𝑡=0

, ∑ 𝛼𝑡
2 < ∞

∞

𝑡=0

The ideally 𝑇𝑎𝑟𝑔𝑒𝑡 𝑉𝑎𝑙𝑢𝑒 is actual 𝑉𝜋(s). However, it is implicit due to limitation of

environment knowledge so that lead to various version of TD.

1) TD(0)

The 𝑇𝑎𝑟𝑔𝑒𝑡 𝑉𝑎𝑙𝑢𝑒 suppose to be 𝑉𝜋(s) which is expected return so, one can

assume that 𝑉𝜋(s) equal to 𝑟 + 𝛾𝑉𝑡(𝑠′). The value function is updated by follows equation

 𝑉′(𝑠) = 𝑉(𝑠) + 𝛼𝑡[𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡)] (12)

According to the equation, the estimation base on only value function of the successor

state, so it can be executed right after a transition of state. The incremental updating rule

depict in figure 2.2

Figure 2.2 TD(0) algorithm

11

2) Monte-Carlo

Another way to estimate value function is considerate 𝑇𝑎𝑟𝑔𝑒𝑡 𝑉𝑎𝑙𝑢𝑒 as actual

return denoted as 𝐺.

 𝑉𝑡+1(𝑠) = 𝑉𝑡(𝑠) + 𝛼𝑡[𝐺 − 𝑉𝑡(𝑠)] (13)

Collecting data entire episode is required to finding return. Assuming the sample consists

an episode of data length 𝑘, the return for each state is calculated backward from terminal

to start state as follows equation.

𝐺 = ∑ 𝛾𝑖−(𝑘−1)𝑟𝑖

0

𝑖=𝑘−1

 (14)

Monte-Carlo requires data entire episode so, the value function is strict with batch update.

3) TD(𝜆)

TD(0) is versatile for any application but sometimes updating value function based

on one time-step of data is not sensible while Monte-Carlo requires data entire episode

which is actual value but not good for long episode task. To trade off these, the algorithm

that requires k-time-steps of data is presented. TD(λ) is an algorithm which generalizes

both TD(0) and Monte-Carlo. Considerate TD(0)’s updating rule, which requires a time-

step of data, as an estimator 𝔼1.We know that

 𝑉(𝑠𝑡+1) = 𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+2) (15)

substitute 𝑉(𝑠𝑡+1) to equation 11

 𝑉′(𝑠) = 𝑉(𝑠) + 𝛼𝑡[𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑉(𝑠𝑡+2) − 𝑉(𝑠𝑡)] (16)

The above equation requires 𝑟𝑡 and 𝑟𝑡+1, which are 2 time-steps of data, for updating

value function so, it is considered as an estimator 𝔼2. In the same way, estimator 𝔼𝑘 is

defined as

𝑉′(𝑠) = 𝑉(𝑠) + 𝛼𝑡 [∑ 𝛾𝑖𝑟𝑡+𝑖

𝑘−1

𝑖=0

+ 𝛾𝑘𝑉(𝑠𝑡+𝑘) − 𝑉(𝑠𝑡)] (17)

where 𝑘 ∈ ℤ+. The 𝑇𝑎𝑟𝑔𝑒𝑡 𝑉𝑎𝑙𝑢𝑒 of TD(λ) is a mixture of every estimator (𝔼𝑘 for all

𝑘 ∈ ℤ+) by weight each term of them by 𝜆𝑘−1(1 − 𝜆) where 0 ≤ 𝜆 ≤ 1

12

𝑇𝑎𝑟𝑔𝑒𝑡 𝑉𝑎𝑙𝑢𝑒 = ∑ 𝜆𝑘−1(1 − 𝜆)𝔼𝑘

∞

𝑘=1

 (18)

The incremental updating rule depicts in figure 2.3. In case 𝜆 = 0, the algorithm equal to

TD(0) while 𝜆 = 1, the algorithm equal to TD(1).

