## GENOTYPING OF PATHOGENIC BACTERIA:

## STREPTOCOCCUS SUIS AND VIBRIO CHOLERAE MODELS

THIRD EDITION

## POTJANEE SRIMANOTE

Molecular Immunology and Microbiology Unit Graduate Program in Biomedical Sciences Faculty of Allied Health Sciences Thammasat University



FOR ACADEMIC USE ONLY NOT FOR SALE

## CONTENTS

| PREFACE TO THE SECOND EDITION                                                                 | ix   |
|-----------------------------------------------------------------------------------------------|------|
| LIST OF FIGURES                                                                               | xi   |
| LIST OF TABLES                                                                                | xiii |
| Chapter 1: INTRODUCTION TO MOLECULAR TYPING                                                   | 1    |
| 1.1 General information for bacterial typing methods                                          | 2    |
| 1.2 Bacterial phenotyping system                                                              | 2    |
| 1.3 Bacterial genotyping system                                                               | 5    |
| 1.3.1 Classification of genotyping system                                                     | 6    |
| 1.4 Definitions of terms used in bacterial typing                                             | 8    |
| 1.5 Bacterial genotyping models in this textbook                                              | 11   |
| Chapter 2: CRITERIA FOR EVALUATION OF MICROBIAL TYPING SYSTEMS                                | 15   |
| 2.1 Characteristics of the useful genetic markers for typing                                  | 16   |
| 2.1.1 General characteristics of genetic markers                                              | 16   |
| 2.1.2 Features of genetic markers examined in bacterial strain typing                         | 17   |
| 2.1.3 Characteristics of a useful genetic marker for bacterial typing                         | 18   |
| 2.2 Criteria for evaluation of microbial typing systems                                       | 19   |
| 2.2.1 Criteria associated with performance of typing systems (efficacy)                       | 20   |
| 2.2.2 Criteria associated with the convenience of typing systems (efficiency)                 | 24   |
| Chapter 3: RESTRICTION FRAGMENT LENGTH POLYMORPHISM (RFLP)-BASED DNA FINGERPRINTING TECHNIQUE | 27   |
| 3.1 Plasmid DNA profile analysis                                                              | 29   |
| 3.1.1 Introduction to plasmid DNA profile analysis and principle                              | 29   |
| 3.1.2 Assessment of plasmid DNA profile analysis and its application                          | 30   |
| 3.2 Typing by restriction fragment length polymorphism (RFLP) analysis of genomic DNA         | 32   |

| 3.2.1 General introduction on restriction endonuclease analysis (REA)                                                    |    |
|--------------------------------------------------------------------------------------------------------------------------|----|
| of genomic DNA                                                                                                           | 32 |
| 3.2.2 Conventional REA of genomic DNA                                                                                    | 35 |
| 3.2.3 RFLP analysis using a nucleic acid probe (ribotyping)                                                              | 36 |
| 3.2.4 Pulsed-field gel electrophoresis (PFGE)                                                                            | 42 |
| 3.2.5 Comparison of DNA banding patterns and computer-assisted analysis                                                  | 59 |
| Chapter 4: AMPLIFICATION-BASED DNA FINGERPRINTING TECHNIQUE                                                              | 65 |
| 4.1 General introduction                                                                                                 | 66 |
| 4.2 Random amplified polymorphic DNA (RAPD) PCR (RAPD-PCR)                                                               | 66 |
| 4.2.1 Principle and procedure of RAPD-PCR                                                                                | 66 |
| 4.2.2 Assessment of RAPD-PCR                                                                                             | 72 |
| 4.2.3 Interpretation of RAPD-PCR banding patterns                                                                        | 73 |
| 4.2.4 RAPD-PCR application in typing of pathogenic bacteria                                                              | 74 |
| 4.3 Repetitive element sequence-based PCR (rep-PCR)                                                                      | 74 |
| 4.3.1 Introduction to REP-PCR, ERIC-PCR, and BOX-PCR                                                                     | 74 |
| 4.3.2 REP-PCR, ERIC-PCR, and BOX-PCR genomic fingerprinting procedure                                                    | 76 |
| 4.3.3 Assessment of REP-PCR, ERIC-PCR, and BOX-PCR genomic fingerprinting and their application                          | 76 |
| 4.4 Variable number of tandem repeats (VNTR) analysis and multilocus variable<br>number of tandem repeat analysis (MLVA) | 78 |
| 4.4.1 Introduction to VNTR analysis and MLVA                                                                             | 78 |
| 4.4.2 VNTR analysis and MLVA procedure                                                                                   | 79 |
| 4.4.3 Assessment of VNTR analysis and MLVA typing                                                                        | 81 |
| 4.5 Amplified fragment length polymorphism technique (AFLP)                                                              | 82 |
| 4.5.1 Introduction to AFLP                                                                                               | 82 |
| 4.5.2 Assessment of AFLP for bacterial typing                                                                            | 83 |
| Chapter 5: DNA SEQUENCING BASED TYPING SYSTEM                                                                            | 89 |
| 5.1 Introduction to DNA sequencing                                                                                       | 90 |
| 5.2 Strategies in DNA sequencing                                                                                         | 91 |
|                                                                                                                          |    |

|                                                                       | 93  |
|-----------------------------------------------------------------------|-----|
| 5.2.1 The Sanger method                                               | 95  |
| 5.2.2 Pyrosequencing                                                  | 98  |
| 5.3 The workflow of next-generation sequencing data analysis          |     |
| 5.4 Bacterial strain typing by DNA sequencing-based methods           | 100 |
| 5.4.1 Single locus sequence typing (SLST)                             | 101 |
| 5.4.2 Multilocus sequence typing (MLST)                               | 103 |
| 5.4.3 Whole genome sequencing (WGS)                                   | 111 |
| 5.4.4 Epidemiologic concordance validation of WGS-based typing method | 118 |
| Chapter 6 SELECTION OF APPROPRIATE TYPING METHOD FOR                  |     |
| TYPING OF BACTERIAL STRAINS                                           | 123 |
| 6.1 Introduction on the selection of the typing method                | 124 |
| 6.2 Purpose of epidemiology typing                                    | 125 |
| 6.2.1 Study of bacterial population genetics                          | 125 |
| 6.2.2 Epidemiologic surveillance of infectious diseases               | 126 |
| 6.2.2 Outbreak investigation                                          | 127 |
| 6.2.4 Study of the pathogenesis of infection                          | 129 |
| INDEX                                                                 | 131 |