2.9 State approximation

The conventional reinforcement learning operates in discrete state space. It works

well in the task which state is discrete but, for continuous state task, state space is must

be discretized. However, it is not easy to split the state space, which is continuous in

nature. With too many states, more experience is needed to learn the value function

because the agent needs to at least visit each state once. In contrast, with too few states,

the controller might not be able to perform correctly.

To adopt continuous state space, the value function can be approximated by weight

vector 𝑤. The value function, instead of presented as tubular, is now represented by dot

product of feature vector 𝜙 and weight vector 𝑤 as a follows equation

 𝑉̂𝑤(𝑠) = 𝑤𝑇 𝜙 (𝑠) (19)

Figure 2.3 TD(𝜆) algorithm

13

where feature vector 𝜙(𝑠) is a basis function representing state 𝑠. By the way, there are

various way to define feature vector with condition that each component 𝜙𝑖(𝑠) of 𝜙(𝑠)

is the value of a function 𝜙𝑖(𝑠): 𝑠 → ℛ.

In the case of state-action value function, the feature vector 𝜙 represent state-

action instead of state only. If there are few actions, one just composes every state-action

into 𝜙 as a follows equation.

𝜙(𝑠, 𝑎) = [
𝐼(𝑎, 𝑎1) ∙ s

⋮
𝐼(𝑎, 𝑎𝑛) ∙ 𝑠

] (20)

when there are 𝑛 actions that {𝑎1, … , 𝑎𝑛} ∈ 𝐴 and 𝐼 is the mask that

 𝐼(𝑎, 𝑎𝑐𝑡𝑖𝑜𝑛) = {
1 𝑎 = 𝑎𝑐𝑡𝑖𝑜𝑛
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (21)

According to equation 9, a policy can be quickly calculated as follows

 𝜋𝑤(𝑠) = argmax
𝑎

𝑤𝑇 𝜙(𝑠, 𝑎) (22)

Generally, the dimension of vector 𝑤 is much lesser than the dimension of value

function 𝑉(𝑠), changing one weight affect value of many states. The weight is considered

as generalization parameter of value function which smoothly merges states together that

make learning potentially more efficient.

2.9.1 Least square policy iteration

The learning objective in the continuous case is to estimate the weight parameter 𝑤

using past experience in the form of sample. Least Square Policy Iteration (LSPI) is a

global algorithm for improving the policy [10]. The LSPI operates by repeatedly calling

policy evaluation algorithm Least square temporal difference for state-action value

function (LSTDQ), feeding new sample to LSTDQ and updating the policy weight until

convergence, e.g., ‖𝑤𝑡 − 𝑤𝑡−1‖ < 𝜀 , where ‖∙‖ denotes some vector norm, or the

maximum number of iterations has been reached. LSPI is described in figure 2.4.

According to [10], there are several options for obtaining the sample for the next

iteration of LSPI. One way is to freeze the sample and reuse the sample for the estimation

of 𝑤 in the subsequence iterations. The rational behinds this is to extract every bit of

14

information out of the sample. On the other hand, one could collect a new sample from

the updated policy 𝜋′ and use the new sample for learning.

2.9.2 Least square temporal difference for state-action value function

Least square temporal difference for state-action value function [10] is a learning

algorithm for approximating the policy weight 𝑤 from sample. Given a finite set of

examples {𝑠𝑡𝑎𝑡𝑟𝑡𝑠𝑡
′}𝑡=1

𝑛 , a matrix 𝐴 is defined as

𝐴 =

1

𝑛
∑ 𝑧 ∙ [𝑧 − 𝛾𝑧′]𝑇

𝑛

𝑡=1

 (23)

where = 𝜙(𝑠𝑡, 𝑎𝑡), 𝑧′ = 𝜙(𝑠𝑡
′, 𝜋𝑇(𝑠𝑡

′)) and 𝛾is the discount factor. Here, 𝑃𝑇 denotes a

transposition of matrix 𝑃. In the case that 𝑠′ is an absorbing state, 𝑧′ will be a zero vector.

Further, a matrix 𝐵 is defined as

𝐵 =

1

𝑛
∑ 𝑧 ∙ 𝑟𝑡

𝑛

𝑡=1

 (24)

Figure 2.4 LSPI algorithm

15

where 𝑟𝑡 is a reward at time-step 𝑡 According to the work in [7], it has been shown

that 𝐴, 𝐵, and 𝑤 are related through 𝐴𝑤𝑇 = 𝐵. The matrix 𝐴 is always positive-definite

so that we can solve for 𝑤 by inverting 𝐴. The LSTDQ procedure is described in figure

2.5

We note that the original LSTDQ considers 𝑧 that captures the dependency of the

previous state and the current state.

It is possible, however, to extend the dependency towards states far back in the past

[11]. The idea is to calculate 𝑧 as:

 𝑧 ← 𝑧 ∙ 𝜆 + 𝜙(𝑠, 𝑎)

where 0 ≤ 𝜆 ≤ 1 is a parameter that indicates how much experience from the previous

states will be accumulated.

Figure 2.5 LSTDQ algorithm

16

CHAPTER 3

Reinforcement Learning for Solving Cart-Pole Balancing Problem

This chapter will explain experiment setting for the LSPI algorithm, such as

definition of state, reward function design, algorithm configuration, and experiment

details.

3.1 Cart-Pole Balancing Problem Simulation

Reinforcement learning theory is converged by infinite iteration [12]. So, Agent

need unlimited amount of data using for simulation. This paper uses “cart-pole balancing

problem” for simulation data. It is provided by OpenAI [7]. The cart pole balancing

problem is balancing the pole to not fall down and control the cart as middle point of a

track.

A cart moves on a frictionless track with a pole is mounted by an unactuated joint.

It is controlled by applying a force direction left or right to itself. The cart-pole starts with

random position which the cart is almost at the center of the track and the pole is almost

upright. The goal is to prolong episode as long as possible. The episode ends by the pole

vertically diverges more than 12 degrees, or the cart moves more than 2.4 units from the

center.

Originally, the task is considered success when agent made the decisions in an

episode more than 195 time-steps for 100 consecutive trials. However, 195 time-steps

seem too short to be the success condition for the good agent so, the minimum time-steps

per episode should be extended. Practically, we cannot wait forever so, the time-steps per

episode is defined as 6000. Information of cart pole provided by simulation are 𝑋, 𝑋′, 𝜃, 𝜃′

when 𝑋 is horizontal position of the cart on the track, 𝑋′ is the rate of change of the cart’s

position, 𝜃 is the pole’s angle and 𝜃′ is the pole’s angular velocity.

17

3.2 State and action definition

To apply the LSPI algorithm solving the cart-pole balancing problem,

approximation of the action-value function and the reward function are needed to

construct for the setting of the algorithm. First, the raw data which is obtained from

simulation is defined as a state vector: 𝑠 = {𝑋, 𝑋′, 𝜃, 𝜃′}. The action is defined as 𝑎 ∈

 { 𝐿𝑒𝑓𝑡, 𝑅𝑖𝑔ℎ𝑡 }. Then, we define the state-action feature 𝜙(𝑠, 𝑎) as equation 19

𝜙(𝑠, 𝑎) = [

𝐼(𝑎, 𝐿𝑒𝑓𝑡) ∙ 𝑉𝑇(𝑠)

𝐼(𝑎, 𝑅𝑖𝑔ℎ𝑡) ∙ 𝑉𝑇(𝑠)
] (1)

Note that, there are two actions in this work so, dimensions of 𝜙(𝑠, 𝑎) and 𝑤 are 8.

3.3 Reward function

The reward is feedback that reflects the consequence of action. For cart-pole

balancing problem, the reward values can be either 1, 0, or -1. The reward is positive

when the agent’s behavior is appropriate or the action leads to a preferred state, in contrast

to the negative reward. While zero reward is obscure. The preferred state for this task is

pole’s angle does not exceed the predefined range and cart still in track, as called as non-

absorbing states. The mentioned idea leads to the definition of 𝑅1and 𝑅2 as follows

 𝑅1(𝑠) = {
−1 𝑠′ ∈ 𝜂 − −
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2)

 𝑅2(𝑠) = {
−1 𝑠′ ∈ 𝜂 − −
−0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3)

where 𝜂 is set of non-absorbing states. 𝑅1 and 𝑅2 is considered sparse rewards. However,

by these reward functions, agent will get the same signal even the next state worse than

current one. To encourage agent to do more preferred behavior, the reward should

announce difference feedback between action that makes state better or worse. The new

reward function is proposed as follows

𝑅3(𝑠) = {
−1 𝑠′ ∈ 𝜂 ∧ [(𝜃 > 0 ∧ 𝜃′ < 0) ∨ (𝜃 < 0 ∧ 𝜃′ > 0)]

−0 𝑠′ ∈ 𝜂 − − − − − − − − − − − − − − − − −
−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 − − − − − − − − − − − − − − −

 (4)

𝑅3 is the balancing by making direction of 𝜃′ counter to the direction of 𝜃. This kind of

reward function is shaped reward. Unlike sparse reward that agent gains same portion of

reward for most of the time and then occasionally gain difference value of reward when

18

it reached the crucial state, e.g., absorbing state that indicates success or failure of the

task.

The limitation of 𝑅3, it does not take cart’s position into account. However, the objective

of this task is to maintain both of the pole’s angle and the cart’s position. So, the ideal

reward function supposes to guide the agent to satisfy both objectives. We thus minimize

non-preferred state such as the pole diverge from upright and the cart moves far from the

center. The reward function is defined as follows

𝑅4(𝑠) = {

𝑀𝑖𝑛(1 − 𝜃, 1 − 𝑋̂) 𝑠′ ∈ 𝜂 − −

−1 − − − − − − − 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5)

when 𝜃 is the normalized degree of pole’s angle for non-absorbing states and 𝑋̂ is the

normalized cart’s distance. 𝑅4 returns maximum value when the pole’s angle and the

cart’s position are zero.

This work proposed another reward function 𝑅5. The agent gain the reward from

pole’s angle minus by the cart’s position. 𝑅5 is inversely proportional to pole’s angle. So

when the pole is upright, agent gain the highest reward. However, when the cart goes too

far from the center, the agent is punished. 𝑅5 is defined as follows

𝑅5(𝑠) = {𝑒−(𝜃2) − 𝑒−(100(𝑥−2.4)2) 𝑠′ ∈ 𝜂 − −

−1 − − − − − − − 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6)

when 𝑒 is a natural number. The term of 𝑒−(𝜃2) represents as reward and the term of

𝑒−(100(𝑥−2.4)2) represents as punishment. Note that, 2.4 is the diatance from the center to

the edge of the track.

3.4 Experiment

This section described the four experiments namely, 1) comparison between fixing

and updating sample collection method, 2) effect of initial sample on performance of the

agent, 3) effectiveness of proposed reward function, 4) impact of  on the performance

of agent.

For all experiments, we need to define various parameters. There are initial policy

weight, stopping threshold, maximum of data per episode, amount of episode for each

iteration, amount of iteration and discount factor. The policy weight (𝑤) is initialized to

zero vector and updated throughout the learning process. We investigate the result in the

19

long run so, we run LSPI algorithm for 200 iterations without the stopping threshold. We

defined maximum of data per episode as 6000 time-step. The discount factor 𝛾was set to

0.9.

Due to the simulation start with a slightly random position of cart-pole, the quantity

of data per iteration should sufficient to eliminate the uncertainty. And because of success

condition of the task required agent to meet the minimum time-steps for 100 consecutive

trials so, amount of episode for each iteration is defined as 100 episodes.

Performance of the agent is measured in terms of time-steps and rewards that agent

made. The performance is measured for every iteration. The time-steps measure as

average amount of time-step that agent made per episode. The reward measure as average

amount of reward that agent made per decision due to the data for each iteration may

contains difference amount of time-step. This measure imply effectiveness for each

decision of agent. Specific detail for each experiment is described as follows.

3.4.1 Comparison between fixing and updating sample collection method

LSPI algorithm is claimed that able to work with arbitrary sample collection

method. The sample can be either fix or update over time. In addition, the size of sample

can also be changed when required. This work interested in both of mentioned methods.

The fixing sample method requires initial policy or any procedure for collecting data. The

data is used for the entire learning process. And, the updating sample method required

updating for each iteration. The method is collecting the sample with the current policy.

Then agent learn a new policy and replace the old sample by the new one collecting by

the new learned policy.

Propose of this experiment is to determine the essential of updating the sample. It

is a comparison between two agents that have different sample updating method. Both

agents get initial sample collected from the random policy. The first agent updates the

sample every iteration. Updating method of the first agent is depicted in Figure 3.1. The

second agent fixes the sample for the entire learning process.

20

3.4.2 Effect of initial sample on performance of the agent

This experiment investigate the effect of quality of initial sample on the learning of

the agent. There are three sets of initial sample namely, 𝑠1, 𝑠2 and 𝑠3. 𝑠1 is the set of

sample collected from the bad policy. 𝑠2 is the set of sample collected from the good

policy. And the 𝑠3 is the mixed of 𝑠1 and 𝑠2. Each set of initial samples contains 100

episodes of data. The good policy is the policy that made around 2300 time-step per

episode. We defined the good policy weight 𝑤1 as 𝑤1
𝑇 = [−1, −1, −1, −1, 1, 1, 1,

1]. 𝑤2 is a bad policy. It is completely opposite to 𝑤1. 𝑤2 is defined as 𝑤2
𝑇 = [1, 1, 1,

1, −1, −1, − 1, −1]. In this experiment, the agent updates sample for every iteration.

3.4.3 Effectiveness of proposed reward function

This experiment is evaluating the effectiveness of proposed reward function. We

compare the performance of three agents which using five reward functions which are

𝑅1, 𝑅2, 𝑅3 , 𝑅4, and 𝑅5 respectively. All agents start with zero policy weight, the sample

is updated every iteration. There is no initial set of sample for each agent.

3.4.4 Impact of  on the performance of agent

This experiment will investigate the impact of 𝜆 on the learning of the agent. In

general, the value of 𝜆 is between 0 and 1. The value of 1 implies that the current state

affects the entire predecessor states. While the value of 0 implies that the current state

Figure 3.1 A flowchart illustrating how the sample gets updated.

21

affects only one previous state. In this experiment, we compare the 𝜆 value of the set {0.0,

0.2, 0.4, 0.6, 0.8, 1.0}

22

CHAPTER 4

Experimental Result

This chapter express the result of experiments mentioned in the previous chapter.

4.1 Comparison between fixing and updating sample collection method

The result shows the performance of two agents that utilized different sample

updating method. There are two terms of measured performance which are average time-

step per episode and reward per time-step. The blue line represents the agent that update

sample every iteration, while the orange line represents the agent that fix sample for the

entire learning process. In figure 4.1, both agents start with low capability. Then, the blue

line growth exponentially until it reaches the goal, 6000 time-steps, around iteration 130th.

In contrast, there is no improvement for the orange line. In figure 4.2, the blue line shows

higher average reward than the orange line. According to figure 4.1 and figure 4.2, the

agent that update sample are a lot better than the other one. It is obvious that fixing sample

Figure 4.1 Average time-step of 100 episodes in each iteration for two agents learning

with fixed sample and continuously updated sample

23

does not help agent to learn or make any progress so, updating sample for every iteration

is necessary.

4.2 Effect of Initial Sample on Performance of the Agent

The result shows the performance of three agents that utilized the different initial

set of sample. There are two terms of measured performance which are average time-step

per episode and reward per time-step. The red line represents an agent that utilized the

bad set of initial sample. The blue line represents an agent that utilized the good set of

initial sample. The green line represents an agent that utilized the mix set of initial sample.

In figure 4.3, the blue and green lines start with 6000 time-steps on very early iteration

then decay to 2300 time-steps and keep fluctuating in a small range. The red line starts at

low time-step then it improves exponentially until reach 6000 time-steps around the

iteration 125th. It keeps steady for 30 iterations then decays to 2300 time-steps and

fluctuates in a small range. In figure 4.4, the blue and green line converged on early

iteration while the red line starts on low reward then improve and converge after the

iteration 125th. The agents that utilized good and mix set of initial sample show good

performance and converge on early iteration. While the agent that utilized the bad set of

initial sample show bad performance at first but, it still able to improve and converge.

Figure 4.2 Reward per decision in each iteration for two agents learning with fixed

sample and continuously updated sample

24

Figure 4.3 Average time-step of 100 episodes in each iteration for initial samples.

Figure 4.4 Reward per decision in each iteration for three initial samples.

25

4.3 Effectiveness of proposed reward function

The result shows the performance of five agents that utilized different reward

functions. There are two terms of measured performance which are average time-step per

episode and reward per time-step. The red and blue lines represent agent that utilize

reward functions 𝑅1 and 𝑅2, respectively. The green, orange and purple lines represent

agent that utilize proposed reward functions 𝑅3, 𝑅4 and 𝑅5, respectively

In figure 4.5, the green line is the only one that reaches 6000 time-step while other

lines show very low time-step through learning process. The green line start at low time-

step on early iteration. Then, it growth exponentially until reaches the goal, 6000 time-

steps, around iteration 110th. After that, it keeps steady for 30 iterations then decays to

2300 time-steps and fluctuates in small range.

In figure 4.6, the green line is the only one that improve then converge on late

iteration. It reaches the highest average reward per time-step after iteration 150th, which

the performance has already reduced, instead of the iteration that agent made 6000 time-

steps. The orange line shows improvement at first but decay and converge on later

iteration. Other lines show no improvement through learning process. As can be observed

from the result, reward function plays an important role in the success of the learning.

Since 𝑅3 does not take the cart position into account, it will not respond to event when

the cart going to break the track. This may be the reason why the performance reduced to

Figure 4.5 Average time-step of 100 episodes in each iteration for five reward functions

26

2300 time-steps on late iteration. By the way, although 𝑅3 is not the perfect one, it still

able to lead agent to archive the goal.

4.4 Effect of  on the Performance of the Policy

Performance of agents that use difference 𝜆, namely, 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0,

is shown in Figure 4.6. The graph show performance in terms of average time-step per

episode. Agents that use a small value of 𝜆, e.g., 0.0, 0.2 and 0.4 can reach 6000 time-

steps while agents that use other larger values converged just below 120 time-steps.

According to theory, competent 𝜆 value is specific to learning Configuration. In this case,

𝜆 = 0.2 is the best value because agent that utilize this value is the fastest one that can

reach the goal. As can be seen, utilizing 𝜆 can speed up learning process, comparing to

the default setting that considerate 𝜆 = 0. However, the value needs to be carefully

defined, due to it ruins the learning when agent uses inappropriate value.

Figure 4.6 Reward per decision in each iteration for five reward functions

27

Figure 4.7 Average time-step of 100 episodes in each iteration for lambda values of 0.0,

0.2, 0.4, 0.6, 0.8 and 1.0

28

CHAPTER 5

Conclusion and Discussion

This chapter express discussion and conclusion of this work.

5.1 Discussion

In this section, there are discussion of four result of experiments that mentioned in

the previous chapter.

According the experiment result 4.1, we found that updating sample due iteration

obviously help agent to learn to archive the task. In contrast, the agent that learn from fix

sample has no improvement, considering from both performance measures.

According the experiment result 4.2, we found that the good and mixed quality set

of initial sample help agent to archive the goal on early iteration. While the bad set of

initial sample policy does not boost the learning process. This lead to awareness of mix

quality set of initial sample that it should not contain too much of data collected from bad

policy. However, the agent that utilized the bad set of initial sample still able to archive

the goal. For this problem, initial sample is a safe option with none of negative effect

According the experiment result 4.3, we suggest that reward function is the major

factor leading agent to archive the goal. Only the proposed reward function 𝑅3 able to

guide agent to achieve the goal, while other reward functions are failure. 𝑅1 and 𝑅2 always

reward agent with the same value, as long as the next state is non-absorbing state is the

reason that make 𝑅1 and 𝑅2 inferior to the 𝑅3. They return the same value even though

the agent made a bad decision that transfers itself to a worse state, i.e., state that the pole

diverge further from upright position. On the other hand, reward function 𝑅3 treat agent

in a difference way. It returns positive value only if the action leads to preference state. It

ignores if the next state is not the preferred one and punishes if the task failure. This seems

encourages agent to take the right decision according to our common sense. The proposed

reward function 𝑅3 work well but not perfect due to it not take cart position into account

29

so, it does not respond to event when the cart going to break the track. This may be the

reason why the performance reduced to 2300 time-steps on late iteration. Anyway, this

still acceptable because policy has been recorded for every iteration so, one can choose

the high-performance policy from the record. Considering from the performance in term

of reward per time-step, 𝑅4 seems unlikely to be the right idea because it show reducing

during the learning process. While the idea of 𝑅5 are more likely to employ. We adapt

the idea of 𝑅3 and 𝑅5 that can be seen in appendix section.

According the experiment result 4.4, the result confirms that lambda value can

speed up learning process. Comparing to the lambda value 0, some of the lambda value

help agent to archive the task faster. However, some of them slow down or even ruin the

learning process when the lambda value is too high. High lambda value fail to speed up

the learning process because they make the current event that agent facing affects too

much of the predecessor states which may not relate to the current one anymore. This

lead to awareness of defining the lambda value.

5.2 Conclusion

In this work, we studied reinforcement learning for solving cart-pole balancing

problem which the track length is limited by using LSPI algorithm. The problem is

considered in continuous state space. We proposed new rewards function which is

competent for guiding the agent towards optimal control strategy. We employ the LSPI

algorithm with various reward functions. According to experiments, we found that agent

that utilize updated sample with the reward function 𝑅3 achieve that goal. In addition, we

confirmed that lambda value can speed up that learning process. The initial sample are

the safe option when it possible to provided.

30

REFERENCES

[1] R. C. Dorf and R. H. Bishop, Modern Control Systems (12th Edition),

Pearson, 2010.

[2] K. M. Passino and S. Yurkovich, Fuzzy Control, Addison-Wesley, 1997.

[3] A. G. Barto, R. S. Sutton and C. W. Anderson, "Neuronlike adaptive elements

that can solve difficult learning control problems," IEEE Transactions on

Systems, Man, and Cybernetics, Vols. SMC-13, pp. 834-846, 9 1983.

[4] B. D. Nichols, "A comparison of action selection methods for implicit policy

method reinforcement learning in continuous action-space," in 2016

International Joint Conference on Neural Networks (IJCNN), 2016.

[5] A. Weinstein and M. Botvinick, "Structure Learning in Motor Control: A

Deep Reinforcement Learning Model," CoRR, vol. abs/1706.06827, 2017.

[6] L. Busoniu, D. Ernst, B. D. Schutter and R. Babuška, "Online least-squares

policy iteration for reinforcement learning control," in Proceedings of the

2010 American Control Conference, 2010.

[7] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang

and W. Zaremba, OpenAI Gym, 2016.

[8] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction

(Adaptive Computation and Machine Learning), A Bradford Book, 1998.

[9] R. A. Howard, Dynamic Programming and Markov Processes, Cambridge,

MA: MIT Press, 1960.

[10] M. G. Lagoudakis and R. Parr, "Least-squares Policy Iteration," J. Mach.

Learn. Res., vol. 4, pp. 1107-1149, 12 2003.

[11] J. A. Boyan, "Technical Update: Least-Squares Temporal Difference

Learning," Machine Learning, vol. 49, pp. 233-246, 01 11 2002.

31

[12] E. Patricia Brunskill, "Compact parametric models for efficient sequential

decision making in high-dimensional, uncertain domains," 3 2010.

32

APPENDIX A

Additional reward function

𝑅3 is the only proposed reward function that able to lead agent to archive the goal.

However, it is not sensible by ignore the cart’s position. To improve the reward, we alter

the 𝑅3 by punishing agent when it going to make the cart move out of track. The improved

reward function 𝑅6 is defined as follows

𝑅6(𝑠) = {
−1 − 𝑒−(100(𝑋−2.4)2) 𝑠′ ∈ 𝜂 ∧ [(𝜃 > 0 ∧ 𝜃′ < 0) ∨ (𝜃 < 0 ∧ 𝜃′ > 0)]

−0 − 𝑒−(100(𝑋−2.4)2) 𝑠′ ∈ 𝜂 − − − − − − − − − − − − − − − − −
−1 − − − − − − − 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 − − − − − − − − − − − − − − −

 (1)

when 𝑒 is a natural number. Like 𝑅5, the highest vale of term 𝑒−(100(𝑥−2.4)2) is 1 when

the cart’s position: 𝑋 = 2.4.

An experiment is conducted to validate effectiveness of 𝑅6. Setting of the

experiment is as same as the experiment in section 3.4.3. In addition, ending of episode

is measured in this experiment. There are three kind ending in this work namely, “pole

down”, “out of track” and “time”. “Pole down” and “out of track” represent the event

Figure A.1 Average time-step of 100 episodes in each iteration for 𝑅6

33

when the pole’s angle and the cart’s position exceed the limit, respectively. While “time”

represent the event when the agent reach 6000 time-step.

According to figure A.1, the agent archive the goal on early episode. However,

time-step remain still and decay on iteration 60th. Reward per decision in figure A.2

confirmed that the learning converge after the performance reduced. Figure A.3 show

percent for each kind episode ending. The graph confirms that the cart breaking the track

cause reducing of the performance after iteration 60th.

Figure A.3 percent of episode ending in each iteration for 𝑅6

Figure A.2 Reward per decision in each iteration for 𝑅6

34

APPENDIX B

Stability and reproducibility of reinforcement learning

Steady of reproducing is an issue in reinforcement learning. We used to conduct an

experiment with the same setting for 20 trials. There are 100 episodes of data for each

iteration. The result is shown in figure B.1. There are 20 lines that represent each trial.

The graph shows that the agent does not performs stably. Overall performance of the

agent is shown figure B.2. The line represents average time-step per episode of 20 trials.

The 25th percentile and the 75th percentile are boundary of the shadow area. The graph

shows high variance since the 120th iteration.

We also conducted another experiment which increased amount of data per iteration

up to 500 episodes. There are 20 trials for this experiment. Overall performance of the

agent is shown figure B.3. Comparing to figure B.2, the shadow area is significantly

reduced. However, this experiment consumed a lot more time than the previous one.

Figure B.1 Average time-step of 100 episodes in each iteration for 20 trials

35

Figure B.2 Average time-step of 20 trials which each iteration contain 100 episodes of

data

Figure B.3 Average time-step of 20 trials which each iteration contain 500 episodes of

data

36

CURRICULUM VITAE

Name Mr.Sa-ngapong Panyakaew

Date of birth 19th November 1992

Education 2014 Bachelor of Science, Computer Science, Faculty of Science,

Chiangmai University

Publication S. Panyakaew, P. Inkeaw, J. Bootkrajang, & J. Chaijaruwanich,

“Least Square Reinforcement Learning for Solving Inverted

Pendulum Problem”, 2018 3rd International Conference on

Computer and Communication Systems (ICCCS 2018), Nagoya,

Japan

	Cover-1
	Cover
	20191021163734
	Cover

	Abstract
	Content
	Chapter1
	Chapter2
	Chapter3
	Chapter4
	Chapter5
	Reference
	Appendix

